
Neethu C Vet al. ,International Journal of Advances in Computer Science and Technology , 2(2), February 2013, 07-13

7
@ 2012, IJACST All Rights Reserved

 A Survey of Techniques For Answering Top-k Queries

Neethu C V

Dept. of Computer Science & Engineering
SCT College of Engineering

Trivandrum,India
neethusureshbabu@gmail.com

Rejimol Robinson R R
Dept. of Computer Science & Engineering

SCT College of Engineering
Trivandrum,India

ashniya@gmail.com

ABSTRACT

Top-k queries are useful in retrieving top-k records from a given set
of records depending on the value of a function F on their attributes.
Many techniques have been proposed in database literature for
answering top-k queries.These are mainly categorized into
three:Sorted-list based,layer based and View based. In first category,
records are sorted along each dimension and then assigned a rank to
each of the records using parallel scanning method.Threshold
Algorithm(TA) and Fagin’s Algorithm(FA) are the examples of
sorted-list based category. Second category is layer based category,in
which all the records are organized into layers such as in onion
technique and robust indexing technique.Third category includes
methods such as PREFER and LPTA(Linear Programming
Adaptation of Threshold Algorithm) and processing is based on the
materialized views.

Key Words: Monotone Functions, PREFER, Linearly optimally
ordered set, Convex hull

1. INTRODUCTION

Top-k queries are intended for retrieving top-k records
from the database which are subjected to minimization or
maximization of the function F on the attributes of the
relation.This kind of queries appears frequently in many
applications such as college ranking,job ranking etc[1].Due to
the popularity of top-k queries, many techniques have been
proposed which are mainly includes sorted-list based,layer
based and view based techniques.

A. Sorted-list based
Methods in this category sorts all records along each

dimension and then assigned an overall grade to each of the
records based on the sorted lists.For example, consider the

example of college ranking.A student want to join a college
for doing graduation and he has some preferences based on the
attributes like distance to the college,tution fee,university
under which college is working, performance of the college
for previous four years etc.He then assigns grades to each of
the attributes and sorted lists are created based on this
assignment corresponding to each of the attributes.Then a list
of colleges have retrieved based on their value for the query
function.Here, the query function is a linear function in terms
of the attributes of the records.FA and TA [4],[8],[5] are the
two techniques included in this category.

B. Layer Based Category
The algorithms in this category organize all records

into consecutive layers, such as Onion [2] and Robust
Indexing Techniques [10]. The organization strategy is based
on the common property among the records, such as the same
convex hull layer in Onion [2]. Any top-k query can be
answered by up to k layers of records. The Onion indexing is
based on a geometric property of convex hull, which
guarantees that the optimal value can always be found at one
or more of its vertices. The Onion indexing makes use of this
property to construct convex hulls in layers with outer layers
enclosing inner layers geometrically. A data record is indexed
by its layer number or equivalently its depth in the layered
convex hull. Queries with linear weightings issued at run time
are evaluated from the outmost layer inwards. Onion indexing
achieves orders of magnitude speedup against sequential
linear scan when N is small compared to the cardinality of the
set. The Onion technique also enables progressive retrieval,
which processes and returns ranked results in a progressive
manner. Furthermore, the proposed indexing can be extended
into a hierarchical organization of data to accommodate both
global and local queries.

 ISSN 2320 - 2602
Volume 2, No.2, February 2013

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2013/ijacst01222013.pdf

Neethu C Vet al. ,International Journal of Advances in Computer Science and Technology , 2(2), February 2013, 07-13

8
@ 2012, IJACST All Rights Reserved

Robust indexing [10] method is a kind layered
technique for answering ranked queries. The layered indexing
methods are less sensitive to the query weights. A key
observation is that it may be beneficial to push a tuple as
deeply as possible so that it has less chance to be touched in
query execution. Motivated by this, a new criterion for
sequentially layered indexing had been proposed: for any k,
the number of tuples in top k layers is minimal in comparison
with all the other layered alternatives. Since any top-k query
can be answered by at most k layers, this proposal aims at
minimizing the worst case performance on any top-k queries.
Hence the proposed index is robust. While Onion and other
layered techniques are sensitive to the query weights, This
method, even though not optimal in some cases, has the best
expected performance. Another appealing advantage of our
proposal is that the top-k query processing can be seamlessly
integrated into current commercial databases. Both Onion and
other layered methods require the advanced query execution
algorithms, which are not supported by many database query
engines so far.

