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ABSTRACT 
 
The Optical Bust Switching (OBS) network has become the 
most promising switching technology for building the next 
generation of internet backbone infrastructure. However, an 
OBS network still faces a number of security and Quality of 
Service (QoS) challenges, particularly from Burst Header 
Packet (BHP) flood attacks. If a source node (ingress) 
becomes compromised by an attacker, overloading the 
network with malicious BHPs, the network resources will be 
reserved without proper utilization. This prevents legitimate 
BHPs from reserving the required resources, and can lead to 
severe issues, such as burst loss and Denial of Service (DoS) 
among others. One way to prevent a BHP flood attack is to 
detect the misbehaving edge nodes overloading the network 
with malicious BHPs, and taking the proper action to secure 
and sustain the QoS performance in an OBS network. A 
powerful and promising approach in identifying misbehaving 
edge nodes causing BHP flooding attacks is Machine 
Learning (ML), and in particular, classification techniques. A 
classification technique learns models by applying them to a 
large historical data set derived from an edge node’s 
performance during a simulation run. The data set contains 
behavior traces from a number of edge nodes, with respect to 
input data characteristics, sensitivity, efficiency performance, 
predictive performance, and model content. The learned 
model can then be utilized to single out (classify) 
misbehaving edge nodes based on their future performance 
as accurately as possible, hence disciplining them. In this 
paper, we investigate the BHP flood attack problem by 
evaluating a number of ML techniques in classifying edge 
nodes, and determine the most suitable method to prevent 
this type of attack. Specifically, we evaluate Decision Tree 
(C4.5), Bagging, Boosting (AdaBosst), Probabilistic (Naïve 
Bayes), Rule Induction (RIppleDOwn Rule Learner-
RIDOR), Neural Network (NN-MultilayerPerceptron), 
Logistic Regression, and Support Vector Machine-Sequential 
Minimal Optimization (SVM-SMO) on a real dataset to 
identify the method(s) most appropriate to combat the BHP 
flood attack problem in OBS networks. 
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1. INTRODUCTION 
 
An optical network (ON) is a known medium for data 
transmission, adopting an Optical Burst Switching (OBS) 
network for the Internet [1]. In an OBS network, burst header 
packets (BHPs) are transmitted in advance to allocate enough 
resources prior to sending the actual data bursts (DBs), 
ensuring network management and Quality of Service (QoS). 
This enables attackers to flood the network with malicious 
BHPs, reserving the network resources without proper use. 
In this case, malicious BHPs continue to reserve the network 
resources without sending the actual DBs, hindering the 
performance of the OBS network, in some cases causing 
Denial of Service (DoS) [2]. Therefore, it is essential to 
prevent BHP flooding attacks in OBS networks by blocking 
misbehaving ingress nodes that continuously transmit 
malicious BHPs, and preventing the legitimate BHPs from 
reserving the required resources at the intermediate core 
switch. 

Limited research works detecting BHP flooding attacks in 
OBS networks exist, e.g. [3, 4, 5]. In [3], a data flow 
classification architecture was implemented at the optical 
layer to combat BHP flooding attacks. This method 
distinguishes between the offset time inside the BHP and the 
recorded delay between this BHP and its related DB. [4] 
utilized optical code words to single out malicious BHPs sent 
by ingress nodes in an OBS network. The authors used 
statistical data analysis related to packets sent and dropped to 
detect the possibility of BHP flooding attacks. [5] developed 
a new security model to be implemented into the OBS core 
switch to prevent BHP flooding attacks. The countermeasure 
security model can detect malicious ingress nodes based on 
their behavior, alongside the amount of reserved resources 
that are not being utilized, and block any malicious ingress 
nodes until the threat ceases. The reported results using the 
NCTUns network simulator showed that the security method 
of [5] was able to effectively differentiate among legitimate 
and malicious ingress nodes, thus maintaining good network 
performance. 
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Despite the few recent studies on BHP flooding attacks, the 
detection rate is still low. Further, the entire process relies on 
the domain experts’ knowledge and experience. Therefore, 
there is a need for a more efficient detection system that can 
engage the core switch in OBS network, thus identifying 
misbehaving ingress nodes in an automated manner as early 
as possible. One promising approach to accomplish this is 
the Machine Learning (ML) method. This uses the historical 
performance of source nodes during data transmission to 
construct classification models known as classifiers. The 
classifiers then predict whether the source nodes are sending 
legitimate BHPs or not, and filter out malicious BHPs that 
might cause flooding attacks. The outcomes of the ML 
method will enable security administrators to quickly block 
misbehaving ingress nodes until they change their behaviors. 
(It is the firm belief of the authors) that classifying ingress 
nodes using ML to counter BHP flooding attacks is yet to be 
studied within an OBS network.  

