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ABSTRACT 
 
Parallel prefix adder is the most flexible and widely used for 
binary addition. Parallel Prefix adders are best suited for 
VLSI implementation. Numbers of parallel prefix adder 
structures have been proposed over the past years intended to 
optimize area, fan-out, logic depth and inter connect count. 
This paper presents a new approach to redesign the basic 
operators used in parallel prefix architectures. The number of 
multiplexers contained in each Slice of an FPGA is 
considered here for the redesign of the basic operators used in 
parallel prefix tree. This new design is implemented with 
128-bit width operands of various parallel prefix adders on 
Xilinx Spartan FPGA. The experimental results indicate that 
the new approach of basic operators make some of the parallel 
prefix adder’s architectures faster and area efficient. 

 
Keywords : Parallel Prefix Adder, Optimize Area, Fan-out, 
Logic Depth, Inter Connect Count.  
 
1. INTRODUCTION 
 
Addition is a  timing critical operation in today's floating 
point units. In order to develop faster processing, an 
end-around carry (EAC) was proposed as a part of 
fused-multiply-add unit which performs multiplication 
followed by addition [5]. The proposed EAC adder was also 
investigated through other pre fix adders in FPGA technology 
as a complete adder [6]. In this thesis, we propose a 128-bit 
standalone adder with parallel prefix end around carry logic 
and conditional sum blocks to improve the critical path delay 
and provide flexibility to design with different adder 
architectures. In previous works, CLA logic was used for 
EAC logic. Using a modified structure of a parallel prefix 2n 
+ 1 adder provides flexibility to the design and decreases the 
length of the carry path. After the architecture is tested and 
verified, critical path is analyzed using FreePDK45nm 
library. Full custom design techniques are applied carefully 
during critical path optimization. Critical path analysis 
provides fast comparison of the total delay among different  
 
 
 

 

 
 
 

 
 
architectures without designing the whole circuit and a 
simpler approach to size the transistors for lowest delay 
possible. As a final step, data path is designed as a recurring 
bit slice for fast layout entry. The results show that the 
proposed adder shows 142ps delay, 2.42mW average power 
dissipation, and 3,132 sq. micron area assuming there  is not 
much routing area overhead in the estimated area. 
 
Binary addition is the most fundamental and frequently used 
arithmetic operation. A lot of work on adder design has been 
done so far and much architecture have been proposed. When 
high operation speed is required, tree structures like 
parallel-prefix adders are used [1] - [10]. In [1], Sklansky 
proposed one of the earliest tree-prefix is used to compute 
intermediate signals. In the Brent-Kung approach [2], 
designed the computation graph for area-optimization. The 
KS architecture [3] is optimized for timing. The LF 
architecture [4], is proposed, where the fan-out of gates 
increased with the depth of the prefix computation tree. The 
HC adder architecture [5], is based on BK and KS is proposed. 
In [6], an algorithm for back-end design is proposed. The area 
minimization is done by using bitwise timing constraints [7]. 
In [8], this is targeted to minimize the total switching 
activities under bitwise timing constraints. The architecture 
[9], saves one logic level implementation and reduces the 
fan-out requirements of the design. A fast characterization 
process for Knowles adders is proposed using matrix 
representation [10]. 
 
The Parallel Prefix addition is done in three steps, which is 
shown in fig-1. The fundamental generate and propagate 
signals are used to generate the carry input for each adder. 
Two different operators black and gray are used here. The aim 
of this paper is to propose a new approach for the basic 
operators and make use of these operators in various parallel 
prefix adders to evaluate their performance with newly 
redesigned operators The rest of the paper is organized as 
follows: In section 1, some background information about 
Parallel Prefix architecture is given. New design approach of 
basic operators is discussed in section 2. carry-tree adder 
designs discussed in section 3. Related work of prefix parallel 

1Srinivasasamanoj.R, 2M. Sri  Hari, 3 B. Ratna Raju 
1PG Student,  Kakinada Institute Of Engineering And Technology, Kakinada, A.P., India. pjrece@gmail.com  
2Assistant Professor, Kakinada Institute Of Engineering And Technology, Kakinada, Andhra Pradesh, India 
3Associate Professor, Kakinada Institute Of Engineering And Technology, Kakinada, Andhra Pradesh, India 

 
 

High speed VLSI implementation of 256-bit Parallel Prefix Adders 

                                                                                                                   ISSN 2319-6629 
Volume 1, No.1,  August- September 2012 

International Journal of Wireless Communications and Networking Technologies 
Available Online at http://warse.org/pdfs/ijwcnt02112012.pdf 

 



 
Srinivasasamanoj.R et al., International Journal of Wireless Communications and Network Technologies, 1(1), August-September 2012, 4 - 9 
 

5 
 
@ 2012,  IJWCNT   All Rights Reserved 
 

adders discussed in section 4. Experimental results are 
presented in section 5. Conclusions are drawn in section 6. 
 
