
K.Aswani et al., International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 241-246

 241

Link Independent and Node Independent Algorithms for Efficient Multipath Routing

K.ASWANI, G.MURALI
JNTUACEP, Pulivendula, India, areddy815@gmail.com

Asst prof. JNTUACEP, Pulivendula, India, muralig521@gmail.com

ABSTRACT

 Link-independent and node-independent DAGs
satisfy the property that any path from a source to the
root on one DAG is link-disjoint (node-disjoint) with
any path from the source to the root on the other
DAG. To achieve resilient multipath routing, first
introduce the concept of independent directed acyclic
graphs (IDAGs). For a given a network, we develop
polynomial- time algorithms to compute link
independent and node-independent DAGs. The
algorithm developed in this paper is provides
multipath routing, utilizes all possible edges,
guarantees recovery from single link failure and
achieves all these with at most one bit per packet as
overhead when routing is based on destination
address and incoming edge.

Keywords— Directed acyclic graphs (DAGs),
failure recovery, independent trees, IP fast rerouting,
multipath routing, network protection.

1. INTRODUCTION

The increasing use of streaming multimedia and
voice-over-IP, precipitated by decreasing cost of
handheld multimedia devices and net books,
necessitates increased bandwidth provisioning and
fast recovery from network failures. Thus, present-
day IP networks employ several different strategies
for improved end-to-end bandwidth and load
balancing (using multipath routing) and fast recovery
from link and node failures (using fast rerouting
strategies). With the multipath routing, we can
achieve bandwidth aggregation [1] by splitting data
to the same destination into multiple streams, each
routed through a different path, the effective
bandwidth can be aggregated, congestion reduction

[2], load balancing [3], security [4], and robustness
[5] compared to the single shortest-path routing that
is usually used in most networks.

Multipath routing in today’s IP networks is merely
limited to equal-cost multi paths Techniques
developed for multipath routing are often based on
employing multiple spanning trees or directed acyclic
graphs (DAGs) [6]. When multiple routing tables are
employed, a packet has to carry in its header the
routing table to be used for forwarding. When the
corresponding forwarding edge is not available, the
packet needs to be dropped. This dropping is forced
due to the potential looping of packets when
transferred from one routing table to another. In the
case of DAGs, computed by adding edges to the
shortest-path tree, one cannot guarantee that a single-
link failure will not disconnect one or more nodes
from the destination.

 Techniques developed for fast recovery from
single-link failures provide more than one forwarding
edge to route a packet to a destination. The
techniques may be classified depending on the nature
in which the backup edges are employed. The authors
develop a method to augment any given tree rooted at
a destination with “backup forwarding ports.” We
present two fast rerouting algorithms to achieve
recovery from single-link and single-node failures,
respectively. The idea is to calculated backup paths in
advance. When a failure is detected, the affected
packets are immediately forwarded through backup
paths to shorten the service disruption. In [8], the
authors present a framework for IP fast reroute
detailing three candidate solutions for IP fast reroute
that have all gained considerable attention. These are
multiple routing configurations (MRCs) [7] to assure
fast recovery from link and node failures in IP

 ISSN 2320 - 2602
Volume 2, No.11, November 2013

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2013/ijacst022112013.pdf

K.Aswani et al., International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 241-246

 242

networks, failure insensitive routing (FIR) [9] to
improve failure resiliency without jeopardizing
routing stability , and tunneling using Not-via
addresses (Not-via) [10]. The common feature of all
these approaches is that they employ multiple routing
tables. One approach to reduce the number of routing
table entries for multipath forwarding is to construct
two trees, namely red and blue, rooted at a
destination node such that the paths from a source to
the destination on the two trees are link/node- disjoint
[11]. In this approach, two trees are constructed per
destination node such that the paths from any node to
the root on the two trees are disjoint. The trees may
be constructed to obtain link-disjoint or node-disjoint
paths if the network is two-edge or two-vertex
connected, respectively. This approach is similar to
those employing multiple routing tables, except that
only two tables are required. Every packet may carry
an extra bit in its header to indicate the tree to be
used for routing. This overhead bit may be avoided
by employing a routing based on the destination
address and the incoming edge over which the packet
was received, as every incoming edge will be present
on exactly one of the trees. The colored tree approach
allows every node to split its traffic between the two
trees, thus offering disjoint multipath routing. In
addition, when a forwarding link on a tree fails, the
packet may be switched to the other tree. A packet
may be transferred from one tree to another at most
once as the colored tree approach is guaranteed to
recover from only a single-link failure. The colored
trees are

