
International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.5, Pages : 06-10 (2013)
Special Issue of ICACSIT 2013 - Held during 09-10 May, 2013, Malaysia

6

ISSN 2320 - 2602

myAgile: A XP-based Method
for Modern Programming Education

Jason Jen-Yen Chen, Mike Mu-Zhe Wu

Dept. of Computer Science and Information Engineering
National Central University

Jhong-Li, Taiwan
jasonjychen@gmail.com

Abstract:This work presents the “myAgile” method that
integrates the industry-hailed extreme programming (XP) method
with someuniversity programming courses. The goal is to build a
XP-based modern programming education. A Java grade system
project has been designed for students to practice “myAgile”. And,
an experiment of the project is being conducted. In the long run, it
is expected that some programming courses maybe redesigned
based on this work to meet the industrial need.

Keywords:Agile Method, Extreme Programming, Programming,
Programming Education.

INTRODUCTION
The extreme programming (XP) [1] is one of the

best-known agile methods. It is widely-used by software
industries around the world, especially after the
announcement of the Agile Manifesto [2] in 2001. The 12
XP practices [3] bring us extremelyuseful programming
techniques. With this innovative industrial trend, the
programming education in the universities need to redesign
some currentcourses, such as Java Programming, Data
Structure, Algorithm, Software Engineering, Software
Engineering Environment and so on, and to come up with a
new XP-based method for programming educationthat
integrates XP with the above-mentioned courses. An
endeavor in this regard called the “myAgile”method is
reported in this paper.

The goal is to use this new method to teach the
undergraduate students of Computer Science departments
in Taiwan so that the studentscan gain a modern and
quality-conscious programming education. To do that, a
grade system projectin Java that applies this method has
been designed for the students to gain hand-on experience
with it.

This paper is organized as follows. The “myAgile”
method section describes the steps of “myAgile”. Next, the
new features of “myAgile” are depicted. An experiment of
the grade system project is then described. And,the last
section gives concluding remarks.

“MY AGILE” METHOD
Like XP, “myAgile” focuses on face-to-face

communication. All of its steps are done in“pair
programming”. That is, two developers sit side by side, one
being the driver, while the other the reviewer. And they can
switch rolesat any time.

This work is sponsored by the National Science Council (NSC) in
Taiwan under Grant No. NSC101-2221E-008-131.

The 11 steps (0 to 10) of the “myAgile” method are

depicted below. Note that steps 5, 6, 9, and 10 are XP steps.
Steps 0, 1, 2, and 3 are adopted from Software Engineering,
especially Object-Oriented method. And steps 4, 7, and 8
are specially designedby the author, Professor Chen.

0) Exploring requirements

This step gathers the features (user stories) of the
software system by a pair of two customers. Since this
step is done in the customer company, rather than in
the software company, it is omitted in the experiment.

1) Scenarios
For each user story, the “on-site customer” and a

developer jointly develop various scenarios from the
simplest case gradually to the more complex cases in a
step-wise refinement manner. Fig.1 (a) shows an
example of a simple scenario, while Fig. 1 (b) shows a
complex one, which is derived from the simple one in
Fig. 1 (a). Notice that the boldface in Fig 1 (b) comes
from Fig, 1 (a).

The screen promptID
The user wants to quit
The screen showFinishMsg
Fig 1 (a):A simple scenario.

The screen promptID
The user inputs ID
The screen showWelcomeMsg

The screen promptCommand:

1)show grade 2)show rank 3)update weights 4)exit
The user wants to exit

The screen promptID
The user wants to quit
The screen showFinishMsg

Fig 1 (b):A complex scenario derived from 1 (a)

2) User manual and Acceptance test cases
For each scenario, add the exact data (system output

data and user input data) to it. By doing so, a scenario
turns into an acceptance test case.After all the cases are
done, we summarize them to get a simple user manual,
which gives users a quick overview of the software
system. Fig. 2 shows the acceptance test case derived
from the scenario shown in Fig. 1 (a). In Fig. 2, the
system outputs “Enter ID or Q (Quit)？” and the user
inputs “Q” to quit. After that, the system outputs
“Finished” meaning that the system is finished.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.5, Pages : 06-10 (2013)
Special Issue of ICACSIT 2013 - Held during 09-10 May, 2013, Malaysia

7

ISSN 2320 - 2602

 The screen shows：Enter ID or Q (Quit)？ Q

The screen shows：Finished
Fig 2: An acceptance test case

3) CRC session[4]

For each acceptance test case, the on-site customer
and 4 developers (2 pairs) sit around a table to trace the
case to extract objects and object interactions. The
objects relate to the classes, while the interactions refer
to the public methods in the classes. A class name with
its public method names makes up a class interface.
And the system architecture is composed of all these
class interfaces. Don’t forget to add a class header on
top of a class interface to document it.