Several papers have attacked the problem of designing 
efficient diminished adders. The majority of them rely on the 
use of an inverted end around carry (IEAC) n-bit adder, which 
is an adder that accepts two n-bit operands and provides a sum 
increased by one compared to their integer sum if their integer 
addition does not result in a carry output. Although an IEAC 
adder can be implemented by using an integer adder in which 
its carry output is connected back to its carry input via an 
inverter, such a direct feedback is not a good solution. Since 
the carry output depends on the carry input, a direct 
connection between them forms a combinational loop that 
may lead to an unwanted race condition . To this end, a 
number of custom solutions have been proposed for the design 
of efficient IEAC adders. Considering the diminished-1 
representation for modulo 2n þ 1 addition, [4], [5] used an 
IEAC adder which is based on an integer adder along with an 
extra carry look ahead (CLA) unit. The CLA unit computes 
the carry output which is then inverted used as the carry input 
of the integer adder. Solutions that rely on a single carry 
computation unit have also been proposed.  

 
Although these architectures are faster than the carry look 
ahead ones proposed in [12], for sufficiently wide operands, 
they are slower than the corresponding parallel prefix integer 
adders because of the need for the extra prefix level. In [12], it 
has been shown that the recirculation of the inverted end 
around carry can be performed within the existing prefix 
levels, that is, in parallel with the carries’ computation. In this 
way, the need of the extra prefix level is canceled and 
parallel-prefix IEAC adders are derived that can operate as 
fast as their integer counterparts, that is, they offer a logic 
depth of log2 n prefix levels. Unfortunately, this level of 
performance requires significantly more area than the 
solutions of [11], [12], since a double parallel-prefix 
computation tree is required in several levels of the carry 
computation unit. For reducing the area complexity of the 
parallel-prefix solutions, select-prefix and circular carry 
select  IEAC adders have been proposed. Unfortunately, both 
these proposals achieve a smaller operating speed than the 
parallel-prefix ones of [12].  

 
2.  PARALLEL-PREFIX ADDITION BASICS 

 
The binary adder is the critical element in most digital circuit 
designs including digital signal processors (DSP) and 
microprocessor data path units. As such, extensive research 
continues to be focused on improving the power delay 
performance of the adder. In VLSI implementations, 
parallel-prefix adders are known to have the best 
performance. Reconfigurable logic such as Field 
Programmable Gate Arrays (FPGAs) has been gaining in 
popularity in recent years because it offers improved 
performance in terms of speed and power over DSP-based and 

microprocessor-based solutions for many practical designs 
involving mobile DSP and telecommunications applications 
and a significant reduction in development time and cost over 
Application Specific Integrated Circuit (ASIC) designs. The 
power advantage is especially important with the growing 
popularity of mobile and portable electronics, which make 
extensive use of DSP functions. However, because of the 
structure of the configurable logic and routing resources in 
FPGAs, parallel-prefix adders will have a different 
performance than VLSI implementations. In particular, most 
modern FPGAs employ a fast-carry chain which optimizes 
the carry path for the simple Ripple Carry Adder (RCA). 
In this paper, the practical issues involved in designing and 
implementing tree-based adders on FPGAs are. An efficient 
testing strategy for evaluating the performance of these adders 
is discussed. Several tree-based adder structures are 
implemented and characterized on a FPGA and compared 
with the Ripple Carry Adder (RCA) and the Carry Skip Adder 
(CSA). Finally, some conclusions and suggestions for 
improving FPGA designs to enable better tree-based adder 
performance are given. 

 
3. CARRY-TREE ADDER DESIGNS 

 
Parallel-prefix adders, also known as carry-tree adders, 
pre-compute the propagate and generate signals [1]. These 
signals are variously combined using the fundamental carry 
operator (fco) [2]. 
(gL, pL) ο (gR, pR) = (gL + pL•gR, pL • pR) (1) 
Due to associative property of the fco, these operators can be 
combined in different ways to form various adder structures. 
For, example the four-bit carry-lookahead generator is given 
by: 
c4 = (g4, p4) ο [ (g3, p3) ο [(g2, p2) ο (g1, p1)] ] (2) 