Figure 1: Illustration of node- independent trees for the
example network. (a) Red tree. (b) Blue tree. Node A is the
root (destination) node.

also referred to as “independent trees” in the
literature [12].We will refer to the colored trees
approach as the independent trees (ITrees) approach
in the rest of this paper. Fig. 1 shows an example

network where red and blue trees, rooted at node A,
are constructed. This tree construction enables
recovery from a single-link failure by switching from
one tree to another. For example, consider a packet
that is forwarded from node F to node A on the blue
tree. When there are no failures, the packet would
take the path F–C–B–A. If link C–B fails, then node
C would reroute the packet on the red tree, thus the
packet will follow the path F–C–F–I–H–G–D–A.
Assume that a second link failure occurs on link I–H.
As only two independent trees were constructed and
recovery from arbitrary two link failures cannot be
guaranteed, the packet will be dropped when the
second link failure is encountered. One approach to
enhance the robustness is to allow the packet to be
switched multiple times between the trees. Such an
approach will fail in the example considered above.
The packet will be rerouted back and forth on the
path I–F–C. We may analyze when switching back to
a tree would guarantee not encountering a previous
failure again by observing the properties of the
independent tree construction process. However, the
inherent limitation of the tree-based approach is that
it utilizes only directed edges to route to a
destination, where denotes the number of nodes in the
network. The goal is therefore to utilize the additional
links available in the network to improve robustness.
To this end, we seek to construct independent
directed acyclic graphs rooted at each node. Fig. 2(a)
and (b) shows two independent directed acyclic
graphs rooted at node A. Observe that node I has two
red forwarding edges available. Thus, in the earlier
example, if link I–H fails, the packet may be
forwarded on link I–E to reach the destination.

Figure 2: Illustration of node-independent DAGs in an
example network where node A is the root (destination)
node. (a) Red DAG. (b) Blue DAG.

K.Aswani et al., International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 241-246

 243

2.INDEPENDENT DIRECTED ACYCLIC
GRAPHS

 Here consider a network with a set of nodes and
links denoted by N and L , respectively. Here assume
that links are bidirectional in nature, which may be
realized using two unidirectional links. Here denote a
bidirectional link between nodes i and j as, i to j
while the directed link from i to j is denoted by i->j .
When a link i->j fails, we assume that both directed
edges i->j and j->i have failed. Here say that a DAG
is rooted at d if d is the only node in the DAG that
has no outgoing edges. Every other node has at least
one outgoing edge. If we traverse a sequence of
edges starting from any node, the path will terminate
at node d and will be loop-free. Consider two
directed acyclic graphs that are rooted at d. The two
DAGs are said to be link-independent if for every
node s any path from s to d to on one DAG is link
disjoint with any path from s to d to on the other
DAG. Similarly, the two DAGs are said to be node-
independent if for every node s any path from s to d
on one DAG is node-disjoint with any path from s to
d on the other DAG.

2.1 Resilient Routing With IDAGs

The network is assumed to employ link-state
protocol, hence every node has the view of the entire
network topology. Every node computes two DAGs,
namely red(R) and blue (B), for each destination and
maintains one or more forwarding entries per
destination per DAG. The DAGs may be used in two
different ways to achieve resilient routing. In the first
approach, referred to as Red DAG first (RDF), the
packets are assumed to be forwarded on the red DAG
first. When no forwarding edges are available on the
red DAG, the packet is transferred to the blue DAG.
When no blue forwarding edges are available, the
packet is dropped. The DAG to be employed for
routing is carried in an overhead bit (DAG bit) in
every packet header. In the second approach, referred
to as Any DAG first (ADF), a packet may be
transmitted by the source on the red or blue DAG. In
addition to the DAG bit, every packet also carries an
additional bit that indicates whether the packet has
been transferred from one DAG to another (Transfer
bit). A packet is routed on the DAG indicated in its

packet header. If no forwarding edges are available in
that DAG and if the packet has not encountered a
DAG transfer already, it is transferred to the other
DAG. If no forwarding edges are available on the
DAG indicated in the packet header and the packet
has already encountered a DAG transfer, the packet is
dropped. In both of the approaches described above,
a node may forward the packet along any of the
available forwarding edges in the DAG indicated in
the packet header. Note that if the red and blue DAGs
are (link- or node-) independent, then the network is
guaranteed to recover from a single (-link or -node)
failure when the packet is transferred from one DAG
to the other. In addition, the network may tolerate
multiple failures as some nodes may have many
forwarding entries in each DAG.