This study examines the performance of ML methods to 
counter the risks associated with BHP flood attacks in OBS 
networks. The problem studied is a typical predictive task in 
classification, in which different variables linked with 
ingress nodes’ performances are collected whilst sending 
BHPs (in simulation runs), and are saved in a training 
dataset. Examples of variables are not limited to iteration 
number, but can include the sending node label, packets sent, 
packets dropped, delay time, and so on. More details on the 
complete dataset of variables can be found at [6], and are 
briefly explained in Section 3.1. The ML role involves 
processing the different variables in the dataset to obtain 
concealed information useful for prediction (classifier). This 
classifier is then used to categorize ingress nodes in certain 
future scenarios as accurately as possible, improving the 
manual classification which indeed requires care, time and 
experience.  

The ultimate aim of this study is to examine the applicability 
of ML to the problem of BHP flooding attacks in OBS 
networks. To achieve this, we extensively investigated 
various ML techniques that adopt different learning 
approaches to the research problem considered. We seek to 
identify the most relevant ML technique(s) for solving the 
issue of BHP flooding attacks, in addition to revealing the 
reasons behind the relevancy. Thus, we endeavor to answer 
the following research questions:  

 Can ML be used as a BHP detection approach in an 
OBS network? 

 Which ML techniques improve detection rate and 
time performance?  

 Which ML technique is more suitable to end-users, 
and why? 

 
The ML approaches considered in this study are Logistic 
Regression, Naïve Bayes, RIDOR, SVM-SMO, NN-
MultilayerPerceptron, C4.5, AdaBoost, and Bagging [9, 5]. 
The diversity of the ML approaches strengthens the 
confidence in the results, hence our recommendations (see 
Sections 3 & 4). The performance of the wide range of ML 
techniques has been measured using different metrics, 

against a published dataset at UCI (University of California-
Irvine) repository [7]. Specifically, we utilized classification 
accuracy, classifiers’ construction time in milliseconds (ms), 
precision, recall, and the harmonic mean among other 
measures (Section 3 gives further details) [8].  

The remaining of this paper is organized as follows. Section 
2 reviews the related research studies and the considered ML 
approaches. Section 3 is devoted to experimental settings, 
data description, and results analysis. Lastly, Section 4 will 
offer concluding remarks. 

 
2. LITERATURE REVIEW  

2.1 Studies Related to Application of Machine Learning 
in Detecting and Classification Tasks  

A limited amount of studies adopt ML techniques in 
attempting to counter BHP flooding attacks in OBS 
networks, e. g.. Despite the scarcity of literature, this section 
highlights these studies and others related to primarily 
utilizing ML in different types of computer networks. 
Developed rule sets based on experience to counter the 
problem of BHP flooding attacks in OBS networks. The 
rules are developed using statistical analysis of the ingress 
nodes’ performance during a series of simulated runs, using 
different numbers of nodes. The rules then are used to 
categorize ingress nodes into two types: Behaving and 
Misbehaving. Experimental results showed that the domain 
experience rules can be enhanced if the classification 
systems built by ML techniques are adopted, since they are 
typically more accurate in detection than domain specific 
classifications.  