Fig.3 shows an example of class interface with class
name C1 and two method interfaces, namely, a
constructor C1 and another method m1 with two
parameters p1 and p1 and the return type C2. Of course,
there is a class header on top of it.

/*---------------------------------
CLASS HEADER

-----------------------------------*/
public class C1 {

public void C1 ();
public C2 m1 (p1, p2);

} //end class C1

Fig 3: An example class interface C1

4) Reverse engineering tool
The Java class interfaces can be automatically

processed by a reverse engineering tool to get the
graphical documents, such as UML class diagram [5].
Currently, the tool eUML2 is used in the experiment.
The developers do not need to spend time to draw
diagrams and verify them anymore. It is
guaranteed that the diagrams are consistent with the
source code. What a relief!

In the experiment, the project is a new development.
However, quite a few real-world projects are
maintenance jobs in which this step is
particularlycrucial. In this case, the maintenance
engineers should first get a hard copy of the class
diagram by using the tool. Then, use pencil and eraser
to carefully modify the diagram and trace the modified
diagram against acceptance test cases by pair
programming or group (2 pairs) review.After the
diagram is settled, modify the class interfaces and class
headers in .java fileaccordingly.

5) Dispatching and scheduling
After step 3 CRC session, the class interfaces are

available and posted on the white board in the software
company. Each class interface is “picked-up” by a pair
of 2 developers based on the pair’s experience and
preference. To be exact, this is not dispatching work.
Instead, it is picking-up work. About scheduling, a pair
themselves decides the number of days they need to
finish a class, again based their experience plus a time
allowance. Like XP, we use whiteboard to record and
control the dispatching and scheduling activities.

6) Unit test code

Every public method (calledunit in XP) in a class
interface needs to develop a number of test cases. And,
each case is a combination of input parameter values of
the method. For example, if a method “m1”has two
input parameters, each of which has 2 values. Then,
there are 4 cases to be tested for the unit. Next, develop
JUnit test code for each test case. Briefly, what test
code does is to assert equality of 1) hand-calculated
expected result and 2) the actual result by executing
the method. Fig. 4 illustrates the test cases and the
simplified JUnit test code for method “m1”.

testM1
test case 1: p1 with value1 p1 with value1
test case 2: p1 with value1 p1 with value2

test case 3: p1 with value2 p1 with value1
test case 4: p1 with value2 p1 with value2
public testM1Case1 () {

1. Construct an object of C1 called o1
2. hand-calculate expectedResult of o1.m1(value1,

value1)
3. actualResult = o1.m1(value1, value1)
4. assertEqual(expectedResult, actualResult)

public testM1Case2 () { ……}
public testM1Case3 () {…….}
public testM1Case14() {…….}
Fig 4: An illustrationof unit test code

7) Data structure design
In object-oriented design, presumablythe public

methods of a class work on the common data structure
of the class. Further, the data and the methods are
inter-related. If an abstract data structure is used, the
algorithms of the methods will be simplified. On the
contrary, if low-level data structures, such as arrays,
are used, the algorithms will get complicated. In this
case, the source code will get longer, more complex,
and more difficult to maintain.

We use a graphical document called “design sketch”
to record the data structure along with a simple set of
input data. This design sketch helps the developer to
figure out how to get the output data from the input
data, thus help build the problem solving thinking. Fig.
5 shows a design sketch with an array data structure
and the input data “3, 1, 4, 2”. And the task is to sort “3,
1, 4, 2” into “1, 2, 3, 4”.Note that the task is to sort n
data. But, the design sketch shows only 4 data to ease
the problem solving thinking and the algorithm tracing
later on.

The sketch shows that we select the minimal number
or “min” (1),from a series “3, 1, 4, 2” and swap “min”
with the leftmost number (3). Next, we do the same
thing to the smaller series without the leftmost number,
that is “3, 4, 2”. Repeat this until the series has only
two numbers in it, that is “4, 3”.Amazingly, we now
have a sorted series “1, 2, 3, 4”. Note the array index 0,
n-2, n-1 in the sketch that will help the developer a lot
in the next step, algorithm design.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.5, Pages : 06-10 (2013)
Special Issue of ICACSIT 2013 - Held during 09-10 May, 2013, Malaysia

8

ISSN 2320 - 2602

0 1 n-2 n-1

3 1 4 2

0

1

n-2

n-1

1 3 4 2

0 1 n-2 n-1

1 2 4 3

0 1 n-2 n-1

1 2 3 4

Fig 5:A design sketch of SORT

When it comes to Java Programming, we use the

Java data structure classes of the Java collection
framework (JCF) [6] such as ArrayList,
LinkedList,TreeMap, TreeSet, HashMap, HashSet, and
PriorityQueue. Notably, the methods of these classes
are all equipped with Big O time estimate. This enables
a development team to get time estimates for all the
methods they developed, which is so desperately
needed by the customer!

