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 
ABSTRACT 
In wireless ultra wideband (UWB) technology the sampling 
and reconstruction of short impulses (Diracs) is an important 
research object in signal processing society. In this work we 
introduce a multi-stage exponential filter (MSEF) for 
sampling and reconstruction of the UWB pulses. The MSEF 
is constructed from a cascade of filters each having an 
exponentially descending impulse response. We show that 
with 2p-stage MSEF it is possible to reconstruct UWB pulses 
consisting of p Diracs from the measurement of at least 2p 
samples.  A pole cancellation filter is used to extract the 
amplitudes and time locations of the Diracs.  Robust singular 
value decomposition (SVD) based subspace method is used to 
cancel noise interference. The MSEF is applied for sampling 
and reconstruction of UWB pulses generated by a near range 
RFID device.  
 
Key words: Impulse train, Dirac distribution, wireless 
transmission, UWB 
 
1. INTRODUCTION 
 
The information in most of the wireless ultra wideband 
(UWB) devices is carried out by monocycle Gaussian pulses. 
However, in year 2002 the FCC restricted the allowed 
frequency band between 3.1-10.6 GHz for unlicensed UWB 
transmission [1]. The Gaussian pulse stream does not meet 
this constraint and other pulse shapes have been introduced to 
meet the FCC criteria, e.g. the family of the orthogonal UWB 
pulse waveforms [2,3]. However, the specific pulse generators 
are relatively difficult to construct. In this work we 
concentrate on the in low-range wireless ultra wide-band 
(UWB) communication devices, which transmits pulses 
consisting of sequential impulses (Diracs). The information is 
coded to the amplitudes and time locations of the Diracs. Such 
pulse generators are easy to implement in VLSI [4]. The pulse 
stream is designed so that its power spectral density coincides 
with the FCC criteria.  

The sampling methods for non band-limited signals (such 
as impulses and edges) have recently been an interesting 
research object in signal processing society [5-6]. One of the 
prominent methods is the sampling scheme with finite rate of 
innovation (FRI) [7-12]. The key idea in FRI is that the Diracs  
 
 

 

 
are fed to an analog circuit, which has a specific impulse 
response. The output of the sampling filter is measured and 
the original signal is reconstructed from the discrete samples. 
Our research group has introduced the parallel sampling 
scheme, where the signal is fed to the parallel RC circuits, 
whose outputs are sampled simultaneously [13]. Variants of 
the parallel sampling scheme include detection of edges and 
transient waveforms [14-17]. Recently a multichannel (MC) 
approach was introduced, where the input signal is modulated 
by a set of sinusoidal waveforms, followed by a bank of 
integrators [18]. The MC arrangement yields Fourier series 
coefficients, which enable the reconstruction of the input 
signal. 

In this work we study the FRI-like method aimed at 
sampling and reconstruction of the UWB pulses. As a 
sampling device we apply a multi-stage exponential filter 
(MSEF), whose output is measured sequentially. The 
reconstruction algorithm is based on the discrete Fourier 
series representation of the MSEF’s impulse response. A 
novel pole cancellation filter is used to extract the amplitudes 
and time locations of the Diracs. A robust singular value 
decomposition method is used to cancel noise interference. 
We prove that with 2p-stage MSEF it is possible to 
reconstruct UWB pulses consisting of p Diracs from the 
measurement of at least 2p samples. As a practical example 
we apply the MSEF for the sampling and reconstruction of the 
UWB pulses yielded by the RFID device.   

 
2. THEORETICAL CONSIDERATIONS 
 
2.1 Sampling of the impulse response 

The sequential impulse train ( )I t consisting of  p Diracs is 
defined as 
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where iA  are the amplitudes and it the time locations. The 
impulse train is fed to the multi-stage exponential filter 
(MSEF) consisting  N  RC filters in series (Figure 1). 
.     

