
Dr. Srinivasulu Mannem et al., International Journal of Advances in Computer Science and Technology, 2(9), September 2013, 183-189

183

ABSTRACT

Understanding and maintaining legacy COBOL
systems are still a challenging task for both academic
research and industry practice. With the development of
future direction software engineering, Future direction
code comprehension and reengineering for COBOL
software systems become a very promising research
direction. In this paper, context feature and error handling
feature, which are two most important features for COBOL
code understanding, are defined. In addition, the advance
for feature location and operations in COBOL code is
reachable. Program slicing technique is adopted to locate
feature code from large COBOL systems. This study/paper
reports our experience to date on the application of Feature
Direction program understanding in COBOL code.

Key words: Legacy Systems, Legacy programming, Cobol
Code.

1. INTRUDUCTION

COBOL applications are widely used and long-lived
[10]. According to research firm Gartner, there are roughly
30 billion COBOL transactions processed every day. The
expensive issues include the expense associated with
running these systems. IBM admits that at least $1.5
trillion has been spent by enterprises to create
COBOL/CICS applications [2], and the expense associated
with maintaining those applications is increasing rather
than decreasing. COBOL applications often run in critical
areas of business. For instance, over 95% of
finance–insurance data is processed with COBOL. The
serious financial/insurance and legal costs that can result
from an application failure are one reason for the fear over
the software problems.

Feature-Direction Programming (FDP) has been
proposed as a technique for improving the separation of
concerns in software design and implementation. The field
of FDP has focused primarily on problem analysis,
language design, and implementation. However, feature
direction is applied in understanding COBOL code in our

approach by defining the context feature and error
handling feature. The approach to understanding legacy
COBOL code from feature orientation point of view is
presented in this study/paper, which is structured as
follows.

Section 2 describes the process to conceptual COBOL code
to class diagrams, which is the representation for further
feature direction understanding. Section 3 defines the
context feature and related operations. Furthermore,
section 4 defines the error handling feature and the
identification of error handling feature. Section 5 presents
a case study to demonstrate our approach. Section 6
presents some related work. Finally, Section 7 concludes
the paper with a summary of our experience to date.
2. ABSTRACTION OF COBOL CODE

UML class diagram is adopted to represent legacy
COBOL code. This abstraction of COBOL code makes it
easier to define the context feature and error handling
feature. The approach to abstract COBOL code to class
diagram representation is divided into the following steps.
2.1 Dividing Calls into Four Groups

One program PPs calling another program PPt is
indicated as PPs ＞＞PPt. One program PPs not calling
another program PPt is indicated as PPs ≯≯ PPt. One
program PPs called by another program PPt is indicated as
PPs ＜＜ PPt. One program PPs not called by another
program PPt is indicated as PPs ≮≮ PPt.

Definition 1: For one program P, its procedures and its

functions PPi, i ≥0, let PP(P) be the procedure and function
set of program P, which is indicated as PP(P)={ PPi| PPi ＜
＜ P, i≥0}. PPn’ is called root program element if and only

 if (∀ PPi∈PP(P) ⇒ (PPn ＞＞PPi)) AND
(∀ PPj∈PP(P) ⇒ (PPn ≮≮ PPj))

PPn’ is called leaf program element if and only
if (∀ PPi∈PP(P) ⇒ (PPn ≯≯ PPi))
AND (∃PPj∈PP(P) ⇒ (PPn ＜＜ PPi))

PPn’ is called node program element if and only
if (∃PPi∈PP(P) ⇒ (PPn ＞＞ PPi))
AND

 (∃PPj∈PP(P) ⇒ (PPn ＜＜ PPi))
PPn’ is called isolated program element if and only

if (∀ PPi∈PP(P) ⇒ (PPn ≯≯ PPi)) AND
 (∀PPj∈PP(P) ⇒ (PPn ≮≮ PPi))

Dr. Srinivasulu Mannem, Rajyalakshmi S.
Senior Development Lead, Four Soft Limited, Hyderabad, India,

Quality Assurance Specialist, Prime Line Global Solutions, Hyderabad, India,
srinivas.m@four-soft.com, raji_s30@yahoo.co.in.

