
International Journal of Science and Applied Information Technology (IJSAIT), Vol.2 , No.2, Pages : 35-39 (2013)
Special Issue of ICCTE 2013 - Held during 11-12 March, 2013 in Hotel Crowne Plaza, Dubai

35

ISSN 2278-3083


Abstract: This paper presents a novel technique for the

mapping of set of DSP applications onto architectures targeting an
ASIC/Reconfigurable implementation embedded on the same chip.
Synthesis for such a hybrid implementation is carried out by
developing a technique to partition the RTL structures
corresponding to a set of DSP applications into a fixed base design
part suitable for ASIC implementation and a non-base design that
varies with the applications and suitable for FPGA implementation.
Experimental results reveal that the proposed scheme is efficient in
exposing the hidden functional commonality in a set of RTL
structures respecting some well-known benchmark problems. We
show through a set of test cases that our approach offers significant
area saving relative to the state-of-the-art.

Key words: DSP Data flow graphs, RTL structure, Graph
merging, ASIC/reconfigurable platform

INTRODUCTION

The DSP applications are among the most important
applications that demand high computational power, and
must be executed at a very high speed to enable real-time
processing. Due to the parallelism within the DSP
applications, parallel processing architectures are a natural
choice for the synthesis of these applications. Moreover, the
need to reduce the design time of digital systems, and thus,
the time to market is increasingly crucial factor to have a
competitive edge. Such an advantage can be achieved if there
are efficient techniques to reduce the time taken by each of
the individual steps of the design process. The design cycle of
a digital system is composed of three major steps: RTL
design, Physical implementation and Verification or
Validation at various levels of design and implementation.
There exist a variety of architectural synthesis techniques,
most of which target DSP algorithms onto multiprocessor
architecture using basic functional units such as adders or
multipliers [1][2]. This however results in inferior
implementation of DSP applications, since the regularity
feature of DSP applications are not exploited.

The most popular hardware implementations of DSP
applications are: (1) application specific integrated circuit
(ASIC), (2) field programmable gate arrays (FPGAs), or (3) a
set of instructions running on an application-specific
processor. Various implementations of the same application
allow trade-offs for optimizing the hardware in terms of
multiple design parameters such as power consumption,
area, processing speed, and re-configurability of the system.
There are a number of advantages and disadvantages for
these three implementations. An ASIC implementation has
fully customized data paths and logic. It allows designers to

optimize the hardware resources for one or more of the
design parameters. However, traditional ASIC
implementation is not flexible, since it does not allow
reconfiguring itself and cannot be used in a wide range of
applications. FPGAs, on the other hand, consist of arrays of
prefabricated logic blocks. FPGAs can provide a
reconfigured implementation of a certain design. The
property of re-configurability allows the designers to reuse
the resources in variety of applications. Although FPGAs
have the capability of programming functional units and
wires, it has several inherent limitations. FPGAs usually
consume much higher power than an ASIC implementation.
They also have higher performance penalty and require
larger silicon area because of their generic platform. Another
common method to implement a DSP application is to use
application-specific processors such as a DSP processor. DSP
processors are designed for general-purpose; and hence, they
are not area, performance, and power efficient.

Furthermore, hardware flexibility is a crucial factor in
today’s system design. However, such flexibility must not be
gained at the expense of performance and area, as is the case
with general-purpose reconfigurable fabrics such as field
programmable gate-arrays (FPGAs) [3]. Hybrid FPGAs and
reconfigurable cores provide hardware flexibility, their
coarse integration of fixed logic and reconfigurable fabric
results in performance, area and power penalties [4]. New
techniques have therefore been explored to add flexibility to
individual hardware components without the penalties
associated with FPGAs. To overcome the latter penalties,
small-scale reconfiguration would minimizes the area and
delay penalties by inserting into fixed-logic only the
minimum amount of reconfigurable logic and interconnect
and by reusing the main part of the available logic and by
changing the status of a few control signals to achieve the
desired component functionality. A great deal of research
work have explored numerous methods to reduce the gap
between ASIC and FPGAs implementation, thus merging the
advantages of both the worlds. Several researchers have
investigated more efficient utilization of FPGA resources to
achieve improvement in performance and area. Dynamically
reconfigurable FPGA systems use a dynamic allocation
scheme that reallocates resources at run-time to achieve
higher performance. Zhang and Ng [5] have surveyed
synthesis techniques for dynamically reconfigurable systems.
On the other hand, in [6] authors have introduced a
coarse-grained FPGA architecture that allows the designers
to customize FPGAs for a specific applications.

