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ABSTRACT 
 
An auction market is a market in which buyers enter 
competitive bids and sellers enter competitive offers at the 
same time. Many negotiation systems have been proposed 
that rely on adequate and precise information provided by the 
negotiation parties for making their decisions. This paper 
provides mechanisms for addressing inadequate or missing 
information in a negotiation environment between a seller and 
many buyers which depends on multiple issues to make a 
decision. The system employs artificial neural network with 
adaptive momentum back propagation mechanism to 
determine whether a buyer should be selected among possible 
bid winners. The system then uses simple decision controls to 
determine the overall bid winner. The system was 
implemented using Java  
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Automated Negotiation, Back Propagation, E-Agent System, 
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1. INTRODUCTION 
 

An auction market is a market in which buyers enter 
competitive bids and sellers enter competitive offers at the 
same time. A seller lists an item at auction and potential 
buyers bid on the auction through negotiation [1]. Negotiation 
is therefore a means for agents to communicate and 
compromise for reaching mutually beneficial agreements. It is 
an important conflict management technique by which a joint 
decision is made by two or more parties [1], [2]. Two basic 
components are important when designing an automated 
negotiation system: the negotiation protocol and the 
negotiation process model [3]-[5]. The negotiation protocol is 
a set of rules which governs software processing, distributed 
decision making and communication tasks, It imposes 
constraints on activities through the specification of 
permissible inputs, assumptions and actions [4]-[6]. 
Negotiation process concerns itself with the issues over which 
 

 

agreement must be reached and the models which are 
employed to act in line with the negotiation protocol in order 
to achieve the negotiation objectives [7]. 
 

In a team negotiation system, three different elements have 
to be specified. These are negotiation protocol with the 
opponent, the negotiation strategy used by the opponent and 
the intra-team negotiation strategy followed by team members 
in order to decide the actions to perform during the 
negotiation process [8]. A typical type of team negotiation 
system is one-to-many negotiation in which one agent can 
adopt different negotiation strategies with different trading 
partners [9], [10]. A problem with the general one-to-many 
negotiation mechanism is that during negotiation, no matter 
how long an agent has to wait and how many proposals have 
been received, the agent cannot propose until it has received 
proposals from all its trading partners [10]-[12]. In actual 
negotiation environments, agents may have different 
negotiation strategies, reasoning mechanisms, preferences, 
constraints and communication time which affects systems 
flexibility and operations [12], [13]. 
 

Many negotiation systems have been proposed. A flexible 
mechanism for one-to-many negotiation agent which focused 
on single-issue or single-attribute negotiation was proposed in 
[14]. In [15], a model was designed that sought to make offers 
semi-autonomously and were based on human negotiation. 
Regarding the model for evaluating offers, in [16]-[18], 
models were designed using simple additive utility scheme. 
Other designs employed in [19] and [20] were based on game 
theory or mathematical programming approaches. A proposed 
algorithm to learn about one’s negotiation counterpart and 
then use that knowledge to obtain a better outcome was 
designed in [21] for modulating the course of the negotiation 
on the receipt of additional information. Other such 
algorithms as Bayesian learning with subjective probability 
[22] and machine learning approach [23] had also been 
proposed. These algorithms require historical data and can 
therefore be a disadvantage when parties are new to each other 
in the negotiation environment [24]. The accuracy of these 
learning mechanisms can be improved through nonlinear 
optimization techniques [23]-[25] 
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This paper provides mechanisms for addressing inadequate 
or missing information in a negotiation environment between 
a seller and many buyers which depends on multiple issues to 
make a decision. The system employs artificial neural 
network with adaptive momentum back propagation 
mechanisms to determine whether a buyer should be selected 
among possible bid winners. The system was implemented 
using Java 
 

An Artificial Neural Network (ANN) is a mathematical 
model that tries to simulate the structure and functionalities of 
biological neural networks [26]. The basic building block of 
every ANN is the artificial neuron. Artificial neuron is a 
simple mathematical model (function) and it has three simple 
sets of rules:  multiplication, summation and activation [27]. 
At the entrance of an artificial neuron, the inputs are weighted 
by multiplying them by values called weights. The middle 
section of the artificial neuron is the sum function that works 
on all the weighted inputs and a bias. A bias is a neuron that 
has an output value of 1. The output value is used as inputs to 
other neurons in the network. At the exit of the artificial 
neuron, the sum of previously weighted inputs and the bias is 
passed through an activation function (also called transfer 
function) [26], [27].  

