
International Journal of Advanced Trends in Computer Science and Engineering,   Vol.2 , No.6, Pages : 96-101 (2013)        
Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India 

96 
 

 

ISSN 2278-3091 

 

 
ABSTRACT 
 
The need for secure logging is well-understood by the security 
professionals, together with each researchers and practitioners. 
The flexibility to the accuracy verifies all (or some) log entries is 
very important to any application using secure logging 
techniques. During this paper, we start by examining progressive 
in secure logging and determine some issues inherent to systems 
supported trusty third-party servers in the cloud. We tend to then 
propose a distinct approach to secure logging primarily based 
upon recently developed Forward-Secure consecutive aggregate 
(FssAgg) authentication techniques. Our approach offers each 
space-efficiency and obvious security. we tend to illustrate two 
concrete schemes - one private-verifiable and one public- 
verifiable - that provide sensible secure logging with none 
reliance on on-line trustworthy  third parties or secure hardware. 
We tend to additionally investigate the thought of immutability 
within the context of forward secure sequential aggregate 
authentication to produce finer grained verification. Finally, we 
tend to report on some expertise with a prototype built upon a 
preferred code version control system. 
 
Keywords: Secure logging, cloud server, MACs, Signatures, 
forward secure stream integrity, BBox. 
 
INTRODUCTION 
 
A LOG could be a record of events occurring among an 
organization’s system or network [1]. Logging is vital as a 
result of log information may be utilized to troubleshoot 
issues, fine tune system performance, recognize policy 
violations, investigate malicious actions, and even manages 
user actions. Log records play a major role in digital forensic 
analysis of systems. Laws like HIPAA [2], Payment Card 
trade information Security standard [3], or Sarbanes-Oxley 
[4] typically need forensically sound preservation of data. To 
go with these laws, proof produced during a court of law, 
together with log records, should be unbiased, non-tampered 
with, and complete before they'll be used. 
                System and application logs are of nice value for 
administrators, e. g., for observance, fault management, and 
forensics. The predominant format for logs is simple text that 
 
 

is the focus here; for instance, the syslog daemon on UNIX 
system and Linux systems, also as applications just like the 
Apache web server, store log entries in line-oriented plain 
text. As an alternative, proprietary binary or XML-based file 
formats also as relational databases is also used; as an 
example, this can be employed by the Microsoft Windows 
event log.     
                 Independent of the storage format, secure logs 
should fulfill the subsequent basic criteria in practice: 

 The log’s integrity should be ensured: Neither a 
malicious administrator nor an attacker, who has 
compromised a system, could be able to delete or 
modify existing, or insert fake log entries. 

 The log must not violate compliance criteria [5]. For 
example, European data protection laws regulate the 
retention of personal data, which includes, among 
many others, user names and IP addresses. These 
restrictions also apply to log entries according to 
several German courts’ verdicts that motivated our 
work. 

 The confidentiality of log entries should be 
safeguarded; i. e., read access to log entries should be 
confined to an impulsive set of users. 

 
The provision of log entries should be created certain of 

in a typical information center or network operations setting, 
the integrity criterion is typically satisfied by employing a 
trustworthy, central log server: Log entries aren't (solely) 
stored locally on a device, however sent over the network to a 
different machine; thus, an attacker would have to be 
compelled to compromise each these device and also the log 
server before having the ability to control the log while not 
being detectable. The compliance criterions are often satisfied 
by deleting previous log files, e. g., once and the common 
period of seven days. As of these days, confidentiality is 
usually handled in a per-file manner; for instance, UNIX file 
system permissions are usually utilized build a log file 
readable for a particular user or cluster. Prospective trendy 
logging facilities additionally enable confidentiality in a 
per-entry granularity, however aren't nevertheless in such 
wide use. Finally, the provision demand for log files is that the 
same as for alternative necessary information and usually 
ensured by information redundancy, i. e., copies and backups. 