Mapping of Multiple Data Flow Graphs of DSP Applications
onto ASIC/Reconfigurable Architectures

Awni Itradat, Thaier Hayajneh, Ahmad Qatoom
Department of Computer Engineering, Hashemite University, Zarqa, Jordan,

Email: itradat@hu.edu.jo

International Journal of Science and Applied Information Technology (IJSAIT), Vol.2 , No.2, Pages : 35-39 (2013)
Special Issue of ICCTE 2013 - Held during 11-12 March, 2013 in Hotel Crowne Plaza, Dubai

36

ISSN 2278-3083

In [7] it has been tried to find common substructures
among different configurations and to generate a processing
unit that can run in various configurations. They use iterative
improvement and simulated annealing to minimize the
interconnection cost. Reference [8] has developed behavioral
synthesis techniques that may be extended to reconfigurable
ASICs. The original technique uses built-in self repair
(BISR) to dynamically replace a faulty module by another
heterogeneous module, thus providing a fault-tolerant
design. If one considers the operation under a faulty situation
as one of the possible operating configurations, their
techniques are applicable to reconfigurable ASICs.

In this paper, a scheme for the architectural synthesis of a
set of DSP applications targeting an ASIC/reconfigurable
architecture is proposed. The hidden functional commonality
among a set of DSP applications are identified by employing
the so called graph merging leading to dividing the final RTL
structure of multiple behaviors into two parts, an ASIC-based
fixed structure, and an FPGA-based structure.

METHODOLOGY
The high-level synthesis, namely, the tasks of scheduling

and allocation are used for the transformation of a behavioral
description of an algorithm into an RTL structure that
consists of a set of connected components. The concept of
design reuse allows a previous design to be reused in a new
design, since the previous design may still meet the
requirements of the new design. The design reuse can
increase the design efficiency leading to lower design cost
and a decreased time to turn a design to market. The cost of
testing of the entire system can also be reduced, since the part
of the previous test scheme can also be employed in the test of
the overall new design. The concept of design reuse is
employed in our context to create a “base design” that
implement a substantial number of functions from a set of
applications and use this base design with minimal or no
changes by adding to it the implementation of the remaining
functions of an application in order to complete the overall
design of a specific application. We will refer to the design
corresponding to the implementation of the remaining
functions of an application as "non-base design", since this
part of the design will vary from application to application.
Digital image and signal processing applications are
examples in which this concept could be useful.

The need for changing the hardware configuration
supporting multiple designs should compel the designers to
focus on developing a scheme in which an ASIC-based base
design may be embedded with an FPGA-based non-base
design leading to the implementation of a reconfigurable
system implementing a number of applications on the same
chip. With the incorporation of the FPGA module together
with the ASIC module on the same chip, it would be possible
to use the programmability of the former to realize various
DSP applications. This approach would, therefore, greatly
reduce the effort and the cost associated with multiple
designs each focusing only on a single application.

An example of embedding a fixed ASIC-based modules
into an FPGA-based platform can be found in the XilinxR
Virtex-5 DSP48E in which there is blocks to support many
independent functions, including multiplier-accumulator
(MAC), multiplier followed by adder, three-input adder,
barrel shifter, and support for pipeline parallelism. For
example, if we want to implement a DSP filter targeting this
platform, we should consider using these specific embedded
ASIC-based blocks. In order to achieve that, we must find the
possible sub-graphs in the CDFG that are isomorphic to these
modules. Detecting these structures in the graph is a crucial
task since otherwise the final implementation would be
inefficient and expensive or unrealizable.

One of the key challenges associated with the proposed
scheme is as to how to identify efficiently the part of the logic
functions from a set a reasonable number of applications
which can be resorted as the case design. This work is aimed
at identifying the base design from the RTL structures of a set
of DSP applications. In DSP applications, DFG’s are
generally constructed out of several, commonly used
“building blocks” like dot-product, butterfly, etc. In order to
extract RTL-base architecture for a set of DSP application,
one can explore such commonly used isomorphic building
blocks between the given set of applications. The techniques
presented here identify candidate behaviours for mapping on
to a single RTL module and merge the selected RTL modules
into one. We now describe how we identify candidate RTL
modules for merging, and then how to merge the selected
RTL modules into one.