 
Figure 1 illustrates the working principle of artificial 

neuron network 
 

 
Figure 1: Working Principle of an Artificial Neuron 

 
The following mathematical expression is obtained from 

Figure 1 above:  풀(풌) = 흈  ∑ 푾풊(풌).푿풊(풌) +  풃풏 ퟏ
풊 ퟎ  where 

 Xi(k) is input  in discrete time k where ∀푖, 0 ≤ 푖 < 푛 
 Wi(k) is weight in discrete time k where ∀푖, 0 ≤ 푖 < 푛 
 b is the bias, 
  휎 is a transfer function, 
 Y(k) is output value in discrete time k. 
 
The Transfer function defines the properties of artificial 

neuron and can be any mathematical function [27]. It is 
chosen on the basis of the problem that artificial neural 

network needs to solve. A typical set of transfer functions 
include [27]-[29]: 

 
 Step Function: It is a binary function that has only two 

possible output values (e.g. 0 and 1). This means if 
input value meets specific threshold the output value 
results in 1 and if specific threshold is not met, the 
result is 0. When this type of transfer function is used 
in artificial neuron, the artificial neuron is called 
perceptron. Perceptron is used for solving 
classification problems. Perceptron is usually found in 
the output layer of an artificial neural networks 
 

 Linear Function: The artificial neural network simply 
performs linear transformation over the sum of 
weighted inputs and bias. Such an artificial neuron is 
commonly used in the input layer of artificial neural 
networks 

 
 Non-linear Functions: The most common non-linear 

function is the sigmoid function. It is a continuous 
differentiable function making it easy to calculate 
derivates for weight updates. The major limitation of 
the sigmoid function, in some circumstances, is the 
occurrence of local minima in error function. 

In practice, single artificial neuron has almost no usefulness 
in solving real-life problems [30] but a network of artificial 
neurons arranged in layers is capable of solving complex 
real-life problems in a non-linear, distributed, parallel and 
local way [27], [30]. In a multilayer feed-forward neural 
network, information flows from inputs to outputs in only one 
direction [27]. Figure 2 depicts the architecture of a 
feed-forward neural network 

 
Figure 2: Architecture of a Feed-forward Neural Network 

 
ANN solves problems through learning. A learning 

algorithm is an adaptive method by which a network of 
computing units self-organizes to implement the desired 
behavior by presenting some examples of the desired input 
output mapping to the network [27]. A correction step is 
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executed iteratively until the network learns to produce the 
desired response. The learning algorithm can either be 
supervised or unsupervised [30]. Unsupervised learning is 
used when, for a given input, the exact numerical output a 
network should produce is unknown. The network must 
organize itself in order to be able to associate clusters with 
units [26], [27]. 

 
Supervised learning denotes a method in which some input 

vectors are collected and presented to the network. The output 
computed by the network is observed and the deviation from 
the expected answer is measured. The weights are corrected 
according to the magnitude of the error in the way defined by 
the learning algorithm. Supervised learning is further divided 
into methods which use reinforcement or error correction 
[27]. Reinforcement learning is used when after each 
presentation of an input-output example the network is 
determined whether it produced the desired result or not. Thus 
the output of reinforcement learning is either true or false 
[26], [30]. With error correction learning, the weights are 
corrected using the error and the input vector. This aims at 
minimizing or eliminating the error in a single correction step 
[26], [27], [30]. 
 

Back propagation training algorithm is an error-correction 
learning rule [31], [32]. The algorithm consists of two passes 
through the different layers of the network, mainly, a forward 
pass and a backward pass. In the forward pass, input vector is 
applied to the network. The weighted input vector is 
propagated through the network from one layer to another 
[33]. Finally, a set of outputs is produced as the actual 
response of the network. During the forward pass the synaptic 
weights of the network are all fixed.  

 
The backward pass is used to adjust the values of the 

weights so that the error is reduced at each step in accordance 
with the error-correction rule. The actual response of the 
network is subtracted from a desired target response to 
produce an error signal. This error signal is then propagated 
backward through the network. The weights are adjusted so as 
to make the actual response of the network move closer to the 
desired response [29], [33]. 

 
2. SYSTEM PROTOCOL DESIGN 
 

This system implements one-to-many negotiation 
mechanism such that one seller auctions a product and many 
buyers compete for the product through bidding. Each buyer 
initiates a thread in the main system. The buyers provide their 
particulars and decide the amount they are willing to pay.  
 

Figure 3 shows a general overview of the negotiation 
protocol: 

 
Figure 3: Overview of Negotiation Protocol 

 
The following are the assumptions employed in the 
implementation of the system: 
 Every data required by the system can be normalized into 

0’s and 1’s 
 There is only one product of a particular specification for 

which many buyers enter into competition for it. 
 Only one of the winning bidders is selected as a winner.  