[9] investigated the problems of BHP flood attacks in OBS 
networks to differentiate the types of data bursts, i.e. 
congestion or contention. A new metric named “number of 
bursts between failures” (NBBF) was proposed to detect 
which type of data bursts losses occur. In the process of 
classifying these data bursts, the authors applied two 
methods: unsupervised expectation maximization (EM) and a 
supervised Hidden Markov Chain (HMC). Reported results 
showed that when both methods are integrated, the accuracy 
of distinguishing among types of bursts losses is increased.  

[24] investigated the Distributed Denial-of-Service (DDoS) 
flood attacks on the transport and application layers, and 
developed a detection mechanism that analyzes the traffic 
according to types of packets, packet arrival rate and server 
capacity. The detection mechanism relies on recording and 
monitoring information related to address pair (source and 
destination), the type of packet, the port addresses of the 
source and destination among others. The key to success of 
[10]’s method is the predefined setting value of the server 
capacity. No experiments have been conducted to reveal the 
pros and cons of the detection method of DDoS flood 
attacks.  

[11] investigated the problems of reducing flood attacks and 
other service attacks in computer networks using ML. These 
types of attacks normally belong to DDoS flooding attacks, 
and other risk that impair Internet security. The aim was to 
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identify the misbehaving sources (nodes) in order to block 
their messages from their intended destinations. In the 
learning model proposed, elements of the network share 
behavior information about the network’s performance, so 
the classifier may amend or enhance the model’s behavior by 
blocking potentially detrimental messages. Reported 
experimental results revealed a 95% detection rate using a 
probabilistic classifier. 

[12] reviewed different learning mechanisms utilized to 
detect DDoS flooding attacks, in particular, SYN flooding. 
This type of flooding attack harms the network performance: 
when packets flood the network, many users may suffer 
server access delays. In some cases, the server shuts down 
entirely from SYN flooding attacks. The authors of [12] 
critically analyzed different approaches related to ML, 
statistical analysis, and router based among others.  

[13] adopted the Naïve Bayes (NB) probabilistic 
classification algorithm [14] to detect the type of Internet 
traffic. Before applying NB, features related to traffic flow 
such as port identification, elapsed time between two 
consecutive flows, and the flow length among others, were 
collected. The type of traffic flow variable was assigned by a 
domain expert in the dataset, and NB was applied to generate 
probabilistic classification systems to predict the traffic flow 
variable. The classification system derived by NB shows low 
predictive rates, but when the authors utilized feature 
selection methods prior to the training phase, the accuracy 
rate of the classification systems was improved. 

The IP traffic classification problem was studied in the 
context of ML by [15]. The authors surveyed and compared 
the performance of supervised and unsupervised ML 
algorithms, and highlighted the role of feature assessment in 
pre-processing the IP traffic dataset. Results showed that NB, 
EM and decision tree algorithms often produce consistent 
results, with high classification accuracy for the IP Internet 
traffic problem. Moreover, a number of recommendations 
have been highlighted based on the survey, such as: 

1) ML algorithms generate different results for the IP 
traffic problem because of the different learning 
mechanisms they employ in deriving the 
classification systems. Hence, hybrid learning 
seems appropriate for future investigation 

2) Different requirements are sought by ML 
algorithms because learning environments differ 
from one algorithm to another, as well as 
configurations  

3) It is essential to investigate real time learning, at 
least for the IP Internet traffic classification 
problem, in which the ML will, while in progress, 
derive the classifiers rather than using static datasets 

4) Feature selection methods can be useful in some 
Internet application problems such as IP Internet 
traffic classification 

The majority of recent research contends that utilizing ML 
techniques in computer networks relates to DDoS flood 
attacks using primarily adaptive distributed mechanisms, 
while other studies investigated data traffic analysis. This 

study investigates an entirely new issue – BHP flood attacks 
in OBS networks. We believe that ML has not yet been 
adopted to develop predictive models to counter BHP flood 
attacks in OBS networks.  

