
 Rahul Nayak et al., International Journal of Advances in Computer Science and Technology, 2(7), July 2013, 106-110

106
@ 2012, IJACST All Rights Reserved


ABSTRACT

Need of computational resources and consumers of these
resources are increases rapidly, to fulfill the desired
computational demands up-gradation are necessary time to
time. Efforts to obtain high computational units using grid
computation are possible now in these days. But due to
incremental request increases the complexity of grid
additionally many problems arises on hardware as well as
software level conflicts occurs. To prevent these faults in the
complex grid predictive methods are helpful for plan and
prevent these problems in advance. This paper provide the
CPU load prediction method over multiple clustered grid
environments, where more than one CPU is participating on
the grid computation and load parameters are calculated, to
justify the proposed method and their performance
parameters.

Key words: Grid Computing, CPU Load Prediction, one step
backward, BPN, predictive algorithm.

1. INTRODUCTION

Grid is an administrative collaboration to solve the similar
computational goal in efficient manner, where task is
discredited and organized in divide and conquer manner.
Grid computing in general is a special kind computer
organization of parallel computing that relies on complete
computers (with on-board CPUs, storage, power supplies,
network interfaces, etc.) connected to a network (private,
public or the Internet) by a conventional network interface,
such as Ethernet. This is in contrast to the traditional notion
of a supercomputer, which has many processors connected by
a local high-speed computer bus [1].

Grids are used for many application areas, such as physics,
bioinformatics, earth sciences, life sciences, finance, space
engineering, etc. Grids have strengthened the change in
science and engineering of complementing the theory and
experimentation with computational and intensive discovery
[2].

Grids are collections of resources ranging from clusters to
supercomputers. Many types of jobs have been tried on grids,
from sequential to parallel, from compute-intensive to
data-intensive, and from massive coordinated applications to
bags of independent tasks. A typical grid-based experiment
requires the repeated execution of a computational task on
different sets of input parameters or data; thus, many grid
workloads are dominated by applications with a bag of tasks
structure. The grid resource providers and the grid resource
consumers (users) are of 7 different entities. The grid resource
providers decide on the resource management policies, and
provide only minimal, generic job management services. To
simplify management, Virtual Organizations (VOs) group
administratively users or resource providers.

The distributed computing environments to which most users
have access consist of a collection of loosely interconnected
hosts running vendor operating systems. Tasks are initiated
independently by users and a rescheduled locally by a vendor
supplied operating system. There is no global scheduler that
controls access to the hosts. As users run their jobs the
computational load on the individual hosts changes over time.
Deciding how to map computations to hosts in systems with
such dynamically changing loads (what we will call the
mapping problem) is a basic problem that arises in a number
of important contexts, such as dynamically load-balancing the
tasks in a parallel program, and scheduling tasks to meet
deadlines in a distributed soft real-time system [3].

Each node on the grid receives a piece of the problem, which
consists of a collection of original problem cells (OPCs). An
OPC is the smallest piece into which the problem is divided,
and each one needs to communicate and share data with its
neighbors. Optimal Grid automates this communication and
attempts to minimize the amount of network communication
needed to solve a problem. When the program for the
application is loaded, the middleware automatically partitions
the problem using the following procedures:

1. Determine the complexity.

2. Identify the number of nodes available.

3. Use algorithms to predict the optimal number of grid
nodes needed to solve the problem.

CPU Load Predictions on the Computational Grid
Using Distance Based Algorithm

Rahul Nayak, Prof. Rashmi Gupta
TIT,RGPV Bhopal(M.P.), India ,rahuln61@gmail.com

TIT,RGPV Bhopal(M.P.), India, rgupta6773@gmail.com

 ISSN 2320 - 2602
Volume 2, No.7, July 2013

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2013/ijacst03272013.pdf

 Rahul Nayak et al., International Journal of Advances in Computer Science and Technology, 2(7), July 2013, 106-110

107
@ 2012, IJACST All Rights Reserved

4. Optionally interact with the user to divide the problem
into an optimal number of pieces. Whether the user or
Optimal Grid partitions the problem, the middleware
predicts the computation time for the problem.

5. Partition the application data into OPCs. Allow the
user the option to customize the data. In assessing
stress on an airplane wing, for example, the user
might decide to remove one or two rivets from a
particular place.

6. Launch the program.

In this section of paper provides the general introduction
about grid computing in the next section paper contains the
background work of experimental setup.

1.1 EXPERIMENTAL SETUP

In this section we include the configuration and model by
which we simulate the compound working of the system more
over it here we provide the computational parameters by
which we analyse the system which make us enable to predict
the future work load of the complete grid nodes.

First of all we create a grid environment to perform the
calculation correctly. Therefore we connect ten traditional
computer systems via a LAN. And the systems are contains
new installed operating systems and not any software’s and
not any other kind of software’s are installed. After
installation of systems we check the communication between
them using “PING” command and found all the systems are
work over network properly. The network organization of the
connected systems is given using Figure (1).