Figure 1: Classification of Top-k query evaluation

techniques.

C. View Based Category
In view based techniques, the materialized views created

from the relation can be used to answer top-k queries.
PREFER[6] answers preference queries efficiently by using
materialized views that have been preprocessed and
stored.Queries with different weights will be first mapped to
the pre-computed order and then answered by determining the
lower bound value on that order. When the query weights are
close to the pre-computed weights, the query can be answered
extremely fast. Unfortunately, this method is very sensitive to
weighting parameters. A reasonable derivation of the query

weights (from the pre-computed weights) may severely
deteriorate the query performance. PREFER is a layer on top
of commercial relational databases and allows the efficient
evaluation of multi parametric ranked queries. LPTA[3] is a
linear programming adaptation of the classical TA algorithm
to solve top-k query problem.

Figure 2: Example of top-k query processing.

2.TAXONOMY OF PROCESSING TOP-K QUERIES

 Due to the high popularity of the top-k queries, various
technique have been proposed for solving such
situations.Supporting efficient top-k query processing in
database system is relatively recent and active line of research.
In the following subsection, all the important techniques
included in above explained categoris have been explored in
detail.

i. Naïve Algorithm
To determine the top k objects, that is, k objects with

the highest overall grades, the naive algorithm must access
every object in the database, to find its grade under each
attribute.
Steps of the Naïve algorithm[4] is given below.

 If (x1,x2,…,xm) are the grades of object R
under the m attributes, then compute
T(x1,x2,…,xm) overall grade of object R.

 Sort the list of computed values.

 Return top k rows corresponding to the
sorted list.

The main disadvantage of the Naïve algorithm is the
large processing time when dealing with large databases.

Neethu C Vet al. ,International Journal of Advances in Computer Science and Technology , 2(2), February 2013, 07-13

9
@ 2012, IJACST All Rights Reserved

ii. Fagin’s Algorithm
 Fagin introduced an algorithm (“Fagin’s Algorithm[4]”, or

FA), which often does much better than the naive algorithm.
In the case where the orderings in the sorted lists are
probabilistically independent, FA finds the top k answers, over
a database with N objects with arbitrarily high probability.
This algorithm is implemented in Garlic, an experimental IBM
middleware system.

 Do sorted access in parallel to each of the m

sorted lists Li: Wait until there are at least k
‘‘matches’’, that is, wait until there is a set
of at least k objects such that each of these
objects has been seen in each of the m lists.

 For each object R that has been seen, do
random access as needed to each of the lists
Li to find the ith field xi of R:

 Compute the grade t(R)= t(x1,x2,….xm) for
each object R that has been seen. Let Y be a
set containing the k objects that have been
seen with the highest grades (ties are broken
arbitrarily). The output is then the graded set
{(R, t(R)) | R€Y}.

Fagin shows that his algorithm is optimal with high

probability in the worst case if the aggregation function is
strict (so that, intuitively, we are dealing with a notion of
conjunction),and if the orderings in the sorted lists are
probabilistically independent. In fact, the access pattern of FA
is obvious to the choice of aggregation function, and so for
each fixed database, the middleware cost of FA is exactly the
same no matter what the aggregation function is. This is true
even for a constant aggregation function; in this case, of
course, there is a trivial algorithm that gives us the top k
answers (any k objects will do) with O(1) middleware cost. So
FA is not optimal in any sense for some monotone aggregation
functions t: As a more interesting example, when the
aggregation function is max (which is not strict), it is shown in
that there is a simple algorithm that makes at most m*k sorted
accesses and no random accesses that finds the top k answers.
By contrast, the algorithm TA is instance optimal for every
monotone aggregation function, under very weak assumptions.

iii. Threshold Algorithm
 Even in the cases where FA is optimal, this optimality
holds only in the worst case, with high probability. This leaves
open the possibility that there are some algorithms that have

much better middleware cost than FA over certain databases.
The algorithm TA, which we now discuss, is such an
algorithm.