 
Figure 1: Construction of the MSEF from the exponential 
filters in series, which are built using unity amplifiers and 
RC-circuits.  
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The impulse response of the MSEF is represented by the 
discrete Fourier series 
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where the angular frequency  2 / ,k k N  0,..., 1k N   .  
By denoting ,t nT 0,..., 1n N  , where T is a sampling 
interval, the ka coefficients are computed by the DFT 
algorithm  

                         
1

2 /

0

1 N
jkn N

k n
n

a h e
N








                                   (3) 

where , 0,..., 1nh n N  is the discrete-time impulse response 
of the MSEF.  
The output signal of the MSEF is yielded by the convolution 
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By inserting (1) and (2) 
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Changing the order of the summations we have 
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By denoting   
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we obtain  
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The kb coefficients can be now computed by the DFT 
algorithm as 
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where nx is the sampled output signal of the MSEF. We may 
write (7) as 
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and by denoting  
                          (2 / ) ij N t

i e                                             (11) 
we finally obtain 
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2.2  Reconstruction of the amplitudes and time locations 
of the Diracs   
The z transform of the kb  sequence is  
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Let us define the pole cancellation filter (PCF) as 
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and the product filter ( )P z  as 
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We may observe that the roots of the PCF equal the roots of 
the ( )P z . The impulse response of the product filter is 
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For solution of the roots of the PCF we set 0np  for 0n  . 
This yields the matrix/vector equation 
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The solution of the p coefficients of the pole cancellation filter 
requires the knowledge of the 2p values of the kb sequence. 
This needs the application of the 2p-stage MSEF.   The 
polynomial 1 2[1 ]ph h h  has the roots (2 / ) ij N t

iz e   
( 1, 2,..., )i p , which gives the lime locations as 

log / (2 )i it jN z  . The amplitudes iA ( 1, 2,..., )i p can be 
solved from (12) by writing the matrix/vector equation  
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To summarize, the reconstruction of p impulses requires the 
knowledge of the kb sequence. This requires the measurement 
of at least 2p  samples from the 2p-stage MSEF output. 
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2.3 Noise cancellation  
Some degree of noise is generated in electronic circuits, 

which interferes the results. The solution of the kb  
coefficients from (9) requires noise cancellation of the data 
vector 0 1[ ]T

Mx x x x  . In the presence of noise we have 
used the singular value decomposition (SVD) based subspace 
method for reducing the noise in measurement signal. Let us 
construct the Hankel matrix containing the measurement 
values n x ( )x nT  
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where the antidiagonal elements are identical. To obtain a full 
matrix (16) M must be even. The SVD of the matrix H  is       
                                 TH = U V                                   (20) 
where U and V are unitary matrices.   is a diagonal matrix 
consisting of the singular values in descending order. The 
decomposition (17) can be separated as 
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where n contains the smallest singular values. The nH  
matrix can be considered to belong to the noise subspace [19]. 
The matrix sH  is related to the noise free signal subspace. 
The dimension of the signal subspace equals the number of 
stages in the MSEF circuit. The constructed signal matrix 

sH  is not precisely Hankel matrix, but some variation occurs 
in the antidiagonal elements. We reconstructed the noise free 
Hankel matrix by replacing the antidiagonal elements by their 
mean values. This enables the computation of the noise 
cancelled ( 0,1,2,..., )nx n M  sequence. 
 
3.  EXPERIMENTAL RESULTS 
 

The theoretical results were warranted by extensive 
numerical simulations. The number of the impulses in one 
burst varied between 1- 3. The number of RC-filters in MSEF 
was in the range 3 - 7. The amplitudes of the impulses were 
randomly distributed between limits 0.2 - 1.0. The 
simulations proved the essential constraint that for the 
recovery of p impulses at least 2p samples must be measured 
in the 2p-stage MSEF output. In every case the present 
method recovered the amplitudes and time locations with a 
machine precision.  

 
Figure 2: The output signal of the MSEF comprising of six 
RC circuits measured with a high-speed memory oscilloscope 
(sampling rate 1 GHz).  Each UWB pulse consisted of three 
Diracs.  
 