III. CONSTRUCTING NODE-INDEPENDENT

DAGS

 Two-vertex-connectivity is the necessary and
sufficient requirement for constructing two node-
independent DAGs utilizing all the edges except
those emanating from the given destination node.
This necessary part of the requirement follows
directly from the condition required for constructing
two node-independent trees a special case of DAG.
 Initialize the partial order for the nodes on the two
DAGs. Compute the first cycle to be augmented.
Compute successive paths to be augmented. The path
starts and ends at distinct nodes that are already
added to the DAGs, hence the paths from every node
to the root of the DAG are node-disjoint. Note that
the difference between the path augmentation
employed for DAG construction here and that
employed for tree construction.

K.Aswani et al., International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 241-246

 244

Figure3: Procedure to construct two node-independent

DAGs rooted at destination in a two-vertex-connected

network.

 Theorem:
TheprocedureNIDAGsconstruction:1)assigns every
edge other than the edges emanating from the
destination to one of the two DAGs; and 2) any path
from a source to the root in the red DAG is node-
disjoint with any path from the source to the root in
the blue DAG.

Figure 4: Illustration of the construction of node
independent DAGs. (a) Example network. (b) Base red

DAG. (c) Base blue DAG. Fig. 2(a) and (b) shows the final
red and blue DAGs, respectively.

Example: Consider the nine-node network shown in
Fig. 4(a), where we seek to compute IDAGs rooted at
node A. The base DAGs are computed by
considering the cycle A–D–E–B followed by paths
D–G–H–E and H–I–F–C–B for augmentation and are
shown in Figure 4(b) and (c).

4. CONSTRUCTING LINK INDEPENDENT
DAGS

 Two-edge connectivity is a necessary and sufficient
condition for constructing two link-independent
DAGs. Similar to the requirement of node-
independent DAGs, the necessary part of the
requirement follows from the independent tree
construction. We show the sufficiency part of the
requirement by constructing the desired DAGs. Fig. 5
shows the procedure to construct two link
independent DAGs.

Figure 5: Procedure to construct two link-independent

DAGs rooted at destination in a two-edge-connected

network.

5. ALTERNATIVE APPROACH TO IDAG

CONSTRUCTION USING GRAPH EXPANSION

 Now present an alternative algorithm to construct
IDAGs such that Steps 5–7 of the NI-DAGs
construction may be completely avoided. Observe

K.Aswani et al., International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 241-246

 245

that Steps 5–7 in the NI-DAGs construction are
required because not all links are considered by the
base IDAG construction (Steps 1–4). If, however, we
can modify the graph such that the base IDAG
construction would consider all links, then Steps 5–7
can be eliminated. To this end, we develop a graph
expansion technique that results in an expanded
graph G with N+L nodes and 2L links, where N and
L denote the number of nodes and links in the
original graph.

Figure6: Procedure to construct two node-independent

DAGs rooted at destination using virtual graph expansion.

Figure 7: Illustration of the construction of node-

independent DAGs using a virtual node. (a) Expansion with

virtual node. (b) Contraction to remove virtual node

Figure 6 shows the procedure to construct two node
independent DAGs rooted at destination using graph
expansion. Consider a link l € L that connects nodes
x and y in the original graph. We replace this link
with vl a node and two links vl –x and vl - y. Fig.
7(a) shows the expansion of link . Since every link in
in the expanded graph is the original graph results in
a new node, the total number of nodes L+N . Since

every link in the original graph results in two links in
the expanded graph, the total number of links in the
expanded graph is 2L .Observe that all the nodes that
correspond to a link in the original graph have
exactly two outgoing links. Now, consider the base
IDAG construction on the expanded the graph. Since
Steps 1–4 must account for all nodes being added, all
the nodes corresponding to the links in the original
graph must be added in steps 1–4, thus all links in the
original graph are considered.

Figure 8: Procedure to construct multiple pairs of colored

trees rooted at node utilizing the maximum number of

links.