Using Feature Direction in Understanding Legacy Programming Code

 ISSN 2320 - 2602
Volume 2, No.9, August 2013

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2013/ijacst04292013.pdf

Dr. Srinivasulu Mannem et al., International Journal of Advances in Computer Science and Technology, 2(9), September 2013, 183-189

184

In order to identify with the source code as a whole, it is
necessary to describe the calling or called relationships of
those procedures in program P.

Definition 2: Procedure graph is one graph to describe
the calling or called relationships of those procedures in
program P, indicated PG. It is composed of nodes and
lines. The sequence of procedure graph PG is upper
-to-bottom. The procedure the first node represents calls
the procedures the next nodes represent. The sequence of
the next nodes is the sequence being called in the first
procedure.

Definition 3: The procedure layer is one number that
represents the depth of one procedure calling other
procedures, indicated PL(P). The procedure layer of leaf
program elements is 0, the procedure layer of the program
elements that only call leaf program elements is 1, the
procedure layer of program elements that call the program
elements the maximum of whose procedure layers is 2.

Let PP1 , PP2, PP3 be three procedures, and assume that
PP1 is one leaf program element,

(PP2 ＞＞ PP1) AND (PP2≯≯PPi), i≥3,
(PP3＞＞PP1) AND (PP3＞＞PP2)

AND (PP3≯≯PPi), i>3,
then PL(PP1)=0, PL(PP2)=1, PL(PP3)=2.
2.2 Generating Pseudo Classes

Definition 4: For one leaf program element P, PV is its
variable set and POP is its operation set. If PV=ф, then P
is called empty program element. That empty program
element is regarded as one class, indicated CLASS
Procedure-Name-Empty.

Figure 1: One example of class diagram

The operations in empty program element are
transferred into the attributes and operations of that class.

For one leaf program element P and its slicing
condition Ci=<p, Vi>, 1≤i≤n, and the corresponding
slicing program Sci, PC is the slicing criterion set PC={ Ci
}, PCV is the set of slicing criterion variables PCV(P)={ Vi
}.

For the first slicing criterion C1=<p, V1>, and its slice
Sc1, PCV(Sc1) is composed of the variables of the slicing
program Sc1. Let V1 be the first pseudo class, PCV(Sc1) is
its attributes, POP(Sc1) is the operations of that pseudo

class. Let V2 be the second variable, and V2∈ (PCV(P)-
PCV(Sc1)). For the slicing criterion C2=<p, V2>, its slice
Sc2 and the variable set PCV(Sc2) are acquired. Let V2 be
the second pseudo class, PCV(Sc2) is its attributes, the
operations in Sc2 is the operations of that pseudo class.

The iteration goes on until (PCV(P)- ∑ PCV(Sci))=ф.
Then all the pseudo classes of all the leaf program
elements of program P are acquired.

After acquiring all the classes of leaf program elements,
node program elements of program P need to be analyzed.
Because one leaf program element is one functional
module and it is called in the node program elements, it is
defined as one class in analyzing node program elements
that call the leaf program element.

Definition 5: For leaf program element P, Leaf class is
the class with respect to that leaf program element in
analyzing the actions and the functions calling it indicated
CLASS Procedure-Name-Leaf.

Assume that P is a procedure being sliced and Q is a
procedure which is called at statement i in P. The
algorithm of inter-procedural slicing CC extended from P
to Q is: CC=<n1

Q, ROUT(i)f→A ∩SCOPEQ>
where n1

Q is the last statement of Q, f→A means that
the actual parameters will be replaced by formal
parameters. SCOPEQ represents all variables which are
accessible in procedure Q.