 
The issues involved in this work are the brand of the product 

the buyer requires, the mailing address the buyer wants to 
receive the product when s/he is announced the winner, the 
level of complexity of the product the buyer desires and the 
amount the buyer is willing to pay for the product. The 
decision requires all the four parameters. The System 
Decision mechanism is the reasoning model of the negotiation 
system. 

 
3. SYSTEM ARCHITECTURE  
 

The system is divided into four main sections, namely, 
Buyers’ interface, Normalizer, Neural Network Predictor and 
Decider. The Buyers’ interface is the first interface 
encountered by potential buyers. The Normalizer converts the 
users’ input into 0’s and 1’s that can be used by the Neural 
Network Predictor. Based on the weight values previously 
obtained through training, the Neural Network Predictor 
computes whether the buyer should be accepted as a potential 
bidder or be rejected. The Decider upon the information 
obtained from the Neural Network Predictor chooses the 
winner. Figure 4 illustrates how the various sections are 
inter-related: 
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Figure 4: Overview of System Architecture 

 
 The feedback in the figure above represents two situations: 

 In the first situation, a buyer receives “Rejection” or 
“Conditionally accepted”. If the prediction generated 
by the artificial neural network which is passed to the 
Decider is 0, the buyer is rejected otherwise the 
buyer is conditionally accepted 

 In the second situation, all the conditionally accepted 
buyers are ranked and the first buyer is selected as 
the winner of the auction 
 

3.1 Buyers’ Interface Architecture 
 

This architecture is the only architecture with a graphical 
user interface implementation. The architecture allows 
potential bidders to interact with the negotiation system. 
Buyers are expected to login successfully before conducting 
any transaction. New buyers are given the opportunity to 
create account by providing their personal information which 
will be used later by the system. The information entered by 
the buyer is kept in a database. 
 

The following algorithm is used to capture buyers’ 
information: 
 
00 For each of the input controls 
01 If (control is sensitive and buyer ignores data entry) then 

02  Prompt the buyer 
03 Else if (control is less sensitive and buyer ignores) then 
04  Assume that the buyer does not know 
05  Use the worst case scenario 
06 End if 
07 Next for 
 

Sensitive data include full name, user name and password. 
The user name and password are use to authenticate the user 
(or bidder). Less sensitive data includes but not limited to date 
of birth.  
 

After a successful login, users are given another interface 
where they select the product they want to bid for. They also 
provide information regarding the product specification and 
the mailing address if desired. The product specifications 
include brand and other features which together determine the 
complexity level of the product. The amount the user is 
willing to pay is also entered by the user. Users can also abort 
their bidding process at this stage. 
 

3.2 Normalization Architecture 
 
 This architecture links the buyers’ architecture and the 
neural network architecture. It converts the necessary data 
required for making decision to 0’s and 1’s based on the 
threshold set by the negotiation system. 
 
Let 

M  be the input parameters required by the system such that 
∀M ∈ {Brand, Mailing Address, Complexity level,
Amount} and ∀i ∈ {0,1,2,3} 
 
T  be the threshold set for the input parameters such that 
∀i ∈ {0,1,2,3} 
 
X  be the normalized data obtained from the input data such 
that ∀X ∈ {0,1} and ∀i ∈ {0,1,2,3} 
 
Thus 
  X = 1 when  M  ≥ T  or M  ∈ {T }, otherwise X = 0  
 
Table 1 summarizes the various categories of the input 

parameters 
 

Table 1: Criteria for Input Normalization 
Input Parameters 퐗퐢 = ퟎ 퐗퐢 = ퟏ 

Brand New Used 
Mailing Address Far Near 

Complexity Level Above normal Normal 
Amount Small Normal or above 

 
The threshold values are kept in a database. It is updated 

periodically to reflect the current market values and the goal 
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of the auction. The major goal of the negotiation system is to 
maximize project for suppliers. The normalized data is passed 
to the trained neural network architecture. When the data for a 
particular input parameter is not provided or the precise data is 
not known, the system does not stop abruptly. However, the 
worst case value is used and the normalized value is usually 0. 
 
 
3.3 Neural Network Architecture 
 
 The neural network is made up of three layers, namely, 
input layer, hidden layer and output layer. The input layer 
consists of four neurons with each representing an input 
parameter. The first neuron represents the brand of the 
product, the second neuron represents the mailing address, the 
third neuron represents the complexity level and the fourth 
neuron represents the bid amount. A fifth neuron is added 
with a bias value of 1 
 
 The hidden layer is made up of one layer with (N+1) 
neurons. N represents the number of neurons which is 
determined during neural network training. The (N+1)th 
neuron is added with a bias value of 1. The output layer 
consists of only one neuron. Thus there are (N+7) neurons in 
the neural network architecture with N representing the 
number of neurons in the hidden layer and two neurons 
representing bias neurons.  
 
