
Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

247

ABSTRACT

An auction market is a market in which buyers enter
competitive bids and sellers enter competitive offers at the
same time. Many negotiation systems have been proposed
that rely on adequate and precise information provided by the
negotiation parties for making their decisions. This paper
provides mechanisms for addressing inadequate or missing
information in a negotiation environment between a seller and
many buyers which depends on multiple issues to make a
decision. The system employs artificial neural network with
adaptive momentum back propagation mechanism to
determine whether a buyer should be selected among possible
bid winners. The system then uses simple decision controls to
determine the overall bid winner. The system was
implemented using Java

Key words: Artificial Neural Network, Auction Market,
Automated Negotiation, Back Propagation, E-Agent System,
E-commerce System, Intelligent Negotiation System.

1. INTRODUCTION

An auction market is a market in which buyers enter
competitive bids and sellers enter competitive offers at the
same time. A seller lists an item at auction and potential
buyers bid on the auction through negotiation [1]. Negotiation
is therefore a means for agents to communicate and
compromise for reaching mutually beneficial agreements. It is
an important conflict management technique by which a joint
decision is made by two or more parties [1], [2]. Two basic
components are important when designing an automated
negotiation system: the negotiation protocol and the
negotiation process model [3]-[5]. The negotiation protocol is
a set of rules which governs software processing, distributed
decision making and communication tasks, It imposes
constraints on activities through the specification of
permissible inputs, assumptions and actions [4]-[6].
Negotiation process concerns itself with the issues over which

agreement must be reached and the models which are
employed to act in line with the negotiation protocol in order
to achieve the negotiation objectives [7].

In a team negotiation system, three different elements have
to be specified. These are negotiation protocol with the
opponent, the negotiation strategy used by the opponent and
the intra-team negotiation strategy followed by team members
in order to decide the actions to perform during the
negotiation process [8]. A typical type of team negotiation
system is one-to-many negotiation in which one agent can
adopt different negotiation strategies with different trading
partners [9], [10]. A problem with the general one-to-many
negotiation mechanism is that during negotiation, no matter
how long an agent has to wait and how many proposals have
been received, the agent cannot propose until it has received
proposals from all its trading partners [10]-[12]. In actual
negotiation environments, agents may have different
negotiation strategies, reasoning mechanisms, preferences,
constraints and communication time which affects systems
flexibility and operations [12], [13].

Many negotiation systems have been proposed. A flexible
mechanism for one-to-many negotiation agent which focused
on single-issue or single-attribute negotiation was proposed in
[14]. In [15], a model was designed that sought to make offers
semi-autonomously and were based on human negotiation.
Regarding the model for evaluating offers, in [16]-[18],
models were designed using simple additive utility scheme.
Other designs employed in [19] and [20] were based on game
theory or mathematical programming approaches. A proposed
algorithm to learn about one’s negotiation counterpart and
then use that knowledge to obtain a better outcome was
designed in [21] for modulating the course of the negotiation
on the receipt of additional information. Other such
algorithms as Bayesian learning with subjective probability
[22] and machine learning approach [23] had also been
proposed. These algorithms require historical data and can
therefore be a disadvantage when parties are new to each other
in the negotiation environment [24]. The accuracy of these
learning mechanisms can be improved through nonlinear
optimization techniques [23]-[25]

Agent-Based Automated Negotiation System for Handling Vague Data Using
Artificial Neural Network with Adaptive Back Propagation Algorithm

Samuel King Opoku
Computer Science Department,

Kumasi Polytechnic, Ghana.
Samuelk.opoku@kpoly.edu.gh, Samuel.k.opoku@gmail.com

 ISSN 2320 - 2602
Volume 2, No.11, November 2013

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2013/ijacst032112013.pdf

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

248

This paper provides mechanisms for addressing inadequate
or missing information in a negotiation environment between
a seller and many buyers which depends on multiple issues to
make a decision. The system employs artificial neural
network with adaptive momentum back propagation
mechanisms to determine whether a buyer should be selected
among possible bid winners. The system was implemented
using Java