 
A simple rearrangement of the order of operations allows 
parallel operation, resulting in a more efficient tree structure 
for this four bit example: 
c4 = [(g4, p4) ο (g3, p3)] ο [(g2, p2 ) ο (g1, p1)] (3) 

 
It is readily apparent that a key advantage of the tree 
structured adder is that the critical path due to the carry delay 
is on the order of log2N for an N-bit wide adder. The 
arrangement of the prefix network gives rise to various 
families of adders. For a discussion of the various carry-tree 
structures, see [1, 3]. For this study, the focus is on the 
Kogge-Stone adder [4], known for having minimal logic 
depth and fan out (see Fig 1(a)). Here we designate BC as the 
black cell which generates the ordered pair in equation (1); 
the gray cell (GC) generates the left signal only, following [1]. 
The interconnect area is known to be high, but for an FPGA 
with large routing overhead to begin with, this is not as 
important as in a VLSI implementation. The regularity of the 
Kogge-Stone prefix network has built in redundancy which 
has implications for fault-tolerant designs [5]. The sparse 
Kogge-Stone adder, shown in Fig 1(b), is also studied. This 
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hybrid design completes the summation process with a 4 bit 
RCA allowing the carry prefix network to be simplified.  
 
Another carry-tree adder known as the spanning tree 
carry-lookahead (CLA) adder is also examined [6]. Like the 
sparse Kogge-Stone adder, this design terminates with a 4- bit 
RCA. As the FPGA uses a fast carry-chain for the RCA, it is 
interesting to compare the performance of this adder with the 
sparse Kogge-Stone and regular Kogge-Stone adders. Also of 
interest for the spanning-tree CLA is its testability features 
[7]. 

 
4. RELATED WORK 
 
Xing and Yu noted that delay models and cost analysis for 
adder designs developed for VLSI technology do not map 
directly to FPGA designs [8]. They compared the design of 
the ripple carry adder with the carry-lookahead, carry-skip, 
and carry-select adders on the Xilinx 4000 series FPGAs. 
Only an optimized form of the carry-skip adder performed 
better than the ripple carry adder when the adder operands 
were above 56 bits.  
 
A study of adders implemented on the Xilinx Virtex II yielded 
similar results [9]. In [10], the authors considered several 
parallel prefix adders implemented on a Xilinx Virtex 5 
FPGA. It is found that the simple RCA adder is superior to the 
parallel prefix designs because the RCA can take advantage of 
the fast carry chain on the FPGA. 
 
Kogge-Stone The Kogge-Stone tree [22] Figures 1- 5 achieves 
both  log2N stages and fan-out of 2 at each stage. This comes 
at the cost of long wires that must be routed between stages. 
The tree also contains more PG cells; while this may not 
impact the area if the adder layout is on a regular grid, it will 
increase power consumption. Despite these cost, Kogge-Stone 
adder is generally used for wide adders because it shows the 
lowest delay among other structures. 

 
Figure 1: The Parallel Prefix addition 

 
Another carry-tree adder known as the spanning tree 
carry-lookahead (CLA) adder is also examined [6]. Like the 

sparse Kogge-Stone adder, this design terminates with a 4-bit 
RCA. As the FPGA uses a fast carry-chain for the RCA, it is 
interesting to compare the performance of this adder with the 
sparse Kogge-Stone and regular Kogge-Stone adders. Also of 
interest for the spanning-tree CLA is its testability features 
[7].  

 
Figure 2: 128-bit Kogge-Stone adder 

 

 
Figure 3: Spanning Tree Carry Lookahead Adder (16 bit) 

 
This study focuses on carry-tree adders implemented on a 
Xilinx Spartan 3E FPGA. The distinctive contributions of this 
paper are two-fold. First, we consider tree-based adders and a 
hybrid form which combines a tree structure with a 
ripple-carry design. The Kogge-Stone adder is chosen as a 
representative of the former type and the sparse Kogge Stone 
and spanning tree adder are representative of the latter 
category. Second, this paper considers the practical issues 
involved in testing the adders and provides actual 
measurement data to compare with simulation results.  

 
The previous works cited above all rely upon the synthesis 
reports from the FPGA place and route software for their 
results. In addition to being able to compare the simulation 
data with measured data using a high-speed logic analyzer, 
our results present a different perspective in terms of both 
results and types of adders as those presented in [8-10] 

 
The ripple carry adder with the carry-lookahead, carry-skip, 
and carry-select adders on the Xilinx 4000 series FPGAs. 
Only an optimized form of the carry-skip adder performed 
better than the ripple carry adder when the adder operands 
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were above 56 bits. A study of adders implemented on the 
Xilinx Virtex II yielded similar results [9]. In [10], the 
authors considered several parallel prefix adders 
implemented on a Xilinx Virtex 5 FPGA. It is found that the 
simple RCA adder is superior to the parallel prefix designs 
because the RCA can take advantage of the fast carry chain on 
the FPGA. 