 Figure 5 depicts the architecture of the artificial neural 
network obtained at the end of the training 

 
Figure 5: Negotiation Neural Network Architecture 

  
 Since all the neurons accept and output either 0 or 1, the 
sigmoid function was used as an activation function (f) with 
the formula  f(x) =  

 
 

 
Let 

X ,∀i ∈ {0,1,2,3,4} be the values for the neurons in the 
input layer such that X ∈ {0,1},∀i ∈ {0,1,2,3} and  X = 1 
representing the bias 
 

H ,∀j ∈ {0,1,2,3, … , N} be the values of the neurons in the 
hidden layer such that H ∈ {0, 1}, ∀j ∈ {0, … , N − 1} 
and  H = 1 representing the bias 
 
Y ,∀k = 0  be the value for the neuron in the output layer 
such that Y ∈ {0,1}. 
 
W ,   be the weight between the neuron X  in the input layer 
and the neuron H  in the hidden layer such that 
∀W , : W , ≤ 1,∀i ∈ {0,1,2,3,4} and  ∀j ∈ {0,1,2, … , N}.  
 
Thus H ,∀j ∈ {0,1,2, … , N− 1} is obtained by the formula 

H =  
1

1 + e ∑  .  ,
  ∈ ℝ  

 
W ,   be the weight between the neuron  H  in the hidden 
layer and the neuron   Y  in the output layer such that 
∀W , : W , ≤ 1,∀j ∈ {0,1,2, … , N} and  ∀k = 0.  
 
Thus the output value of the neuron in the output layer is 
obtained by the formula 

Y = loor
1

1 +  e ∑  .  ,
+  0.5   ∈ ℤ ∈ {0,1} 

 
 
3.4 Decider Architecture 

The Decider communicates with the buyer as to the update 
of the auction process. The input parameters of the Decider 
are: the normalized input data, the actual amount, the 
predicted output of the artificial neural network. When the 
predicted output of the artificial neural network is 0, the buyer 
is automatically rejected otherwise the buyer is conditionally 
accepted. 

 At the end of the auction, all the conditionally accepted 
candidates are ranked based on the algorithm described 
below: 
 
Let 

Amt be the actual amount that the buyer entered during the 
bidding process 
 
X ,∀i ∈ {0,1,2,3,4} be the values for the neurons in the 
input layer such that X ∈ {0,1},∀i ∈ {0,1,2,3} 
 
m denotes the number of conditionally accepted buyers 
then  
 

Rank =
Amt
∑ X   such that    ∀m > 0,    Rank ∈ ℝ  

 
 The buyer with the minimum rank value is the winner since 
the greater the number of 1’s in the normalized data, the more 
profit the supplier gains. If two or more buyers have the same 
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rank values then the following conditions are employed to 
select the winner: 

1. The buyer with highest value of  ∑ X  
2. If more than one buyer has the highest value of  

∑ X  then the buyer with the highest Amt is 
selected 

3. If no single buyer is selected in the steps above, then 
the buyer who entered the bid first is selected. Thus 
First Come, First Serve principle is applied. 

4. If multiple winning buyers entered the auction 
process at the same time and previous steps are not 
enough to select one winner among them, their 
names are arranged and sorted in ascending other 
using their first and last names whiles middle names 
are ignored. The winner becomes the person whose 
name comes first. 

5. If all the above steps fail to select a single winner, 
then the user names of the buyers are used. Since the 
user names are unique to all the users of the 
negotiation environment, the user names are sorted 
in ascending order and the winner becomes the 
person whose user name comes first. 

 

4.  IMPLEMENTATION OF THE NETWORK 

 The network was implemented as software using Java. The 
network was trained, tested and validated in iterative 
procedure to finally determine appropriate epoch, number of 
neurons in the hidden layer, learning rate and initial 
momentum. 

 

4.1 Training Procedure and Algorithms 
 
 Supervised learning method was employed in adjusting the 
weights. There were only sixteen set of data that can be used 
to train the network. Given the size of the neural network, the 
sixteen sets of data produced under-fitting results when used 
once. Thus in training the network, the whole set of data was 
used iteratively. 
 