SCHEME FOR MAPPING OF DSP APPLICATIONS
ONTO AN ASIC/RECONFIGURABLE PLATFORM

The data flow graph (DFG) is proven to be an efficient
representation of the system specification due to its ability to
expose the hidden concurrency between the operations of the
underlying algorithm. Since DSP applications are known for
their inherent parallelism, the DFG model is suitable for the
DSP applications. Moreover, regularity is an inherent feature
of several VLSI systems, especially those we find in signal
processing applications. Data flow graph representations is
an efficient to exploit such regular characteristics of such
applications. In the proposed scheme, a datapath of a DSP
application i is modeled as a directed graph Gi (Vi , Ei),
where the vertices in Vi represent the hardware blocks in the
datapath, and the edges in Ei are associated with the
interconnections between the hardware blocks. The types of
hardware blocks (e.g., adders, multipliers, registers, and so
on) are modeled by a labeling function Li of Vi , such that, for
each vertex u Vi , Li(u)Typij is a label that represents the
type of the hardware block associated with u. More
specifically, we say that vertex u in graph Gi is associated
with the j th hardware block of type T.

The proposed technique for extracting the RTL

ASIC-based for a set of DSP application is build based on a
modified version of the DFG merging technique given in [9].
To make this paper self-contained, the scheme in [9] is

International Journal of Science and Applied Information Technology (IJSAIT), Vol.2 , No.2, Pages : 35-39 (2013)
Special Issue of ICCTE 2013 - Held during 11-12 March, 2013 in Hotel Crowne Plaza, Dubai

37

ISSN 2278-3083

summarized as follows. Given a data flow graphs
representations of a given set of RTL structures representing
a set of DSP applications, the presented scheme start first by
building a compatibility graph H for the two graphs

iG and jG , where each vertex of H corresponds to a possible
mapping of two edges, one from iG and another from jG .

There exists an edge (arc) between two vertices of H if the arc
mappings represented by the vertices are compatible. In order
to build the compatibility graph, the notion of mapping
compatibility has been defined. Two arc mappings are
incompatible if and only if they map the same vertex of iG to
two different vertices of jG , or vice-versa. In order to

determine the resulting minimum base graph (RTL-based),
the technique find the maximum number of arc mappings
that are compatible to each other. This can be achieved by
apply a heuristic solution to compute the maximum clique of
the weighted compatibility graph H.

Since we are looking for a method leading to partitioning

of the RTL structures of a set of DSP applications obtained
into two parts. The first part consists of the RTL components
that are common to all the applications and suitable for
ASIC-base, whereas the second part consists of those that
differ from application to application in the given set, and
can be implemented in FPGA (reconfigurable). In our
proposed scheme, the weighted graph is modified by
incorporating to the weights a metric for the usage-frequency
of an RTL component which counts the number of mappings
between behavior operations or nodes and RTL component.
In other words, the usage-frequency for a component is
measured by the number of operations this component is used
by a given set of applications according to the scheduling and
resource allocation. The RTL components that have a higher
usage-frequency represent a strong demand in the given set
of DSP applications, and therefore, need to be included in the
base design. Hence an ASIC-based RTL structure should be
composed of these high usage frequency RTL components.

By using above modification, the proposed technique

divides then the final RTL structure of multiple behaviors
into two parts, an ASIC-based fixed structure which includes
those high usage-frequency RTL components, and an
FPGA-based structure corresponding to the low-usage
frequency components. The number of low usage-frequency
components can be used to identify the size of FPGA segment
of the hybrid chip.

In Fig. 1, three RTL structures represent three DSP
algorithms are shown. By applying the proposed scheme an
RTL ASIC-based structure is obtained as shown in that fig 1.
It seen in this example that only common RTL components
are only included in the ASIC-based structure. On the other
hand the RTL structures that differ from one application to
the other are suitable to be mapped into an FPGA-based
structure embedded on the same chip. Hence they are not
included in the base RTL structure.

EXPERIMENTAL RESULTS

 To show the effectiveness of our approach, we have made
several experiments with some well-known set of DSP
applications commonly used in the literature of architectural
synthesis. In order to synthesis the obtained RTL structures,

Fig. 1: An RTL ASIC-Based Structure for a Set of DFGs

Table 1: Different Sets of DSP applications conducted in the experiments

LMS16, FIR16 SET1

FIR19, FIR15, FIR11, FIR7 SET2

AR,FDCT, FIR SET3

ELLIP, EDGE SET4

HOUGH-TRNS, BIQUAD, FFT, PFILTER SET5

we have used the Synopsys Design Compiler (DC) synthesis
tool, which performs different levels of optimization, i.e.,
architectural, logic- and gate-level optimization. Moreover,
two approaches are considered in our experiments. The first
approach is by finding a combined RTL structure
(comb-RTL) for a set of DSP applications, i.e., an RTL
structure which is obtained by simply adding the individual
RTL structure without optimization or merging. The second
approach (the proposed one) in which the resulting common
RTL structure is only ASIC-based RTL structure and the
RTL structures that differ from one application to the other is
mapped to FPGA-based structure. Different set of DSP
applications are used in the conducted experiments. Table I
shows the different sets of DSP applications from the
literature used in our experiments.