An Artificial Neural Network (ANN) is a mathematical
model that tries to simulate the structure and functionalities of
biological neural networks [26]. The basic building block of
every ANN is the artificial neuron. Artificial neuron is a
simple mathematical model (function) and it has three simple
sets of rules: multiplication, summation and activation [27].
At the entrance of an artificial neuron, the inputs are weighted
by multiplying them by values called weights. The middle
section of the artificial neuron is the sum function that works
on all the weighted inputs and a bias. A bias is a neuron that
has an output value of 1. The output value is used as inputs to
other neurons in the network. At the exit of the artificial
neuron, the sum of previously weighted inputs and the bias is
passed through an activation function (also called transfer
function) [26], [27].

Figure 1 illustrates the working principle of artificial

neuron network

Figure 1: Working Principle of an Artificial Neuron

The following mathematical expression is obtained from

Figure 1 above: 풀(풌) = 흈 ∑ 푾풊(풌).푿풊(풌) + 풃풏 ퟏ
풊 ퟎ where

 Xi(k) is input in discrete time k where ∀푖, 0 ≤ 푖 < 푛
 Wi(k) is weight in discrete time k where ∀푖, 0 ≤ 푖 < 푛
 b is the bias,
 휎 is a transfer function,
 Y(k) is output value in discrete time k.

The Transfer function defines the properties of artificial

neuron and can be any mathematical function [27]. It is
chosen on the basis of the problem that artificial neural

network needs to solve. A typical set of transfer functions
include [27]-[29]:

 Step Function: It is a binary function that has only two

possible output values (e.g. 0 and 1). This means if
input value meets specific threshold the output value
results in 1 and if specific threshold is not met, the
result is 0. When this type of transfer function is used
in artificial neuron, the artificial neuron is called
perceptron. Perceptron is used for solving
classification problems. Perceptron is usually found in
the output layer of an artificial neural networks

 Linear Function: The artificial neural network simply
performs linear transformation over the sum of
weighted inputs and bias. Such an artificial neuron is
commonly used in the input layer of artificial neural
networks

 Non-linear Functions: The most common non-linear

function is the sigmoid function. It is a continuous
differentiable function making it easy to calculate
derivates for weight updates. The major limitation of
the sigmoid function, in some circumstances, is the
occurrence of local minima in error function.

In practice, single artificial neuron has almost no usefulness
in solving real-life problems [30] but a network of artificial
neurons arranged in layers is capable of solving complex
real-life problems in a non-linear, distributed, parallel and
local way [27], [30]. In a multilayer feed-forward neural
network, information flows from inputs to outputs in only one
direction [27]. Figure 2 depicts the architecture of a
feed-forward neural network

Figure 2: Architecture of a Feed-forward Neural Network

ANN solves problems through learning. A learning

algorithm is an adaptive method by which a network of
computing units self-organizes to implement the desired
behavior by presenting some examples of the desired input
output mapping to the network [27]. A correction step is

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

249

executed iteratively until the network learns to produce the
desired response. The learning algorithm can either be
supervised or unsupervised [30]. Unsupervised learning is
used when, for a given input, the exact numerical output a
network should produce is unknown. The network must
organize itself in order to be able to associate clusters with
units [26], [27].

Supervised learning denotes a method in which some input

vectors are collected and presented to the network. The output
computed by the network is observed and the deviation from
the expected answer is measured. The weights are corrected
according to the magnitude of the error in the way defined by
the learning algorithm. Supervised learning is further divided
into methods which use reinforcement or error correction
[27]. Reinforcement learning is used when after each
presentation of an input-output example the network is
determined whether it produced the desired result or not. Thus
the output of reinforcement learning is either true or false
[26], [30]. With error correction learning, the weights are
corrected using the error and the input vector. This aims at
minimizing or eliminating the error in a single correction step
[26], [27], [30].

Back propagation training algorithm is an error-correction
learning rule [31], [32]. The algorithm consists of two passes
through the different layers of the network, mainly, a forward
pass and a backward pass. In the forward pass, input vector is
applied to the network. The weighted input vector is
propagated through the network from one layer to another
[33]. Finally, a set of outputs is produced as the actual
response of the network. During the forward pass the synaptic
weights of the network are all fixed.