6. PROCEDURE FOR CONSTRUCTION OF

MULTIPLE RED–BLUE TREES

Our key goal in this paper is to use the maximum
possible number of network edges for data
transmission. As mentioned earlier, one possible
solution is to construct multiple pairs of colored trees.
We would like to compare our IDAGs approach to
the multiple pairs of colored trees approach. In this
section, we introduce the procedure for constructing
multiple pairs of colored trees. In order to use the
maximum number of edges, we construct multiple
colored tree pairs that share as few edges as possible.
Note that for a given pair, the red and blue trees are
independent, however trees from different pairs are
not necessarily independent. Let the number of pairs
of colored trees needed be. It is necessary and
sufficient for a network to be two-vertex (edge)
connected to compute atleast one pair of

K.Aswani et al., International Journal of Advances in Computer Science and Technology, 2(11), November 2013, 241-246

 246

vertex(edge)independent trees . Given a network we
construct a pair of independent trees using the
procedure described record the link usage frequency
of all links and sort links in the descending order of
usage frequency. We then consider links in the given
order, removing a link while the network remains
two-vertex (edge) connected and compute a pair of
independent trees. We repeat this procedure until the
desired number of colored tree pairs is obtained.4
Fig. 8 shows the procedure to construct multiple pairs
of colored trees rooted at node. We provide several
simulation results of the multiple pairs of colored
trees technique in Section.

 7. CONCLUSION

 The concept of independent directed acyclic
graphs (IDAGs) is introduced and developed a
methodology for resilient multipath routing using two
IDAGs.The polynomial time algorithms to construct
node-independent and link-independent DAGs using
all possible edges in the network. This algorithm
provides effective multipath routing and also
recovers single link failures. In addition, the trees
based on the shortest paths on the IDAGs have better
performance than that of the ITrees approach since
the average shortest path length on the IDAGs is
shorter than the average path length on the ITrees.

 REFERENCES

1. J. Tsai and T. Moors, “A review of multipath
routing protocol : From wireless ad hoc to mesh
networks,” in Proc. ACoRN Early Career Res.
Workshop Wireless Multihop Netw., Jul. 17–18,
2006, pp. 17–22

2. S. Murthy and J. Garcia-Luna-Aceves,
“Congestion-oriented shortest multipath routing,
” in Proc. IEEE INFOCOM, Mar. 1996, vol. 3,
pp.1028–1036

3. P. P. Pham and S. Perreau, “Performance analysis
of reactive shortest path and multi-path routing
mechanism with load balance,” in Proc. IEEE
INFOCOM, 2003, pp. 251–259.

4. W. Lou, W. Liu, and Y. Fang, “A simulation study

of security performance using multipath routing
in ad hoc networks,” in Proc. IEEE Veh. Technol.
Conf., Oct. 2003, vol. 3, pp. 2142–2146

5. Z. Ye, S. V. Krishnamurthy, and S. K. Tripathi, “A
framework for reliable routing in mobile ad hoc
networks,” in Proc. IEEE INFOCOM, Apr. 2003,
pp. 270–280

6. G. Lee and J. Choi, “A survey of multipath routing

for traffic engineering,” 2002 [Online]. Available:
http://academic.research.
microsoft.com/Publication/10842993/a-survey-of-
multipath- routing-for-traffic-engineering

7. A. Kvalbein, A. F. Hansen, T. Ĉiĉić, S. Gjessing, and

O. Lysne, “Fast IP network recovery using
multiple routing configurations,” in Proc. IEEE
INFOCOM, Apr. 2006, pp. 1–11.

8. M. Shand and S. Bryant, “IP fast reroute

framework” IETF Internet Draft draft-ietf-rtgwg-
ipfrr-framework-08.txt, Feb. 2008

9. S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N.

Chuah, “Proactive vs. reactive approaches to
failure resilient routing,” in Proc. IEEE INFOCOM,
Mar. 2004, vol. 1, pp. 176–186.

10. S. Bryant, M. Shand, and S. Previdi, “IP fast

reroute using not-via addresses,” Internet Draft
draft-ietf-rtgwg-ipfrr-notvia-addresses-02.txt, Feb.
2008.

11. G. Jayavelu, S. Ramasubramanian, and O. Younis,

“Maintaining colored trees for disjoint multipath
routing under node failures,” IEEE/ACM Trans.
Netw., vol. 17, no. 1, pp. 346–359, Feb. 2008.

12. A. Huck, “Independent trees in graphs,” Graphs

Combin., vol. 10, pp.