 

 
Figure 4:  Sparse 128-bit Kogge-Stone adder 

 
This study focuses on carry-tree adders implemented on a 
Xilinx Spartan 3E FPGA. The distinctive contributions of this 
paper are two-fold. First, we consider tree-based adders and a 
hybrid form which combines a tree structure with a 
ripple-carry design. The Kogge-Stone adder is chosen as a 
representative of the former type and the sparse Kogge Stone 
and spanning tree adder are representative of the latter 
category. Second, this paper considers the practical issues 
involved in testing the adders and provides actual 
measurement data to compare with simulation results.  

 
The previous works cited above all rely upon the synthesis 
reports from the FPGA place and route software for their 
results. In addition to being able to compare the simulation 
data with measured data using a high-speed logic analyzer, 
our results present a different perspective in terms of both 
results and types of adders as those presented in [8-10]. 
 
5. RESULTS 
 
Overall, when the delay due to routing overhead is removed, 
the tree adders are now closer to the simple RCA design. The 
RCA adder exhibits the best delay with widths up to 128 bits 
when the routing delay is excluded and out to 256 bits with the 
routing delay included. Figures depict the measured results 
using the TLA. A comparison between the tree adders and the 
RCA is given in Figure 7. The basic trends are the same: the 
tree adders exhibit logarithmic delay dependence on bit 
widths and the RCA has linear performance. An RCA as large 
as256 bits wide was synthesizable on the FPGA, while a 
Kogge-Stone adder up to 256 bits wide was implemented. 

 
Figure 5:Carry Lookahead Adder 128-bit simlation 

 

 
 
Figure 6: Screen shot of a delay measurement for a128- 
bitadder using MagniVu timing (blue traces) on theTLA 
7012. 
 

The carry-skip adders are compared with the 
Kogge-Stoneadders and the RCA in Figure 8. Carry skip 
adders with skip of four and eight were implemented. 
 

 
Figure 7: Sparse 128-bit Kogge-Stone adder simulation 

results 
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The poor performance of the carry skip adders is attributable 
to the significant routing overhead incurred by this structure. 

 
Figure 8: Measured results for the parallel-prefix adder 
designs compared with the RCA 

 
Figure 9: Measured results for the carry-skip adders 
compared to the RCA and Kogge-Stone adders 
 
Table 1:  Delay Results for the Kogge-Stone Adders 

 
N Synth. 

Predict 
Route 
Delay 

Route 
Fitted 

Delay 
tKS 

Delay 
tRCA 

4 4.343 1.895 1.852 4.300 1.817 

16 6.113 2.441 2.614 6.286 2.429 
32 7.607 3.323 3.154 7.438 3.245 
64 8.771 3.875 3.800 8.696 4.877 

128 10.038 4.530 4.552 10.060 8.141 
256 11.458 5.404 5.410 11.530 14.669 

 
The HC adder is the fast adder but occupies large area in old 
approach. The new approach makes Skalansky adder faster 

and occupies less area than HC adder. The KS and Knowles 
adders are proven even faster than Skalansky adder but they 
occupy large area compared to Skalansky adder. Therefore 
the Skalansky adder is resulted as the best adder in terms of 
speed and area characteristics with new approach. Finally it 
can be concluded that the new approach for the redesign of 
basic operators will speed up the addition process of parallel 
prefix addition with some area overhead. The performance of 
these adders can be estimated for high bit-widths. This can be 
further used in Cryptographic applications, where the 
addition of more number of bits is necessary. The new 
approach for the parallel prefix adders can also be used to 
speed up the addition process in FIR filter and arithmetic 
operations like multipliers, etc. 
 
6. CONCLUSION 
 
This paper presents a new approach for the basic operators of 
parallel prefix tree adders. In Skalansky, KS,LF, Knowles 
adders the delay is reduced by this new approach, in BK adder 
there is no much difference with this new approach and in the 
case of HC adder the delay is increased. The same can be 
understood with reference to number of logic levels of 
implementation, as the logic levels are more delay increases. 
The area requirement can be considered from the utilization 
of LUTs, Slices and over all gate count. The BK adder 
occupies less area compared to other adders, but does not 
show much difference with new approach. Skalansky, LF 
adders occupies slightly more area in new approach compared 
to old method. KS and Knowles adders occupies more area in 
new approach. HC adder shows almost no difference with 
new approach. 
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