2.2 The Considered Machine Learning Techniques  

Since the BHP flooding attack is a typical prediction 
problem, classification methods in ML seems appropriate to 
identify malicious and legitimate edge nodes. In 
classification problems, a model called the classifier is 
constructed from historical labelled dataset(s). The learned 
classifier is then employed to forecast the class label in 
datasets that are unlabeled, known as test datasets [16, 5]. 
The quality of the classifiers extracted by ML methods rely 
primarily on the classification accuracy, as well as other 
known evaluation metrics such as recall, precision, and 
harmonic mean [18]. In addition, classifiers formed after data 
processing differ based on the ML techniques used. For 
instance, rule induction classifiers contain rules, and Naïve 
Bayes classifiers hold just class memberships in a probability 
format [19]. In this section, we highlight eight different ML 
techniques that generate different type of classifiers. 
Specifically, we investigate classifiers extracted by Logistic 
Regression, Probabilistic-Naïve Bayes, Rule Induction- 
RIDOR, Support Vector Machine -Sequential Minimal 
Optimization (SVM-SMO), Neural Network-NN-
MultilayerPerceptron, Decision Tree-C4.5, Boosting-
AdaBoost, and Bagging [20, 21, 22, 23, 24, 25, 26]. The 
choices of these techniques are mainly based on the 
following facts: 
 

1) Different learning methodologies are employed for 
data processing  

2) Different classifier formats are presented to the end-
user 

3) Applicability and usage in previous domains in 
particular computer networks, computer security 
among others, i.e. [18,.27,28] 

Steps of machine learning are shown in Figure 1, and are 
briefly explained below. 

1) Data pre-processing (Optional): In this step, any noise 
related to the training dataset, such as missing values, 
duplications, and feature selection are completed. The 
output of this step is a processed dataset.  

2) Training: In this step, the ML technique processes the data 
for knowledge or patterns. In classification techniques, 
the classifier is constructed in this step.  

3) Evaluation: The classifier is evaluated on a test dataset to 
measure its effectiveness. This step results in different 
evaluation metrics. 

4) Pattern Visualization (Optional): In this step, the 
outcomes as well as its quality measures are presented to 
the end-user in a non-technical manner to ease decision 
making.  
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The next section briefly summarizes known ML learning 
approaches that this study investigates to be utilized in 
solving the BHP flood attacks problem. 

 

A. Rule Induction - RIDOR 

Rule induction is a classification approach that normally 
extracts If-Then rules in a sequential fashion. Typically, a 
rule induction technique divides the input dataset into splits 
according to the available class values. Then, for each class 
split, the induction technique learns and derives If-Then rules 
based on mathematical metrics, such as a rule’s expected 
accuracy (Equation (1)). Data examples in a split, for 
instance A, are positive examples for the class of A, and are 
considered negative examples for the other class labels in the 
other data splits. For a data split, the induction technique 
builds an empty rule, and then adds items to the rule’s 
antecedent (left hand side/body) until the rule meets a 
termination condition. When this occurs, the rule is 
generated, and all data examples that the rule classifies are 
discarded. Then, the induction technique learns the next rule 
from the same split until the data split becomes empty. 
Following this, the induction technique moves to the next 
data split until all data splits become empty, or no more rules 
with acceptable accuracies can be discovered [29]. Common 
rule induction techniques are RIDOR and RIPPER [8].  

RIDOR, for example, derives a default rule class, and then 
learns all the exceptions for that default rule using 
Incremental Reduced Error Pruning (IREP) [31], a learning 
method. An exception is a rule able to forecast the class label 
other than the default class. IREP eliminated one exhausting 
phase of an earlier rule induction technique called Reduced 
Error Pruning (REP), saving substantial training time. In 
RIDOR, the training dataset is divided into pruning (1/3) and 
growing (2/3) subsets. Then, RIDOR builds incremental 
rules one at a time. When a rule is about to be evaluated for 
possible pruning, its training data examples in the pruning 
and growing subsets are removed, and the rule gets 
extracted. During pruning, RIDOR considers deleting items 
from the rule’s body and terminates the pruning phase when 
removing an item from a rule cannot improve the rule’s 
accuracy.  