ROUT(i) =∪RINC(j), where j∈IMS(i).
Assume that the source code has the procedure layer

j=n0, Cji represents the ith slicing of the jth layer, and Pj is
the procedure whose procedure layer is j. The algorithm
computes the pseudo classes which is not empty.
2.3 Generating Real Classes

Pseudo class Vji is slicing-dependent on PCV(Scji).
Every pseudo class is one group.

It is necessary to check the validity of the classes and
corresponding operations and attributes. If one class is
contained in another class, the former class is redundant
for the latter.

Definition 6: For one class Vjs, if ∃t≠s, ⇒
(PCV(Scjs) ⊆ PCV(Scjt)) AND (POV(Scjs) ⊆ POV(Scjt))
then Vjs is called ‘otiose’ class. If one ‘otiose’ class is not
leaf class, it is deleted. Then the real classes are generated.
2.4 Defining Relationships among Classes

An association shows a relationship between two or
more classes. Associations have several properties:

 A name that is used to describe the coalition
between the two classes. Coalition names are
optional and need not be unique globally.

 A role at each end that identifies the function of
each class with respect to the relations.

 A cardinality at each end that identifies the
possible number of instances.

Dr. Srinivasulu Mannem et al., International Journal of Advances in Computer Science and Technology, 2(9), September 2013, 183-189

185

It is necessary to model simplification relationships
between objects. Simplification is used to eliminate
redundancy from the analysis model. If two or more classes
share attributes or behavior, the similarities are
consolidated into a super class.
2.5 Pretty Printing Class Diagrams

Consistency of attributes, operations, parameters, and
their orders of classes is necessary. The understanding of
an interface is performed by the implementation of
operations and attributes of a class or a component.

Inheritance is modeled vertically and other
relationships horizontally. If two classes interact with each
other, some kind of relationship may be needed between
them. The transitory relationship is a dependency. In class
diagrams, multiplicity between classes is necessary and
essential and usually the multiplicity “*” can be replaced
by “1..*” or “0..*”. An aggregation is a specification of
association that depict a whole-part relationship.
3. CONTEXT FEATURE

3.1 Definition of Context Feature

Context feature of legacy COBOL code is the
environmental description that introduces the COBOL
type [8], the explanation in source code with the notes, and
SQL functions. It is presented with UML class diagram
that contains three classes: Type COBOL Class, Notes
Class, and SQL Class.
3.2 Type COBOL Class

Definition 7: Class of Type COBOL is the class that
represents the type of COBOL used in programming. Its
name is Type Name, its attribute is the production
corporation, and its operation is the extended
functionality.

Table 1: Type COBOL class
Class-Name: Type Name
Attribute: Production Corporation
Operation: Extended Functionality

3.3 Note Class

In COBOL code, the notes are useful for explaining the
ideas of programming, the structure of program, the
precondition of executing statements, the strategy of
controlling process, and etc. They are not executable. They
describe directly the information for understanding the
code and executing what should be done [5].

* Initialize the variables for the get call
MOVE MQGMO-SYNCPOINT TO MQGMO-OPTIONS.
ADD MQGMO-NO-WAIT TO MQGMO-OPTIONS.
MOVE VD3-MSGID TO MQMD-MSGID.
MOVE VD3-CORRELID TO MQMD-CORRELID.

* Get the chosen message

CALL 'MQGET' USING VD3-HCONN
……
W01-REASON.

IF W01-COMPCODE NOT = MQCC-OK
……

ELSE
……

END-IF.
EXEC CICS IGNORE CONDITION

MAPFAIL
END-EXEC.
……
……

In order to describe the notes in comprehending the
legacy COBOL code with depicting the context of COBOL
code, note class is presented. Note class of legacy COBOL
code is one function that contains the notes of one legacy
COBOL system to introduce the structure of programs,
explain the ideas of programming, present the
organization of the system, depict the preconditions of
executing statements, illustrate the strategy of controlling
process, clarify the anticipated results of the execution in
the legacy COBOL code.