 Do sorted access in parallel to each of the m

sorted lists Li: As an object R is seen under
sorted access in some list, do random access
to the other lists to find the grade xi of
object R in every list Li.

 Then compute the grade t(R) =t(x1,x2

,…xm) of object R: If this grade is one of
the k highest we have seen, then remember
object R and its grade t(R).

 For each list Li, let xi be the grade of the last

object seen under sorted access. Define the
threshold value ψ to be t(x1,x2,….,xm). As
soon as at least k objects have been seen
whose grade is at least equal to ψ then halt.

 Let Y be a set containing the k objects that

have been seen with the highest grades. The
output is then the graded set {(R, t(R)) |
R€Y}.

 The algorithm scans multiple lists, representing
different rankings of the same set of objects. An upper bound
T is maintained for the overall score of unseen objects. The
upper bound is computed by applying the scoring function to
the partial scores of the last seen objects in different lists.
Notice that the last seen objects in different lists could be
different. The upper bound is updated every time a new object
appears in one of the lists. The overall score of some seen
object is computed by applying the scoring function to
object’s partial scores, obtained from different lists. To obtain
such partial scores, each newly seen object in one of the lists
is looked up in all other lists, and its scores are aggregated
using the scoring function to obtain the overall score. All
objects with total scores that are greater than or equal to T can
be reported. The algorithm terminates after returning the kth
output. Example 1 given below illustrates the processing of
TA.

Example 1[7]:Consider two data sources containing same set
of objects.Let A1 and A2 are the attributes in two data sources
respectively. The Query function, F is defined as
F=A1+10*A2. The working of TA is depicted in the following
figure.

Neethu C Vet al. ,International Journal of Advances in Computer Science and Technology , 2(2), February 2013, 07-13

10
@ 2012, IJACST All Rights Reserved

Figure 3: Working of Threshold Algorithm

 In the first step, retrieving the top object from each
list, and probing the value of its other attribute value in the
other list, result in revealing the exact scores for the top
objects. The seen objects are buffered in the order of their
scores. A threshold value, T, for the scores of unseen objects
is computed by applying F to the last seen scores in both lists,
which results in 70+6*10=130. Since both seen objects have
scores less than T, no results can be reported. In the second
step, T drops to 90, and objects 4 and 2 can be safely reported
since its score is above T. The algorithm continues until k
objects are reported, or sources are exhausted.

iv. Onion Technique
 This technique comes under the layer based category
and uses a special indexing structure for answering top-k
queries. The Onion indexing is based on a geometric property
of convex hull, which guarantees that the optimal value can
always be found at one or more of its vertices. The Onion
indexing makes use of this property to construct convex hulls
in layers with outer layers enclosing inner layers
geometrically. A data record is indexed by its layer number or
equivalently its depth in the layered convex hull. Queries with
linear weightings issued at run time are evaluated from the
outmost layer inwards.

Basic idea of the onion technique is that partition the
collection of d-dimensional data points into sets that are
optimally linearly ordered. This property is used to construct
convex hulls in layers with outer layers enclosing inner layers
geometrically.

Definition 1.Optimally Linearly Ordered Set:A collection of
sets{s1,s2,…,sn}are optimally linearly ordered sets if and only
if a d-dimensional vector ā, Ǝ ō ϵ si such that for every ĉ ϵ si+j

,j>0, āt ō> āt ĉ where āt ō represents the inner product of two
vectors.

 Partitioning a set of data points into optimally linearly
ordered sets is based on the following theorem.

Theorem 1: Given a set of records R mapped to a d-
dimensional space, and a linear maximization criterion,
the maximum objective value is achieved at one or more
vertices of the convex hull of R.

Definition 2. A set S is convex if whenever two points P and
Q are inside S, then the whole line segment PQ is also in S.

Figure 4: Non convex hull and convex hull

Procedure for index creation:

Step1:Input a set of records R and iterate the following
steps until size(R) becomes less than zero.
Step 2:Construct convex hull of the data records R.
Step 3:Store the records of hull vertices in set Vi.
Step4:Assign records in set V to layer k.
Step 5:Set R=R-V and k=k+1.