ݕܿݎܽݑܿܿܣ	݀݁ݐܿ݁ݔܧ	ݏᇱݎ = (ܲ ܶ)⁄    
         (1) 

where P = the # of positive instances covered by a rule r 
(both antecedent and consequent) 

T= the total # of instances covered by r’s antecedent  
 

B. Decision Tree Rules – C4.5 

C4.5 is a decision technique utilizing Entropy and 
Information Gain (IG) (Equations 2-3 below) to construct 
tree based classifiers for prediction. To build a classifier, 
initially, the IGs for all variables in the training dataset, other 
than the class variable, are computed, and a root with the 
highest IG is selected. The IG is calculated based on how 
informative a data variable is in dividing the examples in the 
training dataset with respect to the class label. When a root is 
chosen, the algorithm excludes it in the next iteration and 
repeatedly calculates the IGs for the other available 
variables, until the tree cannot be built any further or the 
remaining data examples are linked with just a single class. 
In the formed decision tree, a path from the root node to any 
leaf denotes a rule, and the leaf denotes a decision (class 
label).  
 

,ܶ)	݊݅ܽܩ ݂) = ∑−(ܶ)	ݕݎݐ݊ܧ ((|	 ܶ|	/	|	ܶ	|) 	 ∗

	Entropy	T))                                  (2)  

(ܶ)	ݕݎݐ݊ܧ = 	∑− ܲ	 logଶ ܲ                                                                                                                

(3) 

 where cP  = Probability that T belongs to class l, Tf = Subset 

of T for which feature F has value fa. , |Tf| = Number of 

examples in Tf, and |T| = Size of T. 

 
C. Probabilistic Methods- Naive Bayes  

In classification, when a test example requires a class label, 
an efficient way to classify the test example is to use NB 
technique, which is based on Bayes theorem. NB calculates 
the probability of the test example with respect to each class 
label using prior knowledge of the test example’s variables, 
and their appearances with each class in the training dataset. 
The frequency of each variable and the class in the training 
dataset is obtained in addition to the frequency of each class 
label. Then, all probabilities are multiplied by each other and 
the test data example is given the class with the highest 
probability score (Equation 4 below). NB predicates 
independent assumptions for variables and the class, which is 
not necessarily true in real application data [32]. 
Nevertheless, this probabilistic technique is highly efficient 
in deriving classifiers in contrast to other ML techniques 
[33].  

 

 
Figure 1.Steps of ML classification technique 
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Given a test data example as a vector A = (a1, a2, …, am) 
where each a is a variable, using NB, the conditional 
probability can be obtained as: 

(ܣ|ܥ)ܲ = 	 ().(|)
()     

         (4) 

The test data example will be given the class with the 
greatest probability	ܲ(ܥ|ܣ). 

D. Boosting and Bagging 

Bagging and Boosting learning approaches use the training 
dataset in multiple trails to produce numbers of weak 
classifiers, that are then merged to form a global classifier 
[34]. The idea is to utilize both the weak and the strong 
classifiers in predicting the class label of test data.  

In Boosting, a weak classifier is simply built from the input 
dataset, and then utilized to assign class labels to the training 
data examples. The next weak classifier is built from the 
training data, and training examples that have not been 
correctly classified by the previous weak classifier are 
selected more often to be re-classified by the current weak 
classifier, improving the model’s predictive accuracy. The 
below steps clarify how Boosting algorithms, such as 
AdaBoost [10, 34], work:  

1) Select a base ML algorithm for learning such as a 
rule based classifier  

2) The base algorithm learns a weak classifier from the 
training dataset and assigns an equal weight for 
each training data example 

3) When there are misclassification cases (incorrectly 
classified data examples), we re-apply the base ML 
algorithm, and pay more attention to the 
unclassified data examples to improve the 
predictive performance  

4) Repeat steps 2-3 until the intended accuracy has 
been derived  

5) Merge the weak classifiers to produce a strong 
classifier 

6) When a test data needs to be classified, use a voting 
mechanism to assign the class label from the strong 
classifier and the weak classifiers.  