Table 2: Note class
Class-Name: Note Class
Line: Line-number
Display: presenting description

3.4 SQL Class

SQL stands for the Structured Query Language. It is one
of the fundamental bases of modern database architecture.
SQL defines the methods used to create and manipulate
relational databases on all major platforms. SQL takes into
the programming world many flavors. Oracle databases
utilize their proprietary PL/SQL. Microsoft SQL Server
makes use of Transact-SQL. However, all of these
variations are based upon the industry standard ANSI
SQL. All modern relational databases, including
MS-Access, Microsoft SQL Server and Oracle regard SQL
as their basics. In fact, it’s often the only way that can be
truly interacted with the database.

Table 3: SQL Command example
Keyword pair One Example
EXEC SQL EXEC SQL DELETE FROM HOTEL END-EXEC.
Statement string IF SQLSTATE NOT = "02000" THEN
Any valid SQL statement EXEC SQL COMMIT END-EXEC
Statement terminator ELSE
END-EXEC. EXEC SQL ROLLBACK END-EXEC

SQL can be used in COBOL programming [13]. SQL

statements are identified by the leading delimiter EXEC
SQL and terminated by END-EXEC. SQL statements are
treated exactly as ordinary COBOL statements with regard
to the use of an ending period to mark the end of a COBOL
sentence. Any valid COBOL punctuation may be placed
after the END-EXEC terminator.

Host variables used in SQL statements must be declared
within the SQL DECLARATION SECTION, delimited by

Dr. Srinivasulu Mannem et al., International Journal of Advances in Computer Science and Technology, 2(9), September 2013, 183-189

186

the statements BEGIN DECLARATION SECTION and
END DECLARE SECTION. Host variables follow the
same scope rules as ordinary variables in COBOL. SQL
descriptor names, cursor names and statement names must
be unique within the compilation unit. A compilation unit
for COBOL is the same as a routine.

Table 4: SQL class
Class-Name: SQL COBOL
Organisation: ANSI
Operation: EXEC SQL… END-EXEC

SQL is very simple and helpful in COBOL

programming. SQL has a limited number of commands
and those commands are very readable and easy to
understand.

Figure 2: Class diagram of context hardware

4 ERROR HANDLING FEATURE

4.1 Definition of Error Handling Feature

An error is an event that occurs during the execution of
a program that disrupts the normal flow of instructions
during the execution of a program. The error is a condition
dealing with unusual states that changes the normal flow
of control in a program. One error in the program may be
raised by hardware or software.

The runtime system searches the paragraph for a
method that contains a block of code that can handle the
error. This block of code is called an error handler. The
process and the techniques of coping with the errors in the
software system are called error handling.

An exception in the program is any unusual event,
erroneous or not, that is detectable by the hardware or
software and that may require special processing. An
exception is generated when the associated event occurs.
The special processing is called exception handling. The
code unit that does it is called an exception handler.

4.2 Identifying Error Handling Feature
4.2.1 Candidates of Error Handling

When the program executes its main task, it is
conventional to detect the correctness of input and output,
the validity of the execution, and the coincidence of the
comparison. Only if the error is checked out, the step to
cope with the error is performed. Therefore the detection is
the first thing of error handling.

Table 5: Example of error handling feature
Normal STOP IDENTIFICATION DIVISION.

 PROGRAM-ID. ExampleProgram.
 ……
 PROCEDURE DIVISION.
 ……
 DisplayInformation.
 DISPLAY "I did it".
 ……
 STOP RUN.

Discussed Case1 ……
 PROCEDURE DIVISION.
 ……
 IF (S NOT GREATER THAN LEVEL1) AND
 (NOT-ON-ORDER)
 PERFORM RECORD-ERROR.
 ……
 CLOSE FILE1, FILE2, FILE3
 STOP RUN.
 ……
 END-IF
 ……

Discussed Case2 PROCEDURE DIVISION.
 ……
 PERFORM UNTIL END-OF-FILE
 ……
 IF NOT-ON-ORDER
 ……
 PERFORM RECORD-ERRORS
 STOP RUN.
 …….
 END-IF
 ……
 CLOSE STOCK-FILE, ORDER-FILE.
 ……
 END-PERFORM.
 ……

COBOL utilizes conditional operations, which
indicated as SCD, VERB(SCD)={ IF, IF…ELSE…,
EVALUATE, PERFORM…UNTIL (BY)…,
CONTINUE, SEARCH } to execute detection tasks. So the
set SCD(P) is the candidate of error handling in program
P. The discussions below are based on the Weiser’s
theorem [3], [14].