Figure 5: Layers of onion Indexing technique

This indexing structure can be used for query

evaluation. Onion indexing achieves orders of magnitude
speedup against sequential linear scan when N is small
compared to the cardinality of the set. The Onion technique
also enables progressive retrieval, which processes and returns
ranked results in a progressive manner. Furthermore, the
proposed indexing can be extended into a hierarchical
organization of data to accommodate both global and local
queries.

v. Robust Indexing Structure
 This is an another layered indexing structure useful for the
evaluation of top-k queries. The idea of multi-layer indexing
has been also adopted by to provide robust indexing[10],[7]

Neethu C Vet al. ,International Journal of Advances in Computer Science and Technology , 2(2), February 2013, 07-13

11
@ 2012, IJACST All Rights Reserved

for top-k queries. Robustness is defined in terms of providing
the best possible performance in worst case scenario, which is
fully scanning the first k layers to find the top-k answers. The
main idea is that if each object Oi is pushed to the deepest
possible layer, its retrieval can be avoided if it is unnecessary.
This is accomplished by searching for the minimum rank of
each object oi in all linear scoring functions. Such rank
represents the layer number, denoted l*(Oi), where object Oi
is pushed to. For n objects having d scoring predicates,
computing the exact layer numbers for all objects has a
complexity of O(nd log n), which is an overkill when n or d
are large. Approximation is used to reduce the computation
cost. An approximate layer number, denoted l(Oi), is
computedsuch that l(Oi) · l*(Oi), which ensures that no false
positives are produced in the top-k query answer.

vi. PREFER
This is a view based evaluation of the top-k queries.

Recent successful work in non-layered approaches includes
the PREFER system [6],[7], where tuples are sorted by a pre-
computed linear weighting configuration Users often need to
optimize the selection of objects by appropriately weighting
the importance of multiple object attributes. Such optimization
problems appear often in operations research and applied
mathematics as well as everyday life; e.g., a buyer may select
a home as a weighted function of a number of attributes like
its distance from office, its price, its area, etc.
 The queries here use a weight function over a
relation’s attributes to derive a score for each tuple. Database
systems cannot efficiently produce the top results of a
preference query because they need to evaluate the weight
function over all tuples of the relation. PREFER[6] answers
preference queries efficiently by using materialized views that
have been preprocessed and stored.Queries with different
weights will be first mapped to the pre-computed order and
then answered by determining the lower bound value on that
order. When the query weights are close to the pre-computed
weights, the query can be answered extremely fast.
Unfortunately, this method is very sensitive to weighting
parameters. A reasonable derivation of the query weights
(from the pre-computed weights) may severely deteriorate the
query performance. PREFER is a layer on top of commercial
relational databases and allows the efficient evaluation of
multi parametric ranked queries For example consider a
database containing houses available for sale. The properties
have attributes such as price, number of bedrooms, age, square
feet, etc. For a user, the price of a property and the square feet
area may be the most important issues, equally weighted in the
final choice of a property, and the property’s age may also be
an important issue, but of lesser weight. The vast majority of

e-commerce systems available for such applications do not
help users in answering such queries, as they commonly order
according to a single attribute. In these cases, preference
queries have significant role and for PRFER system also.

vii. LPTA

 Algorithm(LPTA)[3],[7] is another technique included in
the view based category.It performs much better than
PREFER.

Problem 1: (Top-K Query Answer Using Views). Given a set
U of views, and a query Q, obtain an answer to Q combining
all the information conveyed by the views in U.

Consider a single relation R with m numeric
attributes X1,X2,….Xm, and n tuples t1, . . . , tn. Let Domi =
[lbi, ubi] be the domain of the ith attribute. Refer to table R as
a base table. Each tuple t may be viewed as a numeric vector t
= (t[1], t[2], . . . , t[m]). Each tuple is associated with a tuple-
id (tid).Here consider top-k ranking queries, which can be
expressed in SQL-like syntax: SELECT TOP [k] FROM R
WHERE RangeQ ORDER BY ScoreQ. More abstractly, a
ranking query may be expressed as a triple Q = (ScoreQ, k,
RangeQ), where ScoreQ(t) is a function that assigns a numeric
score to any tuple t (the function does not necessarily involve
all attributes of the table), and RangeQ(t) is a Boolean function
that defines a selection condition for the tuples of R in the
form of a conjunction of range restrictions on Domi, i 2 {1, . . .
,m}. Each range restriction is of the form li ≤ Xi ≤ ui, I ϵ {1, . .
. ,m} and the interval [li, ui] Domi.The semantics requires
that the system retrieve the k tuples with the top scores
satisfying the selection condition.