Enhancing Seekable Sequential Key Generators along 
with FSS Scheme for Secure Logging in the Cloud 

V.Vijaya Chandra Rao1, Dr.A.Suresh Babu 2 
1JNTUACEP, India, vijaychandrarao.v@gmail.com 

2JNTUACEP, India,asureshjntu@gmail.com 
 

 
  



International Journal of Advanced Trends in Computer Science and Engineering,   Vol.2 , No.6, Pages : 96-101 (2013)        
Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India 

97 
 

 

ISSN 2278-3091 

 

                      Our work is intended by the large-scale 
distributed setting of the SASER-SIEGFRIED project (Safe 
and Secure European Routing) [6], during which over 50 
project partners design and implement network architectures 
and technologies for secure future networks. The project’s 
goal is to remedy security vulnerabilities of today’s ip layer 
networks within the 2020 timeframe. Thereby, security 
mechanisms for future networks are going to be designed 
supported an analysis of the presently predominant security 
issues within the ip layer, additionally as future problems like 
vendor backdoors and traffic anomaly detection. The project 
focuses on inter-domain routing, and routing decisions are 
based on security metrics that are a part of log entries sent by 
active network elements to central network management 
systems; thus, the integrity of this information should be 
protected, providing a use case that's almost like traditional 
intra-organizational log file management applications. 
          In lightweight of the on top of observations, it's vital 
that logging be provided in a very secure manner which the 
log records are adequately protected for a predetermined 
quantity of your time (maybe even indefinitely). Traditional 
work protocols that are based on syslog [7] haven't been 
designed with such safety measures in mind. Security 
extensions that are proposed, like reliable delivery of syslog 
[8], forward integrity for audit logs [9], syslog-ng [10], and 
syslog-sign [11], usually offer either partial protection, or 
don't protect the log records from final point attacks. 
Additionally, log management needs substantial storage and 
processing capabilities. The log service should be ready to 
store information in an organized manner and supply a quick 
and helpful retrieval facility. Last, however not least, log 
records typically ought to be made accessible to outside 
auditors who don't seem to be associated with the 
organization. Deploying a secure logging infrastructure to 
meet of these challenges entails important infrastructural 
support and capital expenses that several organizations might 
notice enormous.                      
           
    The rising paradigm of cloud computing guarantees a low 
price chance for organizations to store and manage log 
records in an exceedingly correct manner. Organizations will 
outsource the long-term storage needs of log files to the cloud. 
The conflicts of storing and managing the log records become 
a priority of the cloud provider. Since the cloud provider is 
providing one service to several organizations that it'll have 
the benefit of economies of scale. Pushing log records to the 
cloud, but introduces a new challenge in storing and 
maintaining log records. The cloud provider may be honest 
however curious. This implies that it will attempt not only to 
urge confidential information directly from log records, 
however additionally link log record related activities to their 
sources. No any other defined protocol directs all the 
challenges that arise once log storage and maintenance is 
pushed to the cloud.                
              We have a tendency to propose new secure logging 
schemes based on recently proposed FssAgg authentication 
techniques. Our schemes offer forward-secure stream 

integrity for audit logs generated and keep on untrusted work 
machines and avoid the undesirable options of previous 
schemes. Our schemes inherit the obvious security of the 
underlying FssAgg schemes. We tend to measure proposed 
schemes by scrutiny them with previous schemes, in terms of 
security moreover as communication and computation 
efficiency. Our evaluation shows that our schemes provide 
higher security and incur less computation and 
communication overhead. We tend to propose an algorithm to 
get outputs correct, complete and compact log views. 
Accuracy, completeness and compactness of log views follow 
from tamper proof upon the idea that the attacker model is 
analogous to it of log information at rest, that the non-public 
key of the BBox [14] isn't acknowledged by the attacker which 
the devices communicate each event occurring within the 
system. 
 
 SYSTEM OVERVIEW 
 
The overall design of the cloud primarily based secure log 
management system is shown in Fig. 1. There are four major 
useful elements during this system. 
 
 Log Generators  
 
These are the computing devices that generate log 
information. Every organization that adopts the cloud-based 
log management service includes a variety of log generators. 
Every of those generators are provided with logging 
capability. The log files generated by these hosts aren't 
keeping locally except briefly until such time as they're 
pushed to the logging client. 
 