Theorem 1: Let i be one node of program P. The node i
is one candidate of error handling case if

ND(i) ≠ф
4.2.2 Error Handling with Termination Keywords

After one program P finishes its task, it stops with
COBOL reserved words like “STOPRUN”, “GOBACK”,
“EXIT PROGRAM”, or “RETURN”. Those are also called
Termination Key Words, indicated “STOP”.

Theorem 2: Let k0 be the node “STOP”, i be one node,
t0 be the last node of program P. One error handling case
occurs if ∃i∈P, (k0 ∈ND(i)) AND (k0 !∈DOM(t0))

That is, for one program P, one error handling case
happens when the statement STOPRUN is not on every
path to the end of program P. The program P stops with not
finishing its task. It is called abnormal termination. Its
operation set is indicated s1.

Dr. Srinivasulu Mannem et al., International Journal of Advances in Computer Science and Technology, 2(9), September 2013, 183-189

187

4.2.3 Error Handling with GOTO-EXIT Couple

The statements of GOTO-EXIT couple are used in the
error handling. The control body of IF statement includes
GOTO statement, and the control of program jumps to the
EXIT-PROGRAM.

Table 6: An example of GOTO-EXIT couple
Source Code Control Flow
1. ACCEPT AA.
2. ACCEPT AB.
3. ACCEPT AC.
4. IF (AA<0) THEN
5. DISPLAY AA.
6. GO TO EXIT-

 PROGRAM.
7. END-IF
8. ADD AA TO AB.
9. ADD AB TO AC.
10. DISPLAY AC.
11. EXIT-PROGRAM:
12. EXIT

Theorem 3: Let k0 be the node “GOTO jump-name”,
s0 be the node “jump-name”, t0 be the last node of program
P. Assume that i is one node of P. One error handling case
occurs if

∃i∈P, (k0 ∈ND(i)) AND(s0∈DOM(t0))
AND (k0 !∈DOM(t0))

That is, when one error occurs in program P satisfying
one condition in the statement i, the control flow jumps to
the flow of the exit of the program P. Its operation set is
indicated s2.

Table 7: Typical mode of error handling
BEGIN
INPUT data
<INPUT-ERROR>
<DO input-error-handling>
PERFORM data1
<PERFORM-ERROR1>
<DO perform-error-handling1>
…
PERFORM datan
<PERFORM-ERRORn>
<DO perform-error-handlingn>
OUtPUT data
<OUTPUT-ERROR>
<DO output-error-handling>
END

For the example in the Table 6:
k0 =6; s0 =11; t0 =12; i=4;
ND(i)={5,6,8,9,10}; DOM(t0)={1,2,3,4,11,12}.
k0 ∈ND(i);
s0∈DOM(t0);
k0 !∈DOM(t0).

Therefore, the set {5, 6} is the error handling part in the
example program.
4.2.4 The Rest of Error Handling

The rest candidates of error handling features in P is
indicated s3: s3=SCD(P)-s1-s2

The error handling is unusual event of processing, and
it does not realize the main function of the program except
the error handling program. It detects the preconditions in
the program and executes special processing. The rest of
error handling is extracted with the typical mode of error
handling from the rest candidates of error handling in P
indicated s3.