The backward pass is used to adjust the values of the

weights so that the error is reduced at each step in accordance
with the error-correction rule. The actual response of the
network is subtracted from a desired target response to
produce an error signal. This error signal is then propagated
backward through the network. The weights are adjusted so as
to make the actual response of the network move closer to the
desired response [29], [33].

2. SYSTEM PROTOCOL DESIGN

This system implements one-to-many negotiation
mechanism such that one seller auctions a product and many
buyers compete for the product through bidding. Each buyer
initiates a thread in the main system. The buyers provide their
particulars and decide the amount they are willing to pay.

Figure 3 shows a general overview of the negotiation
protocol:

Figure 3: Overview of Negotiation Protocol

The following are the assumptions employed in the
implementation of the system:
 Every data required by the system can be normalized into

0’s and 1’s
 There is only one product of a particular specification for

which many buyers enter into competition for it.
 Only one of the winning bidders is selected as a winner.

The issues involved in this work are the brand of the product

the buyer requires, the mailing address the buyer wants to
receive the product when s/he is announced the winner, the
level of complexity of the product the buyer desires and the
amount the buyer is willing to pay for the product. The
decision requires all the four parameters. The System
Decision mechanism is the reasoning model of the negotiation
system.

3. SYSTEM ARCHITECTURE

The system is divided into four main sections, namely,
Buyers’ interface, Normalizer, Neural Network Predictor and
Decider. The Buyers’ interface is the first interface
encountered by potential buyers. The Normalizer converts the
users’ input into 0’s and 1’s that can be used by the Neural
Network Predictor. Based on the weight values previously
obtained through training, the Neural Network Predictor
computes whether the buyer should be accepted as a potential
bidder or be rejected. The Decider upon the information
obtained from the Neural Network Predictor chooses the
winner. Figure 4 illustrates how the various sections are
inter-related:

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

250

Figure 4: Overview of System Architecture

 The feedback in the figure above represents two situations:

 In the first situation, a buyer receives “Rejection” or
“Conditionally accepted”. If the prediction generated
by the artificial neural network which is passed to the
Decider is 0, the buyer is rejected otherwise the
buyer is conditionally accepted

 In the second situation, all the conditionally accepted
buyers are ranked and the first buyer is selected as
the winner of the auction

3.1 Buyers’ Interface Architecture

This architecture is the only architecture with a graphical
user interface implementation. The architecture allows
potential bidders to interact with the negotiation system.
Buyers are expected to login successfully before conducting
any transaction. New buyers are given the opportunity to
create account by providing their personal information which
will be used later by the system. The information entered by
the buyer is kept in a database.

The following algorithm is used to capture buyers’
information:

00 For each of the input controls
01 If (control is sensitive and buyer ignores data entry) then

02 Prompt the buyer
03 Else if (control is less sensitive and buyer ignores) then
04 Assume that the buyer does not know
05 Use the worst case scenario
06 End if
07 Next for

Sensitive data include full name, user name and password.
The user name and password are use to authenticate the user
(or bidder). Less sensitive data includes but not limited to date
of birth.

After a successful login, users are given another interface
where they select the product they want to bid for. They also
provide information regarding the product specification and
the mailing address if desired. The product specifications
include brand and other features which together determine the
complexity level of the product. The amount the user is
willing to pay is also entered by the user. Users can also abort
their bidding process at this stage.

3.2 Normalization Architecture

 This architecture links the buyers’ architecture and the
neural network architecture. It converts the necessary data
required for making decision to 0’s and 1’s based on the
threshold set by the negotiation system.