38

Area of RTL structure

0

20000

40000

60000

80000

100000

120000

set1 set2 set3 set4 set5

Set of DSP applications

Ar
ea

comb-RTL ASIC-Based RTL

Fig. 2: Area of ASIC-based RTL Structure versus that Obtained by a Combined RTL Structure for Sets of DSP Data Flow Graphs

FPGA based versus area overhead of combined RTL structure of set5 of DSP
applications

0

10000

20000

30000

40000

50000

Hough-trns Biquad FFT Bpfilter

DSP Application

Ar
ea

FPGA based=|ASIC based-Single RTL| comb RTL overhead=|comb RTL-Single RTL|

Fig. 3: The FPGA-based RTL Required for each Individual DSP Application in Set5 versus Area Overhead of the Combined RTL with Respect to the Single RTLs

We choose five sets of DSP applications for our
experiments. The five sets are all well known benchmarks
in the literature of the high-level synthesis (set1=LMS16,
FIR16, set2=FIR19, FIR15, FIR11, FIR7, set3=AR,
FDCT, FIR, set4= ELLIP, EDGE, set5=HOUGH-TRNS,
BIQUAD, FFT, PFILTER). An ASIC-based RTL
structure is extracted for each set of applications and then
compared, as shown in Fig. 2, with the comb-RTL. It is
seen from Fig. 2 that a significant saving in terms of the
area is obtained by using the proposed approach.
Moreover, it is also shown in Fig. 3 that the area required
to implement the FPGA-based structure for each
individual application (Single RTL) in set5 is much less
than area overhead (with respect to each single RTL in the

set) resulting from using the combined RTL approach to
synthesis set5 of applications.

CONCLUSION

The need for mapping of a set of DSP applications onto
reusable hardware platform of ASIC/Reconfigurable
implementation embedded on the same chip has been
advanced. It has been shown that the challenge of
accomplishing this lies in identifying a base design for a
set of DSP applications targeting an ASIC implementation
on the hybrid chip. A novel method using graph merging
has been proposed by developing a technique to partition
the RTL structure of multiple behaviors into two parts, an

Proceedings of International Conference on Computing, Technology and Engineering (ICCTE 2013)

39

ASIC-based fixed structure which includes high
usage-frequency RTL components, and an FPGA-based
structure corresponding to the low-usage components.
Experimental results reveal through a set of test cases that
our approach offers significant area saving relative to the
state-of-the-art (comb-RTL).

REFERENCES

[1] Y.-N. Chang, C.-Y. Wang, and K. K. Parhi. “Loop-list scheduling for
heterogeneous functional units,” in Proc.6th Great Lakes Symposium
on VLSI, pp. 2–7, March 1996.

[2] Z. Shao, Q. Zhuge, C. Xue, and E.H.-M. Sha “Efficient assignment
and scheduling for heterogeneous DSP systems,” IEEE Tran. on
Parallel and Distributed Systems vol. 16, pp. 516-525, June 2005.

[3] K. Compton and S. Hauck. “Reconfigurable computing: A survey of
systems and software,” ACM Computing Surveys, vol 34, no. 2, 2002,
pp.171–210.

[4] R. Tessier and W. Burleson., “Reconfigurable Computing for Digital
Signal Processing: A Survey,” Journal of VLSI Signal Processing,
vol 28, no. 1, pp.7–27, 2002.

[5] X. Zhang, K.W. Ng. "A review of high-level synthesis for dynamically
reconfigurable FPGA," in Proc Microprocess-Microsystems, pp.
199–211, 2000.

[6] J. Anderson, S. Sheth, and K. Roy. "A coarse-grained FPGA
architecture for high-performance fir filtering," in Proc. of
ACM/SIGDA 6th International Symposium on Field Programming
Gate Arrays. pp. 234–243, 1998.

[7] V.A Derwerf, E. Aerts, M. Peek., and W. Verhaegh. "Area
optimization of multifunction processing units," in Proc.
International Conference on Computer Aided Design, pp. 292–299,
1992.

[8] L. Guerra, M. Potkonjak, and J. Rabaey. "Behavioral-level synthesis
of heterogeneous BISR reconfigurable ASIC’s," IEEE Trans. VLSI
Systems. vol. 6, no.1, pp. 158–167, March, 1998.

[9] Z. Huang and S. Malik, “Managing dynamic reconfiguration
overhead in systems-on-a-chip design using reconfigurable datapaths
and optimized interconnection networks,” in Proc. Design
Automation Test Eur. Conf., 2001, pp. 735–740.

Proceedings of International Conference on Computing, Technology and Engineering (ICCTE 2013)