 Logging client or logging Relay: 
 
The logging client could be a collector that receives clusters of 
log records generated by one or a lot of log generators, and 
prepares the log information in order that it may be pushed to 
the cloud for future storage. The log information is 
transferred from the generators to the client in batches, either 
on a schedule, or as and once required reckoning on the 
quantity of log information waiting to be transferred. The 
logging client consolidates security protection on batches of 
accumulated log information and pushes every batch to the 
logging cloud. Once the logging client pushes log information 
to the cloud it acts as a logging relay. We have a tendency to 
use the terms logging client and logging relay 
interchangeably. The logging client or relay may be enforced 
as a bunch of collaborating hosts. For simplicity but, we have 
a tendency to assume that there's one logging client. 
 
 Logging Cloud 
 
The logging cloud provides future storage and maintenance 
service to log information received from completely different 
logging clients belonging to different organizations. The 



International Journal of Advanced Trends in Computer Science and Engineering,   Vol.2 , No.6, Pages : 96-101 (2013)        
Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India 

98 
 

 

ISSN 2278-3091 

 

logging cloud is managed by a cloud service provider. Only 
those organizations that have signed to the logging cloud’s 
services will transfer information to the cloud. The cloud, for 
the asking from an organization may also delete log 
information and perform log rotation. Before the logging 
cloud can delete or rotate log information it needs an 
indication from the requester that the latter is allowed to 
create such a request. The logging client generates such an 
indication. However, the proof may be given by the logging 
client to any entity that it needs to authorize. 
 

 Log Monitor 
 
These are hosts that are accustomed monitor and review log 
information. They will generate queries to retrieve log 
information from the cloud. Supported the log information 
retrieved, these monitors can perform additional analysis as 
required. They will conjointly raise the log cloud to delete log 
information permanently, or rotate logs. 
 
 

 
 
Fig 1 shows System architecture for cloud-based secure 
logging. 
 
 

We assume that the organization maintains the log 
generators and therefore the logging client. The log monitor 
will be maintained by identical organization or will be a 
separate entity. The logging client may play the role of a log 
monitor. We tend to develop our model assumptive that the 
log monitor may be a separate entity that's trusted by the 
logging client. After all the logging client and log monitor 
operate independent of every different, they'll communicate 
only in an asynchronous manner. This implies that if a 
logging client needs to send some information to the log 
monitor (or vice versa); the sender cannot expect the receiver 
to be online to receive the information. As a result the sender 
needs to publish the information in some location and 
therefore the receiver must retrieve the information from 
there once required. The logging cloud facilitates this 
communication by receiving and servicing appropriate 
request. 

FORWARD-Secure-Sequential-Aggregate- 
Authentication 
 
In this section, we have a tendency to brief introduce the 
elements of FssAgg scheme as they’ll be utilized in our secure 
logging system. We tend to confer with [12, 13] for a lot of 
formal definition of an FssAgg scheme. We tend to next show 
however an FssAgg scheme will offer forward-secure stream 
integrity. 
An FssAgg scheme includes the subsequent components: 
[FssAgg.kg]-key generation algorithm utilized to generate 
public/private key-pairs. It additionally takes as input T –the 
utmost number of your time periods (key environments). 
[FssAgg-Assign]-sign-and-aggregate algorithm that takes as 
input a personal key, a message to be signed and a 
signature-so-far(an aggregated signature computed up to the 
current point).It computes a new signature on the input 
message and combines it with the signature-so-far to provide 
a new combination signature. The ultimate step in 
FssAgg.Asig may be a key update procedure FssAgg.Upd that 
takes as input the signing key for the present period and 
returns the new sighing key for subsequent period (not 
exceeding T).We have a tendency to build key update a part of 
the sign-and-aggregate algorithm so as to get stronger 
security guarantees (see below). 
[FssAgg.Aver]-verification algorithm, which, on input of a 
supposed combination signature, a  group of presumptively 
signed distinct messages, and a public key , outputs a binary 
value indicating whether or not the signature is valid. 
A secure FssAgg scheme should satisfy the subsequent 
properties: 

 Correctness: Any aggregated signature created with 
FssAgg.Asig Should be selected by FssAgg.Aver. 

 Forward secure combination unforgeability: 
nobody, even knowing the present signing key, will 
build a legitimate FssAgg forgery. 