Let

M be the input parameters required by the system such that
∀M ∈ {Brand, Mailing Address, Complexity level,
Amount} and ∀i ∈ {0,1,2,3}

T be the threshold set for the input parameters such that
∀i ∈ {0,1,2,3}

X be the normalized data obtained from the input data such
that ∀X ∈ {0,1} and ∀i ∈ {0,1,2,3}

Thus
 X = 1 when M ≥ T or M ∈ {T }, otherwise X = 0

Table 1 summarizes the various categories of the input

parameters

Table 1: Criteria for Input Normalization
Input Parameters 퐗퐢 = ퟎ 퐗퐢 = ퟏ

Brand New Used
Mailing Address Far Near

Complexity Level Above normal Normal
Amount Small Normal or above

The threshold values are kept in a database. It is updated

periodically to reflect the current market values and the goal

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

251

of the auction. The major goal of the negotiation system is to
maximize project for suppliers. The normalized data is passed
to the trained neural network architecture. When the data for a
particular input parameter is not provided or the precise data is
not known, the system does not stop abruptly. However, the
worst case value is used and the normalized value is usually 0.

3.3 Neural Network Architecture

 The neural network is made up of three layers, namely,
input layer, hidden layer and output layer. The input layer
consists of four neurons with each representing an input
parameter. The first neuron represents the brand of the
product, the second neuron represents the mailing address, the
third neuron represents the complexity level and the fourth
neuron represents the bid amount. A fifth neuron is added
with a bias value of 1

 The hidden layer is made up of one layer with (N+1)
neurons. N represents the number of neurons which is
determined during neural network training. The (N+1)th
neuron is added with a bias value of 1. The output layer
consists of only one neuron. Thus there are (N+7) neurons in
the neural network architecture with N representing the
number of neurons in the hidden layer and two neurons
representing bias neurons.

 Figure 5 depicts the architecture of the artificial neural
network obtained at the end of the training

Figure 5: Negotiation Neural Network Architecture

 Since all the neurons accept and output either 0 or 1, the
sigmoid function was used as an activation function (f) with
the formula f(x) =

Let

X ,∀i ∈ {0,1,2,3,4} be the values for the neurons in the
input layer such that X ∈ {0,1},∀i ∈ {0,1,2,3} and X = 1
representing the bias

H ,∀j ∈ {0,1,2,3, … , N} be the values of the neurons in the
hidden layer such that H ∈ {0, 1}, ∀j ∈ {0, … , N − 1}
and H = 1 representing the bias

Y ,∀k = 0 be the value for the neuron in the output layer
such that Y ∈ {0,1}.

W , be the weight between the neuron X in the input layer
and the neuron H in the hidden layer such that
∀W , : W , ≤ 1,∀i ∈ {0,1,2,3,4} and ∀j ∈ {0,1,2, … , N}.

Thus H ,∀j ∈ {0,1,2, … , N− 1} is obtained by the formula

H =
1

1 + e ∑ . ,
 ∈ ℝ

W , be the weight between the neuron H in the hidden
layer and the neuron Y in the output layer such that
∀W , : W , ≤ 1,∀j ∈ {0,1,2, … , N} and ∀k = 0.

Thus the output value of the neuron in the output layer is
obtained by the formula

Y = loor
1

1 + e ∑ . ,
+ 0.5 ∈ ℤ ∈ {0,1}

3.4 Decider Architecture

The Decider communicates with the buyer as to the update
of the auction process. The input parameters of the Decider
are: the normalized input data, the actual amount, the
predicted output of the artificial neural network. When the
predicted output of the artificial neural network is 0, the buyer
is automatically rejected otherwise the buyer is conditionally
accepted.

 At the end of the auction, all the conditionally accepted
candidates are ranked based on the algorithm described
below:

Let

Amt be the actual amount that the buyer entered during the
bidding process

X ,∀i ∈ {0,1,2,3,4} be the values for the neurons in the
input layer such that X ∈ {0,1},∀i ∈ {0,1,2,3}

m denotes the number of conditionally accepted buyers
then

Rank =
Amt
∑ X such that ∀m > 0, Rank ∈ ℝ

 The buyer with the minimum rank value is the winner since
the greater the number of 1’s in the normalized data, the more
profit the supplier gains. If two or more buyers have the same

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

252

rank values then the following conditions are employed to
select the winner:

1. The buyer with highest value of ∑ X
2. If more than one buyer has the highest value of

∑ X then the buyer with the highest Amt is
selected

3. If no single buyer is selected in the steps above, then
the buyer who entered the bid first is selected. Thus
First Come, First Serve principle is applied.