8) Algorithm design
Following the previous step, we write down the

problem solving thinking in natural language text
called “pseudo-code”. This usually will take several
rounds from a very abstract level down to the
algorithm level. Fig. 6(a) shows ahigh-level abstract
pseudo-code, while Fig. 6(b) shows the low-level
pseudo-code that is the algorithm. Note that the loop
indexes specified in Fig. 6(b) such as 0 and N-2 can be
traced all the way back to the design sketch!

1. select min from the initialseries, and swap it with the leftmost

number.
2. from the smaller series (that without the leftmost number), select

min and swap it with the leftmost number
3. repeat(2) until the smaller series contains only two numbers
Fig 6(a): A high-level pseudo-code of SORT

for i from 0 upto N-2
1.min points at leftmost number of array[i..N-1] (that is i)
2.fromarray[i..N-1]selectmin
for j from i+1 upto N-1
ifthe number at j is less than that at min let it be min end if
end for
3.swapthe number at min with the leftmost number (that is

array[i])
end for

Fig 6(b): A low-level pseudo-code of SORT

One last thing about this step is that once the
pseudo-code is done, the students need to manually
trace it against a simple set of input data. With this
abstract pseudo-code, the tracing would be not as
difficult as tracing source code. And, if the tracing is

done in a “slow but firm” manner, all the bugs will go
away, even before the coding starts! It surely takes a
lot of mental practice and quality-consciousness to do
it right.

9) Coding
Coding becomes a relatively simple job in
this“myAgile” method. All you need to do is to follow
exactly the structure and the logic of pseudo-code to
add source code beneath it. Fig. 7 shows the sort
source code in Java.

for (int i = 0; i <= array.length-2; i++)

 { int min=i;
for (int j = i + 1; j <= array.length-1; j++)
if (array[j] < array[min]) min = j;
swap (i,min);
}

Fig 7:A source code of SORT

10) Unit testing and Acceptance testing
Unit testing refers to running the test code of a unit

to test the source code of it. In XP, unit testing is
equivalent to integration testing. The reason for this is
that we continuously (one unit at a time) unit-test and
integrate the units into the system in a bottom-up
manner, thus making the low-level units naturally
integrated with the current unit being tested. This is
called “continuous integration” [7], which turned out
to be a powerful feature of XP.

When all the units of a user story (feature) are
integrated, the on-site customer tests the user story
again the acceptance test cases. That is, the on-site
customer reads the test cases one by one and manually
run the system accordingly. This is the acceptance
testing of XP.Next, we will reveal the new features of
the “myAgile” method.

NEW FEATURES
We here point out the new features of “myAgile” method

from three perspectives: 1) requirement engineering, 2)
architecture design, and 3) detailed design.

Requirement engineering

In this regard, we offer 3 new features:
First, we add Step (0) “Exploring requirements”, which

is done in the customer company to gather user stories
(features) to be developed by the software company.

Second, we combine two documents, namely, scenarios
and acceptance test cases, into one. This is agile in a sense.
XP does not require producing the two documents. But, we
figure that they are needed, especially for programming
education. In “myAgile” we first develop scenarios. Then
we add exact data (inputs and outputs) to them, and
convert them into acceptance test cases.

Third, we use step-wise refinement technique to develop
multiple test cases from the simplest case to more complex
cases. In Software Engineering courses, normally they do
not do this kind of breaking-down a case. They just do
complex cases. This, we believe, will facilitate the testing,
especially when bugs occur.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.5, Pages : 06-10 (2013)
Special Issue of ICACSIT 2013 - Held during 09-10 May, 2013, Malaysia

9

ISSN 2320 - 2602

Architecture design
We use the industry-used CRC sessionto develop the

architecture design of the system. This work is usually done
by two pairs (4 developers) sitting around a table,
brain-storming the scenarios to extract objects and object
interactions.

After the session, we require the team to develop the
class interfaces as system architecture, which can be
automatically transformed into UML design diagrams by
using a reverse engineering tool. By doing so, we
essentially eliminate the tiresome, error-prone work of
drawing and verifying design diagrams!

We also stress the importance of documenting the class
interface with a class header, which makes source code
much easier to read and maintain.

Detailed design

Traditionally, all the Computer Science departments
offer Data Structure and Algorithm courses, but not from
the software development perspective. We want to think
“out of the box”, and make these two courses fit into this
XP-based new method.

We designed two documents, namely, “design sketch”
and “pseudo-code” to do that. The design sketch draws the
data structure and feeds into it a simple set ofinput data.
The graphical sketch helps human brains of developers to
come up with problem solving thinking. After that, the
pseudo-code is used to document that thinking in a
hierarchy from high abstraction level down to low-level
(algorithm level). We feel that this process is rather
human!Next, we will describe an on-going experiment of
the “myAgile” method.