The forward secure mixture unforgeability implies two 
things: 
First, it’s append-only –nobody will modify any message 
generated before the compromise that more implies an 
FssAgg signature will offer integrity protection for the entire 
message body. An attacker who compromises a singer has two 
choices: either it includes the intact aggregate-so-far 
signature in future aggregated signatures or it ignores the 
aggregate-so-far signature utterly and begins a latest 
aggregated signature. What it cannot do is by selection 
deleting elements of an already-generated mixture signature. 
This appends-only property resembles the property resembles 
the property of special write-only disk utilized in traditional 
log systems. Second it’s exhausting to get rid of a component 
signature while not knowing it - therefore it’s immune to 
deletion (including truncation) attack. They’re two very 
helpful properties and that we can exploit them in our 
applications. 
We claim that FssAgg authentication implies forward-secure 
stream virtue, i.e.: 



International Journal of Advanced Trends in Computer Science and Engineering,   Vol.2 , No.6, Pages : 96-101 (2013)        
Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India 

99 
 

 

ISSN 2278-3091 

 

Forward Security: During an FssAgg scheme, secret singing 
key updated through a one-approach function. An attacker is 
therefore unable to recover previous keys from the present 
(compromised) key and so unable to forge signatures from 
previous intervals. 
Stream Security: The consecutive aggregation method in an 
FssAgg scheme preserves the order of messages in order that 
it provides stream security; so, re-ordering of messages is not 
possible. 
Integrity: any insertion of latest messages additonally as 
modification and deletion of existing messages can render the 
ultimate combination unchecked. 
 Armed with this implication, we are able to currently 
construct a secure logging system from any FssAgg 
authentication scheme. 
 A. Algorithms for Accurating Log Views and Records: 
As log information at rest, the log views should be correct, 
complete and compact. These properties are necessary, as if 
log views don’t fulfill them, the results of auditing such log 
views cannot be thought of correct. 
Definition 1 (Accuracy, Completeness and Compactness of 
Log Views). Let Log File be a log file and i an identifier. A 
log view L = T, M for I obtained from Log File is correct iff T 
contains the precise payloads of the log messages sent to the 
BBox;  
T is Complete iff T encompasses the payloads of all the log 
messages received by the BBox associated with I. L is 
compact iff T contains only the entries associated with I.  
The generation of log views is completed by algorithm1 that 
selects the entries from the log file consistent with the index 
I.  
Theorem 1. Algorithm 1 outputs correct, complete and 
compact log views.  
Accuracy, completeness and compactness of log views 
follow from tamper proof upon the idea that the attacker 
model is analogous to it of log information at rest that the 
personal key of the BBox isn't notable by the attacker which 
the devices communicate each event occurring within the 
system.  
 
Proof. Let LogFile be a log file consisting of a sequence of 
entries E0.  . . en constructed consistent with Section 3 and T 
be the audit-trail of the log read generated for I. T is made by 
linearly looking for entries E such Hash(I) = E.HI.Since the 
entry authentication check detects tampering makes an 
attempt (modification, insertion and deletion), log views are 
only generated if the source log file passes the authentication 
test. Specifically, this ensures that:  
• No payload was modified, in order that accuracy of log 
views is given.  
• No index was modified or replaced, and no entry was 
deleted, in order that all the entries for I are thought-about 
for selection (Line 8), providing for completeness.  
• No entry was affixed to Log File, offering for compactness.  
Hence, algorithm 1 produces correct, complete and compact 
log views 

 

Description of the scheme 
 
We utilize the subsequent notation from here onwords: 
   -Li: i-th message, i.e., the i-th log entry. (We assume that 
log entries are time –stamped and generally have a 
well-defined format). 
   -k: k-bit full-domain hash function with strong collision 
resistance :{ 0, 1} k {0, 1} k. 
-H: one-way hash function with strong collision resistance and 
arbitrarily long in-put: {0, 1}{0, 1}k. 
- MAC: secure MAC function mac:{0,1}k{0,1}}{0, 1}t  
that, on input of a k-bit key x and an arbitrary message m, 
outputs a t-bit macx(m). 
– UPD: key update frequency 
 
 Seekable sequential key generators: 
Consider a host that uses SKG's keys Ki to authenticate 
endlessly incurring log messages. A second copy of the same 
SKG instance would be run by the log auditor. From time to 
time the latter might want to check the integrity of an 
arbitrary selection of those messages6. Observe that this 
situation doesn't extremely correspond to the setting : While 
the higher SKG copy would possibly represent the host that 
evolves keys within the expected linear order Ki ! Ki+1, the 
auditor (running the independent second copy) would really 
want non-sequential access to SKG's keys. 
 