4. If multiple winning buyers entered the auction
process at the same time and previous steps are not
enough to select one winner among them, their
names are arranged and sorted in ascending other
using their first and last names whiles middle names
are ignored. The winner becomes the person whose
name comes first.

5. If all the above steps fail to select a single winner,
then the user names of the buyers are used. Since the
user names are unique to all the users of the
negotiation environment, the user names are sorted
in ascending order and the winner becomes the
person whose user name comes first.

4. IMPLEMENTATION OF THE NETWORK

 The network was implemented as software using Java. The
network was trained, tested and validated in iterative
procedure to finally determine appropriate epoch, number of
neurons in the hidden layer, learning rate and initial
momentum.

4.1 Training Procedure and Algorithms

 Supervised learning method was employed in adjusting the
weights. There were only sixteen set of data that can be used
to train the network. Given the size of the neural network, the
sixteen sets of data produced under-fitting results when used
once. Thus in training the network, the whole set of data was
used iteratively.

 Two mechanisms for adjusting the weights were first
employed and then the better mechanism was selected. The
mechanisms were batch weight updating mechanism and
incremental weight updating mechanism. With batch weight
updating mechanism, the weight correction terms were
accumulated until the end of a complete iteration (or epoch).
A single weight adjustment was made based on the average of
the errors obtained in the epoch. It was observed that training
usually converged to local minimum

 The incremental weight updating mechanism adjusted the
weight after each training data set was presented to the
network. It was however, realized that the network skewed
toward most recent patterns in the cycle. Thus the incremental
weight updating mechanism was used in adjusting the weights
with the training set arranged judiciously without allowing a
particular pattern to follow one another. Table 2 shows the
arranged input values and their corresponding target values
used in training the network.

Table 2: Training Data Set
Input Values Target Output

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1

The algorithm used in training the network is shown below:

00 Assign small positive random values to weights
01 For epochs from 1 to limit assigned by user
02 Read the first set of input data
03 Compute the values for each hidden neurons
04 Apply the activation function on values obtained
05 Compute the value of the output neuron
06 Apply the activation function
07 Compute the error, E= Target – predicted output
08 Use the error to update the weights
09 Read the next set of input data
10 If ((End of data) and (number of epochs reached or

|E|<0.00001)) then
11 Terminate training
12 Else
13 Go to Step 03
14 End if
15 Next For

4.2 Computational Models
This section describes the various mathematical models

that were employed in designing and training the network.

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

253

Let
 δ be the error of the network at the output layer
 δ be the error of the neuron in the hidden layer
 Y be the output of the network during training
 Y be the target or the expected output of the network
 α be the momentum rate
 η be the learning rate
 θ be the output of a neuron in the hidden layer
 X be the input values of the neurons in the input layer

Then the error of the output neuron is obtained by

δ = Y (1− Y)(Y − Y)

The term Y (1− Y) is necessary in the computation
because of the sigmoid function.

Updating the weights between the hidden layer neurons and
the output neuron in the output layer at any particular period, t
is given by:

W , (t) = W , + η .δ . θ + α .∆W , (t− 1)

Considering the weights between the input layer and the
hidden layer, the errors of the neurons in the hidden layer are
computed as

δ = θ (1− θ)(δ . W ,)

Thus the weights are computed as

W , (t) = W , + η .δ . X + α .∆W , (t− 1)

4.3 TESTING AND VALIDATING THE NEURAL NETWORK

 Figure 6 depicts the interface for entering training
parameters

Figure 6: Neural Network Training Interface

 When the Read Data button is clicked, an open dialog is
displayed that allows the user to select the text file that
contains the training set and the target set. The training button
is then enabled.

When training is completed, the Test button is enabled.
Similarly, when the Test button is clicked, an open dialog is
displayed that allows the user to select the text file containing
the test data with the corresponding target set.

A typical test data used is shown in Table 3.