In the Bagging classification approach [5], sample data 
examples are generated for each trail (iteration) from the 
original training dataset (often with the same size of the 
original training dataset). Then, a base ML algorithm is used 
to generate a classifier from the sample, and the process is 
repeated a number of times. Finally, all derived classifiers 
are aggregated together to form a global (strong) classifier. 
When test data is about to be classified in the Bagging 
approach, the class is assigned based on a voting mechanism 
using both the global and weak classifiers, similar to the 
Boosting approach. The difference between Bagging and 
Boosting approaches is that in Bagging, when the data 
sample is produced from the training dataset, the resembling 
process is not reliant on the performance of any previously 
derived classifiers, as it is in Boosting. 

 

E. ANN 

An Artificial Neural Network (ANN) consists of 
interconnected neurons that transform a set of input 
examples into desired output (class) without having to reveal 
the transformation details [20]. The ANN advantage comes 
from choosing the right numbers of the hidden neurons, and 
the results often rely on the input variables features and 
weights associated with their interconnections. Nevertheless, 
determining the numbers of hidden neurons and other 
important thresholds prior to data processing is fundamental 
to the quality of the outcome in ANN algorithms. Questions 
such as, what is the right number of hidden layers, epoch 
size, and acceptable learning rate, among others, need to be 
set by a domain expert in order to generate fair and 
acceptable classifiers. Overall, researchers still utilize train-
and-error methods to tune the aforementioned parameters 
since there is no clear methodology for setting these up [35]. 
ANNs utilize sigmoid functions during constructing 
classifiers, in which weights are repeatedly amended to come 
up with the desired error rate that the domain expert had set 
prior to the beginning of the learning phase. 

F. SVM 

SVM is a classification approach proposed to enhance the 
predictive performance of classic classification techniques 
[36]. This approach depends on hyperplanes, which divide 
data examples based on class memberships. The SVM 
learning mechanism sorts data examples using mathematical 
functions known as kernels. A kernel computes the similarity 
of data examples using the available classes in the training 
dataset [36]. Often, kernels are determined by SVM experts, 
and then utilized for the classification phase. 

SMO trains SVM on a large quadratic programming (QP) 
optimization problem [37]. SMO decomposes the QP 
problem into a number of smaller problems, and then solves 
them by avoiding a numerical QP inner loop. The computing 
resource needed in the particular memory for SMO is linear 
in the training dataset size, which permits the SMO 
algorithm to process larger input datasets. Reported 
experimental results revealed that SVM algorithms such as 
SMO generate high predictive classification systems in 
multiple domains, especially text categorization rather than 
probabilistic, and induction [37, 38]. 

G. Logistic Regression  

When the target variable in classification dataset is 
continuous, (numeric) classic ML methods such as rule 
induction, decision trees, and covering are not able to 
produce a classifier. Linear regression can solve such a 
problem by offering methods describing the training dataset 
in the context of a predictive task, by revealing the 
relationships between independent variables and the class 
variable (dependent). Unlike linear regression, in Logistic 
regression, the class variable is not continuous, but is rather 
categorical (predefined possible values) [37, 18].  

Logistic regression is formulated based on Equation 5 below:  
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 = ೌశ್

ଵାೌశ್
     

         (5) 

 

where p = probability of Y = 1  

 e = base of the natural logarithm(around 2.718) 

 a and b = inputs parameters of the logistic model 
 

Due to the curvilinear correlation between p and X, b in 
(Equation 5) is different than b in a typical linear regression 
model.  
 

We can linearize the logistic regression model by converting 
the dependent variable from a likelihood (probability) to a 
logit, as shown in Equation 6. 
 