In a prototype MSEF the RC circuits were separated via the 
unity gain buffer amplifiers. A careful electrical shielding and 
a large area grounding plate were used in the construction of 
the MSEF circuit.  The UWB pulses yielded by a 
programmable impulse generator were fed to the wireless 
UWB transmitter, which was a part of the commercial RFID 
device. Each UWB pulse contained three Diracs. The pulse 
train was measured at a distance of three meters using the 
UWB antenna, which was fed to the MSEF. The output of the 
MSEF was measured with a high speed memory oscilloscope 
(sampling rate 1 GHz). A typical measurement is described in 
Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The mean percentage errors in the amplitudes and 
time locations versus the number of samples used for the 
reconstruction algorithm.  
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Figure 4: The reconstruction of the three sequential  UWB 

pulses each containing three Diracs. The open circles denote 
the original impulses and dots the reconstructed amplitudes 
and time locations. The time scale is in 10 nsec. The MSEF 
consisted of six serial RC circuits. Each pulse containing 
three Diracs was reconstructed from the 14 measurement 
points 

 
The prototype MSEF recovered the amplitudes and time 

locations of the UWB pulses with a good accuracy. The 
reconstruction performance was deteriorated when the 
number of stages in the MSEF exceeded the 2p rule for the 
UWB pulses containing p impulses. In all subsequent tests the 
number of stages was six to match to the three impulses 
involved in the UWB pulses. In spite of the SVD based noise 
cancellation method the reconstruction error appeared to be 
sensitive to additive noise. By increasing the number of 
samples the experimental results showed a significantly 
improved accuracy. The mean error in the amplitudes was 1.9 
% and in the locations 0.5 %, when the minimum of six 
samples was used to reconstruct one UWB pulse (Figure 3). 
The mean reconstruction error decreased to 0.2 % in the 
amplitudes and 0.05 % in the locations, when 14 samples 
were used for the reconstruction. The reconstruction error 
decreased rapidly in the range 6-10 samples and then with a 
slower decay in the range 10-14 samples (Figure 3). Fig. 4 
gives an example of the reconstruction of the sequence of five 
UWB pulses. 

 
4. CONCLUSIONS 

 
The present work describes the FRI-like method for 

sampling and reconstruction of the pulses in the wireless 
UWB technology. The MSEF network lengthens the UWB 
pulses for sampling by the analog-to-digital converter. The 
main reason for the selection of the MSEF is that the network 
consists of only single pole RC-filters yielding real-valued 
impulse response. More elaborate network creates complex 
exponential waveforms and weighting coefficients, which 
would make the reconstruction algorithm more complicated. 
The key idea for the reconstruction of the amplitudes and time 
locations of the sequential Diracs in UWB pulses is the 
application of the pole cancellation filter (14). 

Recently a multichannel (MC) approach was introduced, 
where the input signal was modulated by a set of sinusoidal 
waveforms, followed by a bank of integrators [14]. The MC 
arrangement yields Fourier series coefficients, which enable 
the reconstruction of the input signal. In the case of two 
sequential impulses the performance of the MC approach was 
poorer than the results obtained by the parallel bank of 
exponential filters [13] in the presence of noise below 
SNR<50 dB, but significantly higher at SNR>50 dB. 
However, in the case of ten sequential impulses the 
performance of the MC approach was significantly higher 
compared with the parallel bank of exponential filters. On the 
other hand, the MC arrangement is much more complex 
compared to the circuit consisting of the parallel exponential 
filters. 

The theoretical formulations of the reconstruction 
algorithm were warranted by throughout simulations. In 
practical measurements the SVD based noise cancellation 
method had to be applied due to noise interference. Because 
the computational complexity of the SVD algorithm 
is 3( )O N , the real-time applications of the present method are 
restricted by a relatively low transmission rate. However, 
since the information is coded to both the amplitude and the 
time locations of the Diracs, the number of transmitted pulses 
can be considerably lower compared with the conventional 
UWB methods. Also the lower number of transmitted pulses 
reduces the RF radiation load. The present FRI-like method is 
intended primarily on applications, where a limited number 
of information is wirelessly transmitted, such as the near 
range RFID technology. 

   Our experimental results show that the reconstruction 
error can be decreased by increasing the number of samples at 
least twice the minimum (Figure 3). In this work we used 1 
GHz sampling rate and if 20 samples are taken per one UWB 
pulse the repetition rate is maximum 50 MHz.  To increase 
the pulse repetition rate by one order would require the use of 
the 10 GHz GaAs analog-to-digital converter (ADC). 
However, the lower cost flash-type CMOS and GeSi ADCs 
are under development and their speed is rapidly increasing. 
This would motivate the use of the wireless UWB pulse 
transmission systems to replace the cables and fibre optic 
links e.g. in industrial electronics, robotics and medical 
instrumentation. 
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