Table 3: Testing Data Set
Input Values Target Output

0 0 0 1 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
1 1 0 1 1

 Figure 7 displayed the test result obtained when the
network was fully trained

Figure 7: Testing Result

 After applying numerous training activities, the best results
were obtained when the hidden layer contains five neurons
with about 3000 epochs. The weight values are stored in a
database and they are used to determine whether a buyer is
accepted among winning bidders. Table 4 shows the weights
obtained at the end of the training

Table 4: Weight Values of the Neurons

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

254

 6. CONCLUSION

Automated negotiation system has been implemented
which does not rely on accurate or precise data to make
decision with the following strength:

 With the incremental weight updating mechanism
employed in the network training, the neural
network is able to handle all sorts of input data
whiles ensuring maximum correct prediction

 The normalization process ensures that the system
streamlines all vague data before it is used in
decision making

The system on the other hand is limited by the following:
 Data captured is always normalized wasting

system processing time and resources

 Bidders are not prompted to check whether less
sensitive data is entered or selected in error. Users,
therefore, have no second chance for correcting
their errors. When bidders realize their errors, they
are made to start the product specification
selection process again.

REFERENCES
1. G. E. Kersten, The science and Engineering of

E-negotiation: Review of the emerging field,
INR05/02, University of Concordia, 2002

2. S. Kraus, Strategic Negotiation in Multi-agent
Environments, The MIT Press, 2001

3. S. Fatima, M. Wooldridge and N. R. Jennings, An
Agenda Based Framework for Multi-Issue
Negotiation, Artificial Intelligence, Volume 152, 2004,
pp 1-45

4. A. Brun and A.P.Staudacher, Negotiation-driven
Supply Chain Co-ordination for Small and Medium
Enterprises”, Proceedings of the ECAI Workshop on
agent technologies and their application scenarios in
logistics edited by I.J.Timm, 2000

5. A. R. Lomuscio, M. Wooldridge and N. R. Jennigs, A
Classification Scheme for Negotiation in Electronic
Commerce, International Journal of Group Decision
and Negotiation, 12(1), pp. 31-56, 2003.

6. G. E. Kersten, S. E. Strecker and K. P. Law, Protocols
for Electronic Negotiation Systems: Theoretical
Foundations and Design Issues, INR 06/04, Interneg
Research paper, Canada, 2004

7. I. Ioannidis and A. Grama, An Efficient Protocol for
Yao's Millionaires' Problem, 36th Hawaii International
Conference on System Sciences (HICSS'03), 2003

8. V. Sanchez-Anguix, V. Julian, V. Botti, A.
Garcia-Fornes, Reaching Unanimous Agreements
Within Agent-Based Negotiation Teams With Linear
and Monotonic Utility Functions, IEEE Transactions

on Systems, Man, and Cybernetics, Volume: 42, Issue: 3,
Page(s): 778 - 792, 2012

9. J. B. Kim and A. Segev, A Framework for Dynamic
e-Business Negotiation Processes, Proceedings of IEEE
Int. Conf. E-Commerce, pp. 24–27, Jan. 2003.

10. I. Rahwan, R. Kowalczyk, and H. H. Pham, Intelligent
Agents for Automated One-to-Many e-Commerce
Negotiation, Aust. Comput. Sci. Commun., Vol. 24, No.
1, pp. 197–204, Feb. 2002.

11. T. D. Nguyen and N. R. Jennings, Concurrent Bi-lateral
Negotiation in Agent Systems, In Proc. 4th DEXA
Workshop e-Negotiations, pp. 839–844, 2003.

12. R. Kowalczyk and V. Bui, On constraint-based
reasoning in negotiation agents, In Proc.
Agent-Mediated E-Commerce, Vol. III, pp. 31–46, 2003.

13. C. Li, J. Giampapa, and K. Sycara, Bilateral negotiation
decisions with uncertain dynamic outside options, In
Proc. 1st IEEE Int. Workshop Electron. Contract, pp.
54–61, 2004.