Table 8: Source code-Putting-Message program

1 PROCESS-INQUIRYQ-MESSAGE SECTION.
2 IF NOT INITIAL-INQUIRY-MESSAGE
3 MOVE W06-CALL-ERROR TO W06-CALL-STATUS
4 GO TO PROCESS-INQUIRYQ-MESSAGE-EXIT
5 END-IF.
6 MOVE LENGTHOFCSQ4BIIM-MSG TO W03-BUFFLEN.
7 COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +
8 MQPMO-PASS-IDENTITY-CONTEXT.
9 MOVE W03-HOBJ-INQUIRYQ TO MQPMO-CONTEXT.
10 CALL 'MQPUT' USING W03-HCONN
11 W03-HOBJ-WAITQ
12 IF W03-COMPCODE NOT = MQCC-OK

13 MOVE 'MQPUT' TO M02-OPERATION
14 MOVE W06-CALL-ERROR TO W06-CALL-STATUS

15 GO TO PROCESS-INQUIRYQ-MESSAGE-EXIT
16 END-IF.
17 SET ACCOUNT-QUERY-MESSAGE TO TRUE.
18 MOVE SPACES TO CSQ4BCAQ-CHARGING.
19 MOVE LENGTH OF CSQ4BCAQ-MSG TO W03-BUFFLEN.
20 COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +
21 MQPMO-PASS-IDENTITY-
CONTEXT.
22 MOVE W03-HOBJ-INQUIRYQ TO MQPMO-CONTEXT.
23 CALL 'MQPUT' USING W03-HCONN
24 W03-HOBJ-CHECKQ
25 IF W03-COMPCODE NOT = MQCC-OK

26 MOVE 'MQPUT' TO M02-OPERATION
27 MOVE W06-CALL-ERROR TO W06-CALL-STATUS

28 GO TO PROCESS-INQUIRYQ-MESSAGE-EXIT
29 END-IF.
30 MOVE CSQ4BIIM-LOANREQ TO W01-AMOUNT
31 MOVE MQMI-NONE TO MQMD-MSGID
32 MOVE LENGTH OF CSQ4BCAQ-MSG TO W03-BUFFLEN
33 COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +
34 MQPMO-PASS-IDENTITY-CONTEXT
35 MOVE W03-HOBJ-INQUIRYQ TO MQPMO-CONTEXT
36 CALL 'MQPUT' USING W03-HCONN
37 W03-HOBJ-DISTQ
38 END-CALL
39 IF W03-COMPCODE NOT = MQCC-OK
40 MOVE 'MQPUT ' TO M02-OPERATION
41 MOVE W06-CALL-ERROR TO W06-CALL-STATUS
42 END-IF.
43 PROCESS-INQUIRYQ-MESSAGE-EXIT.
44 EXIT.
45 EJECT

5. CASE STUDY

One COBOL source code, which is named as
Putting-Message Program, is presented in Table 8. It is to
put one message into the queue written in COBOL 1985.
Because it has not notes, therefore its note class is null in
context feature. Because,

ND(2) = {3, 4, 6, ,7, 9, 10} ≠ф
ND(12) = {13, 14, 15, ,17, 18, 19, 20, 22, 23} ≠ф
ND(25) = {26, 27, 28, 30, 31, 36} ≠ф
ND(39) = {40, 41} ≠ф,

The candidate set of the nodes of error handling in the
program is (ND(2) ∪ ND(12) ∪ ND(25) ∪ ND(39)).
Under the guidance of Theorem-3, the node set of error
handling is {3, 4, 13, 14, 15, 26, 27, 28, 40, 41}.

188

Figure 3: Generated context feature

6. RELATED WORK

Because legacy COBOL systems still play an important

role in business, a lot of research work has been done to
maintain these software systems. [12] Presents an approach to
modeling legacy COBOL code with UML collaboration
diagrams via a Wide Spectrum Language. [9] Reviews the
basic postulates of structured programming as applied to
COBOL, and discusses the mechanical transformations
archived by an automated restructuring tool. 0 provides a tool
taxonomy list which covers more than 100 tools available for
working with COBOL. [11] presents an approach to modeling
legacy COBOL systems via UML class diagrams and use case
diagrams according to the acquisition of domain knowledge.