LPTA[7] is a linear programming adaptation of the
classical TA algorithm to solve Problem 1.1 for the special
case when views and queries are of the form V 0 = (ScoreV 0 ,
n, *) and Q = (ScoreQ, k, *) respectively. Consider a relation
with attributes X1, X2 and X3 as shown in Figure 6. Let views
V1 and V2 have scoring functions f1, f2 respectively as shown
in Figure 1.3.2.1 and consider a query Q = (f3, k, *). The
algorithm initializes the top-k buffer to empty. It then starts
retrieving the tids from the views V1, V2 in a lock-step
fashion, in the order of decreasing score (w.r.t. the view’s
scoring functions). For each tid read, the algorithm retrieves
the corresponding tuple by random access on R, computes its
score according to the query’s scoring function f3, updates the
top-k buffer to contain the top-k largest scores (according to
the query’s scoring function), and checks for the stopping
condition as follows: After the dth iteration, let the last tuple
read from view V1 be (tidd

1, sd
1) and from view V2 be (tidd

2,
sd

2). Let the minimum score in the top-k buffer be topkmin. At
this stage, the unseen tuples in the view have to satisfy the

Neethu C Vet al. ,International Journal of Advances in Computer Science and Technology , 2(2), February 2013, 07-13

12
@ 2012, IJACST All Rights Reserved

following inequalities (the domain of each attribute of R of
Figure is [1, 100]).

Figure 6: .Example of views.

The following system of inequalities defines a
convex region in three dimensional space.

0≤ X1,X2,X3≤ 100 (1)
 2 X1+5 X2≤Sd

1 (2)
 X2+2X2≤Sd

1 (3)

This system of inequalities defines a convex region in
three dimensional space. Let unseenmax be the solution to the
linear program where we maximize the function f3 = 3X1 +
10X2 + 5X3 subject to these inequalities. It is easy to see that
unseenmax represents the maximum possible score (with
respect to the ranking query’s scoring function) of any tuple
not yet visited in the views. The algorithm terminates when
the top-k buffer is full and unseenmax ≤ topkmin. Considering
the example of given figure, the algorithm will proceed as
follows;

Figure 7 :[3][7].LPTA algorithm

First retrieve tid and conduct a random access to R to

retrieve the full tuple and tid 6 from V2 accessing R again. The
top-2 buffer contains the following pairs (tidd

i, sd
i) {(7, 1248),

(6, 996)}. The solution to the linear program with s1q= 527
and s2d = 219 yields an unseenmax =1338 > topkmax = 1248 and
the algorithm conducts one more iteration.This time we access
tid 6 from V1 and tid 4 from V2. The top-2 buffer remains
unchanged and the linear program is solved one more time
using sd

1 = 299 and sd
2 = 202. This time, unseenmax= 953.5 <

topkmax = 1248 and the algorithm terminates. Thus, in total
LPTA conducts two sequential and two random accesses per
view. In contrast, the TA algorithm executed on R of Figure 1
will identify the correct top-2 results after 12 sorted and 12
random accesses in total. The performance advantage of
LPTA is evident.

3.COMPARISON OF DIFFERENT TECHNIQUES

This section includes comparison of different

techniques employed in the top-k query evaluation which is
given in the Table 1. The comparison is performed based on
the three important criteria which are ranking function,
ranking model and data access operation involved in the
different techniques. The ranking function can be generic or
monotone. Most of the current top processing techniques
assume monotone ranking functions since they fit in many
practical scenarios, and have appealing properties allowing for
efficient top-k processing. But, few recent techniques address
top-k queries in the context of constrained function
optimization. The ranking function in this case is allowed to
take a generic form.

Table 1: Comparison Of Different Techniques

Another criteria is ranking model. It can be top-k join

or top-k selection. In top-k selection model, the scores are
assumed to be attached to base tuples. A top-k selection query
is required to report the k tuples with the highest scores.