14. B. An, K. M. Sim, L. G. Tang, S. Q. Li, D. J. Cheng,
Continuous-Time Negotiation Mechanism for
Software Agents-Systems, IEEE Transactions on Man,
and Cybernetics, Volume: 36 , Issue: 6 Page(s): 1261 -
1272, 2006

15. R. Axelrod, The Evolution of Cooperation, New York:
Basic Books,1984

16. T. Bui, J. Yen, J. Hu, and S. Sankaran, A
Multi-Attribute Negotiation Support Systems with
Market Signaling for Electronic Markets, Group
Decision Negotiation, Vol. 10, pp. 515–537, 2001

17. N. Karacapilidis and P. Moraitis, Building an
Agent-Mediated Electronic Commerce System with
Decision Analysis Features, Decision Support Syst.,
Vol. 32, pp. 53–69, 2001

18. Y. Yuan, J. Rose, and N. Archer, A Web-Based
Negotiation Support System, Electron. Markets, Vol. 8,
pp. 13–17, 1998

19. S. Talluri, A Buyer-Seller Game Model for Selection
and Negotiation of Purchasing Bids, Eur. J. Oper. Res.,
Vol. 143, pp. 171–180, 2002

20. S. Talluri, R. Narasimhan, and S. Viswanathan,
Information Technologies for Procurement
Decisions: A Decision Support Systems for
Multi-Attribute e-Reverse Auctions,” Int. J. Prod.
Res., Vol. 45, pp. 2615–2628, 2007

21. R. P. Sundarraj, X. Shi, Optimization-Based Methods
for Improving the Accuracy and Outcome of
Learning in Electronic Procurement Negotiations,
IEEE Transactions on Engineering Management,
Volume: 36 , Issue: 99, Page(s): 1 - 13, 2011

22. D. Zeng andK. Sycara, Bayesian learning in
Negotiation, Int. J. Human-Comput. Studies, Vol. 48, no.
1, pp. 125–141, 1998.

23. R. Coehoorn and N. Jennings, Learning an opponent’s
preference to Make Effective Multi-Issue Negotiation
Trade-Offs, In Proc. Int. Conf. Electronic Commerce,
pp. 59–68, 2004

24. J. Li, J. Huai, C. Hu, and Y. Zhu, A Secure
Collaboration Service for Dynamic Virtual
Organizations, Inf. Sci., Vol. 180, pp. 3086–3107, 2010

Samuel King Opoku , International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 247-255

255

25. S. Paurobally, P. J. Turner, and N. R. Jennings,
Automating Negotiation for m-Services, IEEE Trans.
Syst., Man, Cybern. Vol. 33, No. 6, pp. 709–724, Nov.
2003

26. K. Gurney, An Introduction to Neural Networks,
Routledge, ISBN 1-85728-673-1 London, 1997

27. A. Krenker, J. Bester, A. Kos, Introduction to the
Artificial Neural Networks, Artificial Neural
Networks - Methodological Advances and Biomedical
Applications, ISBN: 978-953-307-243-2, InTech, 2011

28. A. Krenker, M. Volk, U. Sedlar, J. Bester, A. Kos,
Bidirectional Artificial Neural Networks for Mobile
Phone Fraud Detection, ETRI Journal., Vol. 31, No. 1,
pp. 92-94, Feb. 2009.

29. R. Rojas, Neural Networks: A Systematic
Introduction, Springer, ISBN 3-540-60505-3, 1996.

30. H. Wakuya, K. Shida, Bi-Directionalization of Neural
Computing Architecture for Time Series Prediction.
Proceedings of International Joint Conference on Neural
Networks, pp. 2098–2103, 2001

31. T. M. Hagan, H. B. Demuth, M. Beale, Neural Network
Design, China Machine Press, 2002.

32. Thiang, Handry Khoswanto, Rendy Pangaldus, Artificial
Neural Network with Steepest Descent
Backpropagation Training Algorithm for Modeling
Inverse Kinematics of Manipulator, World Academy of
Sciences, Engineering and Technology, 2009

33. Himavathi, Anitha, Muthuramalingam, Feed forward
Neural Network Implementation in FPGA Using
Layer Multiplexing for Effective Resource
Utilization, IEEE Transactions on Neural Networks,
2007.