AN EXPRIMENT
We have designed a grade system project for the students

to practice the “myAgile”method. A brief
processdescription of the project follows:

The students use pair programming to apply the Extreme
Programming (XP)-based “myAgile”method to developa
grade system in Java. With regard to the software
engineering environment, the students must use:

1) Eclipse [8]to develop easy-to-read Java source code,
including header and pseudo-code;

2)JUnit[9] to develop Java unit test code;
3) eUML2 [10]to automatically generate UML class

diagram.

Every method should not exceed10 source lines. If too
long, break it down into low-level private method. Every
public method needs Big-O time estimate [11]. At the end,
turn in 3 documents:

1) User manual & Acceptance test cases (.doc file)
2) Source code (.java file),
3) Unit test code (.java file).

The grading will be based on readability of the

documents. And, a questionnairewillbe distributed to
collect students’ experiences about using “myAgile”
method.

Currently, we are particularly interested with how “Pair
programming” and “Continuous integration” XP practices
are done in the experiment. We are consideringto usethe
“action research” technique to analyze the pair
programming activities.

Next, a brief product description of the project follows:

This grade system allows a user (student) to get his/her
total grade and rank. The total grade is based on the
weights, which can be updated. The rank denotes the order
of the total grade in the class.

Input file: The scores of all the students in a class. For
example:

962001044 John Lyn 87 86 98 88 87

962001051 Wen Lee 81 98 84 90 93

Note the data field names above are:

ID name lab1 lab2 lab3 midTermfinalExam

We gave the students 6 scenarios along with 6

acceptance test cases. And we ask them to add 2 more cases.
We did CRC session for the students so that all of them
work on the same architecture design, which is composed
of 4 classes, namely, “Main”, “UI”, “GradeSystems”, and
“Grades”. The data structure used in class “GradeSystems”
is Java “LinkedList”. The pseudo-codes of all the methods
are given. And, an example JUnit test code of a method is
given too. Also, a simplified input file with just two lines
(see the input file above) is provided for students to trace
the algorithms. One-line input file will not do the job
because executing a loop requires two lines at least. Of
course, a real input file with about 60 lines is provided for
testing.

The experiment is currently being conducted in 4
universities in Taiwan. There are totally about 230
undergraduate students participating in it. And we look
forward to gathering valuable feedback from it.

CONCLUDING REMARKS
The agile method, especially the extreme programming

(XP) method, has brought about a profound change to the
programming profession, making programming more
human, more enjoyable, and more quality-conscious. How
should the programming education community respond to
this trend?

Inspired by the industry-hailed XP method, a XP-based

“myAgile” method is presented in this paper that integrates
XP with some current university programming courses. We
also designed agrade system project to experiment on the
method, which is now being undertaken in several
universities in Taiwan.

We expect to tune-up the “myAgile” method after the

experiment. And, in the long run, we expect to propose a
programming courses redesign initiative based on this
workin order to meet the industrial need.

ACKNOWLEDGEMENT
The author wishes to thank Prof. C.Y. Huang, Prof.

In-Hon Wang, and Prof. John Li for participating in the
experiment of the Grade System Project. The author also
wishes to thank Tung-Ying Tsai for his editing assistances.

REFERENCES
[1]K.Beck,ExtremeProgramming Explained: Embrace Change,

U.S.:Addison-Wesley Professional,1999.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.2 , No.5, Pages : 06-10 (2013)
Special Issue of ICACSIT 2013 - Held during 09-10 May, 2013, Malaysia

10

ISSN 2320 - 2602

[2] R.C. Martin, Agile Software Development, Principles, Patterns, and
Practices, 1sted. Prentice Hall,2002.

[3]K.Beck,ExtremeProgramming Explained: Embrace Change,
U.S.:Addison-Wesley Professional,1999.

[4] G. Booch,J.Rumbaugh and I. Jacobson, The Unified Modeling
Language User Guide, 2nd ed. Addison-Wesley Professional,2005.

[5] G. Booch,J.Rumbaugh and I. Jacobson, The Unified Modeling
Language User Guide, 2nd ed. Addison-Wesley Professional,2005.

[6]W.J.Collins, Data Structures and the Java Collections Framework,
Wiley, 2011.

[7]P.M. Duvall, S. Matyas and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, 1st ed.
Addison-Wesley Profession,2007.

[8]The Eclipse Foundation, “Eclipse.”[Online].
Available:http://www.eclipse.org/

[9]GitHub, “JUnit.”[Online]. Available:http://junit.org/
[10] Soyatec ,“eUML2.”[Online].Available:

http://www.soyatec.com/euml2/
[11]T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction

to Algorithms, 3rded.:The MIT Press, 2009.