Figure 1: Shows the network arrangement of systems

All the systems denoted by M1….M9 are the host connected
in parallel manner and the central monitor is installed on the
top of the system M10.The connected machine contains a
client agent which is responsible to obtain the host CPU load
and the generated loaded is forwarded to M10, where M10 is
used as server system and responsible to compute and predict
the upcoming load on server according to time. For that
purpose a server agent is installed on the monitor system.

1.2 CLIENT AND SERVER AGENT ARCHITECTURE

Client and server agents are the software programs where
client agent is just collect the CPU load on the installed
machine and using a simple multithreaded server socket
program send it to the server end where server machine
(monitor)identify performance parameters using their IP
address and store into a local database(created using SQL
server).

Server program access these data for training of machine
learning algorithms and produces the upcoming loads using
these trained algorithms. Trained algorithms are able to
predict the upcoming accurate during experiments we found
that the predication of algorithms are depends upon the
algorithm and training.

Figure 2: Shows the application architecture

In the above given diagram we prepare a master system and
others are slave system master systems are responsible to
accept the user request distribute the task and gather the data
samples to make analysis. The complete process is performed
in some basic steps these steps are:

1. A client application on all the server nodes.

2. Install server application on the master system.

3. Client application is responsible to collect the node
load from the server system.

4. Use a simple multi-threaded server application to
gather load parameters from server machine actually here
we implement a client server program to get data from
client machine.

5. The data found from different nodes is pre-process first
and updated over data base. These load parameters that are
generated during request is working as training data for
our designed algorithm and BPN algorithm.

6. Now the data is ready to analysis. Finally on generated
data set we apply BPN algorithm first and calculate the
performance parameters.

7. After that we apply our designed algorithm to get
performance parameters.

8. Finally we produce the predictive results.

 Rahul Nayak et al., International Journal of Advances in Computer Science and Technology, 2(7), July 2013, 106-110

108
@ 2012, IJACST All Rights Reserved

2. ALGORITHM USED

In this section we provide the algorithms basic steps to
analyses the produced load data to the system. Here we
consume two algorithms for forecasting load on CPU first
BPN and second our proposed algorithm.

Input: training samples (Dataset)

Output: trained model

1. Initialize two vectors one input and hidden unit and
second output unit.

2. Here first is a two dimensional array Wij is used and
output is a one dimensional array Yi.

3. Initial weights are random values put inside the
vectors after that the we calculate the output
as

Where yi is the activity level of the jth unit in

the previous layer and Wij is the weight of the
connection between the ith and the jth unit.

4. Next, activity level of yi is calculated by some
function of the total weighted input.

5. When activity of the all output units have been
determined, the network computes the error
E,

Where yi is the activity level of the jth unit in the top

layer and di is the desired output of the ji unit.

6. Compute Error Derivative (EA) is the difference

between the actual and the desired activity:

7. Calculate the error changes as the total input
received by an output changed

8. Calculate the error changes as a weight on the
connection into an output unit is changed:

9. Calculate the overall effect on the error:

2.1 Proposed algorithm

Our proposed algorithm for prediction is working in two
different phase’s first training from the previous data and
seconds the testing on real data.

Learning:

Input : training samples

Output: trained model

1. read data set from database

2. Find the decision values from each attribute using the
given formula

3. Convert all attributes into binary

4. If value <= Decision parameter then
Value=0
Else
Value=1
End if

5. Now compute distance using hamming distance

Prediction:

Input: load previous
Output: load one step ahead

1. Collect data and convert into binary data

2. Get all rows which is better match with the pattern

3. Find average to get value

3. RESULTS

After implementation we got the performance of results
which is given in two parts first algorithms performance and
second the load parameters predictions.

 Rahul Nayak et al., International Journal of Advances in Computer Science and Technology, 2(7), July 2013, 106-110

109
@ 2012, IJACST All Rights Reserved

Finding load parameters on three different servers on the
experimental setup is given as, the load calculated is provided
on the basis of 5000 instances in data table for training of
BPN and our proposed technique. The obtained results of
BPN are given. The below given table shows the results
obtained after training of algorithm as predictive values for 7
machines connected in network setup.

Table 1: Shows load comparison on all 7 machine using Real,
BPN and Propose Distance Based Method.

Figure 3: shows the CPU load on seven machines

In addition of that there are some additional parameters are
obtained to get the performance of the system such as training
time, prediction time by the algorithms which is listed in the
blow discussion.

3.2 Training time: that is a measurement of time for
performs training using the data available on database which
is given in Figure (4).

No of rows Proposed algorithm Neural network

326 6 s 30 s

782 10s 40 s

1029 17s 47 s

2930 26s 52 s

3092 49s 59 s

Table 2 : shows Training time comparison between BPN and
Propose Distance Based Method.