Functionality and syntax 
When comparison to regular SKGs, the distinctive property of 
seekable sequential key generators (SSKG) is that keys Ki are 
often computed directly from initial state st0 and index i, i.e., 
while not executing the Evolve procedure i times. The 
corresponding new algorithm, Seek, and its relevance the 
opposite SKG algorithms is visualized in Figure 2. For 
reasons that may become clear later, once extending SKG's 
syntax towards SSKG, additionally to introducing the seek 
algorithm we tend to additionally had to slightly adapt the 
signature of the GenSKG algorithm: 
A seekable sequential key generator is a tuple SSKG = 
{GenSSKG, GenState0, Evolve, Seek, GetKeyg} of efficient 
algorithms as follows: 

--GenSSKG(1). On input of security parameter 1_, this 
algorithm outputs a set par of public   parameters and a 
seeking key sk. 

      --GenState0, Evolve, GetKey as for SKGs. 
      -- Seek(sk; st0;m). On input of seeking key sk, initial state 
st0, and m 2 N, this deterministic algorithm returns a state 
stm. 
 
 
 



International Journal of Advanced Trends in Computer Science and Engineering,   Vol.2 , No.6, Pages : 96-101 (2013)        
Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India 

100 
 

 

ISSN 2278-3091 

 

 
 
Fig. 2 shows Interplay of the different SSKG algorithms. The 
figure shows two independent SSKG instances running in 
parallel. Given seeking key sk and respective instance's initial 
state st0, one can seek directly to any arbitrary state stm. As in 
SKGs, GetKey algorithm can be applied to any intermediate 
state sti to derive key Ki. 

 EXPERIMENTAL SETTINGS 
The actual cloud server is employed as a multithreaded server 
that accepts at a time connecting log clients and log monitors. 
Our implementation is such it is simply deployed on any existing 
cloud system. We’ve got used a MySQL database engine to store 
log information. The selection of MySQL is justified by the small 
batch table schema (only some columns) that takes advantage of 
the extremely quick MySQL tuple fetch capabilities. We tend to 
store information within the remote MySQL database as byte 
representation of Java objects via JDBC connection. The batches 
are keeping within the cloud database indexed by the upload-tag. 
we tend to assume that in actual deployment scenario the 
database back-ends can reside on separate physical machines 
(regardless of virtualization) divide from the client serving cloud 
application thus as to alleviate the file I/O load on the cloud 
application machine (which can be additionally clustered on 
multiple physical nodes). 

 
        
Fig 3 shows Secure Version Control System 
 

Our experiments include two identical machines with a 
2.13 gigahertz Intel Core 2 Duo CPU and 200GB memory. Both 
machines were running Ubuntu 12.04 64-bit Linux with 3.8.8 
kernel and were stationed on a similar LAN. The primary 
machine was running the logging client application, while the 
second machine was running the syslog-ng application that was 
configured to make fixed-size (100 bytes) log records 

 CONCLUSION 
 

In this paper, we tend to identify some problems in current 
secure logging techniques. We tend to then proposed two 
concrete schemes to produce forward-secure stream integrity for 
logs generated on untrusted machines. Our method assistance 
forward security. Each of our proposed schemes provides 
sensible secure logging while not reliance on trusty third parties 
or secures hardware. Our schemes are supported the recent 
proposed FssAgg authentication schemes wherever a singular 
authentication tag is utilized to guard the integrity of underlying 
message body. We have a tendency to then thought-about the 
notion of immutability that's required to facilitate quicker 
verification of individual log entries. We have a tendency to 
evaluate the performance of our schemes and report on 
experience with a prototype implementation among a public 
domain versioning control system.  