 Two mechanisms for adjusting the weights were first 
employed and then the better mechanism was selected. The 
mechanisms were batch weight updating mechanism and 
incremental weight updating mechanism. With batch weight 
updating mechanism, the weight correction terms were 
accumulated until the end of a complete iteration (or epoch). 
A single weight adjustment was made based on the average of 
the errors obtained in the epoch. It was observed that training 
usually converged to local minimum 

 The incremental weight updating mechanism adjusted the 
weight after each training data set was presented to the 
network. It was however, realized that the network skewed 
toward most recent patterns in the cycle. Thus the incremental 
weight updating mechanism was used in adjusting the weights 
with the training set arranged judiciously without allowing a 
particular pattern to follow one another. Table 2 shows the 
arranged input values and their corresponding target values 
used in training the network. 
 

Table 2: Training Data Set 
Input Values Target Output 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 0 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 1 
1 1 1 0 0 
1 1 1 1 1 

 
The algorithm used in training the network is shown below: 
 

00 Assign small positive random values to weights 
01 For epochs from 1 to limit assigned by user 
02 Read the first set of input data 
03 Compute the values for each hidden neurons 
04 Apply the activation function on values obtained 
05 Compute the value of the output neuron 
06 Apply the activation function 
07 Compute the error, E= Target – predicted output 
08 Use the error to update the weights 
09 Read the next set of input data 
10 If ((End of data) and (number of epochs reached or  

|E|<0.00001)) then 
11     Terminate training 
12 Else 
13   Go to Step 03 
14 End if 
15 Next For 
 

4.2 Computational Models 
This section describes the various mathematical models 

that were employed in designing and training the network. 
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Let  
 δ  be the error of the network at the output layer 
 δ  be the error of the neuron in the hidden layer 
 Y  be the output of the network during training 
 Y  be the target or the expected output of the network 
 α be the momentum rate 
  η be the learning rate 
 θ  be the output of a neuron in the hidden layer 
 X  be the input values of the neurons in the input layer 
 

Then the error of the output neuron is obtained by 
 

δ =  Y  (1−  Y )(Y  −  Y ) 
 

The term Y  (1−  Y ) is necessary in the computation 
because of the sigmoid function. 
 

Updating the weights between the hidden layer neurons and 
the output neuron in the output layer at any particular period, t 
is given by: 
 

W , (t) = W ,  +  η .δ  . θ +  α .∆W , (t− 1) 
 

Considering the weights between the input layer and the 
hidden layer, the errors of the neurons in the hidden layer are 
computed as 
 

δ =   θ (1−  θ )(δ  .  W , ) 
 

Thus the weights are computed as 
 

W , (t) = W ,  +  η .δ  . X +  α .∆W , (t− 1) 
 
4.3 TESTING AND VALIDATING THE NEURAL NETWORK 
 
 Figure 6 depicts the interface for entering training 
parameters 
 

 
Figure 6: Neural Network Training Interface 

 

 When the Read Data button is clicked, an open dialog is 
displayed that allows the user to select the text file that 
contains the training set and the target set. The training button 
is then enabled.  
 

When training is completed, the Test button is enabled. 
Similarly, when the Test button is clicked, an open dialog is 
displayed that allows the user to select the text file containing 
the test data with the corresponding target set. 
 

A typical test data used is shown in Table 3. 
 

Table 3: Testing Data Set 
Input Values Target Output 

0 0 0 1 1 
0 0 1 1 1 
0 1 0 0 0 
0 1 0 1 1 
0 1 1 0 0 
0 1 1 1 1 
1 0 0 1 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 0 1 1 

 
 Figure 7 displayed the test result obtained when the 
network was fully trained 

 
Figure 7: Testing Result  

 
 After applying numerous training activities, the best results 
were obtained when the hidden layer contains five neurons 
with about 3000 epochs. The weight values are stored in a 
database and they are used to determine whether a buyer is 
accepted among winning bidders. Table 4 shows the weights 
obtained at the end of the training  

Table 4: Weight Values of the Neurons 
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 6. CONCLUSION 
 

Automated negotiation system has been implemented 
which does not rely on accurate or precise data to make 
decision with the following strength: 

 With the incremental weight updating mechanism 
employed in the network training, the neural 
network is able to handle all sorts of input data 
whiles ensuring maximum correct prediction 
 

 The normalization process ensures that the system 
streamlines all vague data before it is used in 
decision making 
 

The system on the other hand is limited by the following: 
 Data captured is always normalized wasting 

system processing time and resources 
 

 Bidders are not prompted to check whether less 
sensitive data is entered or selected in error. Users, 
therefore, have no second chance for correcting 
their errors. When bidders realize their errors, they 
are made to start the product specification 
selection process again.  
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