Neethu C Vet al. ,International Journal of Advances in Computer Science and Technology , 2(2), February 2013, 07-13

13
@ 2012, IJACST All Rights Reserved

Scores might not be readily available since they could be the
outcome of some user-de Consider a set of relations R1
,….,Rn. A top-k join query joins R1,…,Rn, and returns the k
join results with the largest combined scores. The combined
score of each join result is computed according to some
function F(p1,…., pm), where p1,….,pm are scoring predicates
defined over the join results.fined scoring function that
aggregates information coming from different tuple attributes.
Third criteria is data access which can be sorted access or
random access.In sorted access, Object R has the lth highest
grade in the ith list, then l sorted accesses to the ith list are
required to see the grade under sorted access and in random
access, grade of object R in the ith list obtains it in one
random access.

4.CONCLUSION

 A surevey of top-k query processing techniques based on
the different criterias have done.For this purpose, a detailed
analysis of different techniques included in three important
categories like sorted-list based category,layer based category
and view based category have explored.

ACKNOWLEDGEMENT

First of all I wish to thank the Department of
Computer Science Engineering, SCT College of Engineering,
Thiruvananthapuram, having given me the opportunity and
facilities to pursue the project and present the report.

 I take this opportunity to express my deep sense of
gratitude to all those concerned for their valuable suggestions
and guidance, especially to my guide Mrs. Rejimol Robinson
R R, Assistant Professor, Department of Computer Science
Engineering. The technical information imparted by her is
gratefully acknowledged.

REFFERENCES

[1] Borzsonyi, S., Kossmann, D., and Stocker, K., 2001, “The
Skyline Operator,” Proc. 17th Int’l Conf. Data Eng. (ICDE).

[2] CHANG, Y.C., BERGMAN, L.D., CASTELLI, D., LI, C.S., LO, M.L., AND
SMITH, J.R., 2000 “THE ONION TECHNIQUE: INDEXING FOR LINEAR
OPTIMIZATION QUERIES,” PROC. ACM SIGMOD.

[3] Das, G., Gunopulos, D., Koudas, N., and Tsirogiannis, D., 2006,
“Answering Top-K Queries Using Views,” Proc. Int’l Conf. Very
Large Data Bases (VLDB).

[4]Fagin,R.,Lotem.A.,and Naor.M., 2001 “Optimal Aggregation
Algorithms for Middleware,” Proc. Symp. Principles of Database
Systems (PODS).

[5] Guntzer,U., Balke, W.T., and Kiebling,W., 2000, “Optimizing
Multi-Feature Queries for Image Databases,” Proc. Int’l Conf. Very
Large Data Bases (VLDB).

[6] Hristidis, V., Koudas, N., and Papakonstantinou, Y., 2001,
“Prefer: A System for the Efficient Execution of Multi-Parametric
Ranked Q.,ueries,” Proc. ACM SIGMOD.

[7] Ihab F. Ilyas, George Beskales And Mohamed A. Soliman,
2011,”A survey of top-k query processing technique in relational
database systems” University of Waterloo, Support was provided in
part by the Natural Sciences and Engineering Research Council of
Canada.

[8] Nepal,S., and Ramakrishna, M.V., 1999, “Query Processing
Issues in Image (Multimedia) Databases,” Proc. 15th Int’l Conf. Data
Eng. (ICDE).

[9] Papadias, D., Tao, Y., Fu, G., and., Seeger, B., 2003, “An
Optimal and Progressive Algorithm for Skyline Queries,” Proc. ACM
SIGMOD.

 [10] Xin, D., Chen, C., and Han, J., 2006 “Towards Robust Indexing
for Ranked Queries,” Proc. Int’l Conf. Very Large Data Bases
(VLDB).

Neethu C V is a third semester M Tech Computer Science and
Engineering student at Sree Chithira Thirunal College of
Engineering. Her interested areas includes Top-k Query
retreival,Spatial co-location mining etc.Her current working area
deals with different techniques using for top-k query retrieval. She is
also student member of Computer Society of India.Her contact email
address is neethusureshbabu@gmail.com.