Although the protection of proposed schemes rests entirely on 
recently proposed techniques (i.e., [12], [13]), we'd like to 
construct separate security proofs for every scheme. Moreover, 
we've got to conduct in depth experiments, and maybe trace- 
driven simulations, to higher perceive the performance of our 
schemes. Finally, we will investigate different signature 
schemes which may be used for constructing additional efficient 
public-verifiable techniques. 
 

REFERENCES 
1. K. Kent and M. Souppaya (1992). Guide to Computer 

Security Log Management, NIST Special Publication 
800-92[Online]. 
Available:http://csrc.nist.gov/publications/nistpubs/800-
92/SP800-92.pdf 

2. U.S. Department of Health and Human Services. (2011, 
Sep.). HIPAA—General Information [Online]. 
Available: https://www.cms.gov/hipaageninfo 

3. PCI Security Standards Council. (2006, Sep.) Payment 
Card Industry (PCI) Data Security Standard—Security 
Audit Procedures Version 1.1 [Online]. Available: 
https://www.pcisecuritystandards.org/pdfs/pci−audit−pr
ocedures−v1-1.pdf 

4. Sarbanes-Oxley Act 2002. (2002, Sep.). A Guide to the 
Sarbanes-Oxley Act [Online]. Available: 
http://www.soxlaw.com/ 

5. W. Hommel, S. Metzger, H. Reiser, and F. von Eye, "Log file 
management compliance and insider threat detection at 
higher education institutions," in  Proceedings of the 
EUNIS'12 congress, Oct. 2012, pp. 33-42 



International Journal of Advanced Trends in Computer Science and Engineering,   Vol.2 , No.6, Pages : 96-101 (2013)        
Special Issue of ICETEM 2013 - Held on 29-30 November, 2013 in Sree Visvesvaraya Institute of Technology and Science, Mahabubnagar – 204, AP, India 

101 
 

 

ISSN 2278-3091 

 

6. The SASER-SIEGFRIED Project Website. [retrieved: 
03.04.13]. [Online]. Available: 
http://www.celtic-initiative.org/Projects/Celtic-Plus-Projects
/2011/SASER/SASER-b-Siegfried/saser-b-default.asp 

7. C. Lonvick, The BSD Syslog Protocol, Request for 
Comment RFC 3164, Internet Engineering Task Force, 
Network Working Group, Aug. 2001. 

8. D. New and M. Rose, Reliable Delivery for Syslog, 
Request for Comment RFC 3195, Internet Engineering 
Task Force, Network Working Group, Nov. 2001. 

9. M. Bellare and B. S. Yee, “Forward integrity for secure 
audit logs,” Dept. Comput. Sci., Univ. California, San 
Diego, Tech. Rep., Nov. 1997. 

10. BalaBit IT Security (2011, Sep.). 
Syslog-ng—Multiplatform Syslog Server and Logging 
Daemon [Online]. Available: 
http://www.balabit.com/network-security/syslog-ng 

11. J. Kelsey, J. Callas, and A. Clemm, Signed Syslog 
Messages, Request for Comment RFC 5848, Internet 
Engineering Task Force, Network Working Group, May 
2010. 

12. Ma, D., Tsudik, G.: Forward-secure sequentical aggregate 
authentication. In: Proceedings of IEEE Symposium on 
Security and Privacy 2007. (May 2007). 

13. Ma, D.: Practical forward secure sequential aggregate 
signatures. In: ACM Symposium on Information, 
Computer and Communications Security (ASIACCS'08). 
(March 2008). 

14. Rafael Accorsi “A Secure Log Architecture to Support to 
Remote Auditing “; 57(2013): pp 1578-1591. 
 

 
 

 
1V.Vijayachandra Rao received the bachelor’s degree in 2011 from 
JNTU Anantapur. He is currently pursuing the Master’s degree in 
CSE in the college of JNTUACEP. 
 
 

 

 

 
2Dr.A. Suresh Babu received the PhD degree in Information 
Extraction Systems in Data Mining from the University of JNTU 
Anantapur in 2013. He is an assistant professor at the Jntu college of 
Engineering, Pulivendula, Kadapa, Andhra Pradesh, India. His 
research interests include Data Mining and Cloud Computing. 
 
 