0
10
20
30
40
50
60
70

1 2 3 4 5

PROPOSED

BPN

Figure 4: shows the training time of the algorithms

3.1 Decision time: decision time is a time required to predict
values from trained data model.

No of rows Proposed
algorithm

Neural network

326 726 ms 38 ms

782 404 ms 42 ms

1029 217 ms 41 ms

2930 467 ms 82 ms

3092 493 ms 71 ms

Table 3: shows Decision time comparison between BPN and
Propose Distance Based Method.

 Rahul Nayak et al., International Journal of Advances in Computer Science and Technology, 2(7), July 2013, 106-110

110
@ 2012, IJACST All Rights Reserved

0

200

400

600

800

1 2 3 4 5

PROPOSED

BPN

Figure 5: shows the decision time

The proposed system is providing the slow results then the
BPN in decisions.

4. CONCLUSION

Load forecasting in grid environment is complex and
interesting task. In this experiment we provide the
calculations based on local setup of the computers and results
are evaluated. To compute the load we apply two different
algorithms and achieve results based on our experiments.
During analysis we found that loads and load parameters are
not only depends on previous patterns of load but CPU load
also depends on other factors such as network, number of
processes running on, memory available, background
processes, frequency of requests, application servers and
supporting applications too. Here we use sever machine for
experimentations and evaluate the load on servers. after
performance analysis we found the our algorithm produced
much accurate results for predicting CPU load but training is
completed in few time but to make a decision it consumes
more time them other algorithms. In future we proposed and
implement the same algorithm by which we get more accurate
and efficient results.

REFERENCES
1. Manish Parasher, Craig A Lee, “grid computing:

introduction and overview” IEEE 93(3):479–484,
March 2005.

2. Alexandru Iosup and Dick Epema ,“Grid Computing
Workloads: Bags of Tasks, Workflows, Pilots, and
Others”Parallel and Distributed Systems Group, Delft
University of Technology, Mekelweg 4, 2628CD Delft,
the Netherlands

3. Peter A. Dinda “The Statistical Properties of Host
Load (Extended Version)” March1999,
CMU-CS-98-175,School of Computer Science Carnegie
Mellon University Pittsburgh, PA15213

4. I. Foster and C. Kesselman, “The Grid: Blueprint for
a New Computing Infrastructure”, Morgan Kaufmann
Publishers, San Fransisco, CA, 1999.

5. P.A. Dinda, D.R. O'Hallaron, “Host load prediction
using linear models,” Cluster Computing 3(4), pp. 265-
280, 2000.

6. L. Yang, J.M. Schopf, and I. Foster, “Conservative
scheduling: Using predicted variance to improve
decisions in dynamic environment,”
Supercomputing’03, pp. 1-16, 2003.

7. P.A. Dinda, “A prediction-based real-time scheduling
advisor,” Proc. 16th Int’l Parallel and Distributed
Processing Symp.(IPDPS 2002), pp. 35-42, 2002.

8. D. Lu, H. Sheng, and P. Dinda, “Size-based scheduling
policies with inaccurate scheduling information,”
12th IEEE Int’l Symp. onModeling, Analysis, and
Simulation of Computer and Telecommunications
Systems,pp. 31-38, 2004.

9. S. Jang, X. Wu, and V. Taylor, “Using performance
prediction to allocate grid resources,” Technical
report,GriPhyN 2004-25, pp. 1-11, 2004.

10. L. Yang, I. Foster, and J.M. Schopf, “Homeostatic and
tendency-based CPU load predictions,” Int’l Parallel
andDistributed Processing Symp.(IPDPS'03), pp. 42-50,
2003.

11. R. Wolski, N. Spring, and J. Hayes, “Predicting the
CPU Availability of Time-shared Unix Systems on the
Computational Grid,” Proc. 8th IEEE Symp.on High
Performance Distributed Computing, pp. 1-8, 1999.

12. M. Swany and R. Wolski, “Multivariate resource
performance forecasting in the network weather
service,” Supercomputing’02, pp. 1-10, 2002.

13. R. Wolski, “Dynamically forecasting network
performance using the network weather service,”
Journal ofCluster Computing, Vol.1, pp.119-132, 1998.

14. R. Wolski, “Experiences with predicting resource
performance on-line in computational grid settings,”
ACM SIGMETRICS Performance Evaluation Review,
Vol.30,No.4, pp. 41-49, 2003.

15. P.A. Dinda, “The statistical properties of host load,”
Technical report, CMU, pp. 1-23, 1998.

16. S. Akioka and Y. Muraoka, “Extended forecast of
CPU and network load on computational grid,” 2004
IEEE Int’l Symp.on Cluster Computing and the Grid, pp.
765-772,2004.