Figure 4: Control flow of putting message program

The research of combining FDP and code comprehension
is performed in different context. [15] Presents techniques to
construct control-flow representations for feature direction
programs, and discuss some applications of the
representations in a program comprehension and
maintenance environment. [6] Proposes several specific
techniques such as feature direction or separation of concerns
and product maps to assist different RE activities. [3] Points
out that some assertions tend to be crosscutting and proposes a
modularization of such assertion with feature direction
language. [7] Studies FDP in the context of business

Programming with COBOL and discusses a typical
implementation of feature COBOL.
7. CONCLUSIONS

The approach described in this paper utilizes Feature
Orientation to realize the context feature and error handling
feature in order to better comprehending the legacy COBOL
code. Context feature of legacy COBOL code is presented
with UML class diagram. The candidates of error handling
features are distilled from COBOL code, and then the error
handling feature is derived with the IF-STOPRUN couple,
GOTO-EXIT couple, the typical mode. Context feature and
error handling feature are greatly helpful for the
comprehension and reuse of legacy COBOL code.
REFERENCES

[1] E. C. Arranga, ‘‘COBOL tools: overview and
taxonomy”, IEEE Software, 17(2), 2012, pp. 59-69.

[2] IBM, User’s Guide: COBOL and CICS Command Level
Conversion Aid for OS/390 & MVS & VM, Version 2,
IBM, 2012.

[3] T. Ishio, T. Kamiya, S. Kusumoto and K. Inoue,
‘‘Future-oriented modularization of assertion
crosscutting objects,’’ In Proc. 12th Asia-Pacific
Software Engineering Conference., 2011.

[4] J. Jiang, X. Zhou and D. J. Robson, ‘‘Program slicing
for C -- the problems in implementation,’’ In Proc.
IEEE Int’l Conf. Software Maintenance, 1991, pp.
182-190.

[5] C. Jones, COBOL Programming Course, available
online at http://www.csis/COBOL/Course/capers,
1999.

[6] C. Kuloor and A. Eberlein, ‘‘Future-direction
requirements engineering for software product lines,’’
In Proc.12th IEEE Int’l Conference and Workshop on
the Engineering of Computer-Based Systems, 2009, pp.
98-107.

[7] R. Lammel and K. De Schutter, ‘‘What does
Future-oriented programming mean to Cobol?,’’ In
Proc. 4th Int’l Conf. on Future-Oriented Software
Development, 2009, pp. 99-110.

[8] Liant Software Corporation, RM/COBOL User’s Guide,
Liant Software Corporation, 2003.

[9] J. C. Miller and B. M. Strauss, ‘‘Implications of
automated restructuring of COBOL, pp. 76 -- 82.

[10] M. Morach, ‘‘The present and future for past
languages -- Cobol,’’
Database and Network Journal, 35(1), 2010, pp. 18-19.

[11] J. Pu, R. Millham and H. Yang, ‘‘Acquiring domain
knowledge in reverse engineering legacy code into
UML,’’ In Proc. Int’l Conference Software
Engineering and Applications, 2008, pp. 488-493.

[12] N. Stern and R. A. Stern, ‘‘Structured COBOL
Programming -- Getting Started with Fujitsu COBOL
Update’’, John Wiley & Sons Inc., 2000.

[13] M. Weiser, ‘‘Program slicing,’’ IEEE Transactions on
Software Engineering and methods, 10(6), 1985, pp.
352--357.

189

[14] J. Zhao, ‘‘Control-flow analysis and representation
for aspect-oriented programs,’’ In Proc. 6th Int’l Conf.
on Quality Software, 2006, pp. 277-281.

ABOUT AUTHORS

Dr. Srinivasulu Mannem completed his PhD in Computer
Science in the area of Software Engineering. Currently he is
working as a Senior Development Lead in the one of the
world leading product company Four Soft Limited,
Hyderabad, India.

Rajyalakshmi completed her MTech in Computer Science
and Engineering. Currently she is working as Quality
Assurance Specialist with Prime Line Global Solutions,
Hyderabad, India.