݈݊ ቀ 
ଵି

ቁ = ܽ + ܾܺ    
         (6) 

 

݈݊ ቀ 
ଵି

ቁ = logit (log odds) of Y = 1   
         (7) 

where 

a and b = inputs of the logistic model 
 

The logit (Equation 7) is often named a link function, 
because it gives a linear conversion of the logistic regression 
model.  

3. DATA AND EXPERIMENTAL RESULTS  

3.1 Experimental Settings and Data 

This section investigates the ML algorithm’s performance on 
a simulated dataset generated by the NCTUns simulator for 
over a thousand runs on NSFNET topology [39]. The aim is 
to enhance the performance of UDP on OBS networks by 
automatically detecting misbehaving ingress nodes that may 
cause BHP flood attacks, helping to manage the network’s 
resources. By employing NSFNET topology, we can insert 
and simulate with any number of nodes in order to 
investigate different scenarios. The simulation parameters for 
the OBS network configuration are displayed in Table 1. The 
simulator may need to run for 15 to 45 minutes to obtain the 
result for just “one second” depending on the load assigned.  

All experiments have been conducted utilizing a recently 
developed simulated dataset that belongs to the authors. This 
can be obtained from the UCI Machine Learning Repository 
(University of California-Irvine) dataset [40]. This contains 
twenty-two variables related to flooding attacks, including 
the class variable. The variables collected during the 
NCTUns simulator directly associate with the OBS 
network’s performance. The dataset size consists of 1075 
examples, and each example denotes one iteration (a 

simulation run) in which an ingress node is sending data over 
the OBS network. Different scenarios, including BHP flood 
attacks without pre-setting values, have been generated 
during the simulation, ensuring that ingress nodes have 
random levels of BHP flood attacks. This is essential to show 
situations of occupied network resources without proper 
utilization and with different occupancies. During the 
simulated runs, two ingress nodes were used. In addition, for 
each simulation run, the bandwidth of the node was initially 
assigned to 100 Mbps, and then incrementally increased to 
200 Mbps, 300 Mbps, 400 Mbps, and so forth, until the 
maximum bandwidth, i.e. 1000 Mbps, is reached. 
 

Table 1. NCTUns Network Simulator parameter of the OBS 
Network configuration in evaluation 
 

Parameter Value 

Link bandwidth 1000Mb/s 

Propagation delay 1 μs 

Bit error rate 0 

Maximum burst length 1500 bytes 

Number of BHP channels  1 

Number of DB channels 2 

Use of Wavelength Conversion No 

Use of Fiber Delay Line (FDL) No 

Transport Layer Protocol UDP 

 

For illustration purposes, Table 2 depicts eight variables 
with five iterations exhibiting how the ingress nodes for 
every simulation run were used to transmit data. The table 
displays iterations that demonstrated behaving and 
misbehaving edge nodes. The dataset contains four possible 
class labels (Block, No Block, Misbehaving-No-Block, 
Misbehaving-Wait), and thus the problem is a multi-class 
classification. In Table 2, at iteration #1, ingress node 3 was 
permitted to send data, since it was classified as a behaving 
node. Ingress node 9, associated with a low BHP flooding 
rate, was slightly misbehaving, yet because of its low 
packet dropping rate, it was not blocked. However, at 
iteration #5, ingress node 3 was blocked, since this node 
was causing high BHP flooding, its BHPs reserving 
bandwidth without utilization. At the same iteration, despite 
node 9 misbehaving, it was still permitted to send data 
(misbehaving but no block). A trickier scenario is 
illustrated at iteration #4, in which both ingress nodes are 
misbehaving, yet are not reaching a BHP flooding attack. 
Therefore, node 3, due to its higher BHP flood rate, delays 
until node 9 transmits its data.   
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Table 2. Sample of five iterations of the multi-class training 
dataset 

Iter
atio
n 

No
de
# 

Dro
p-
Rate 

Bandw
idth-
Use 

Del
ay 

Node 
Statu
s 

BHP 
Floo
d 

Class 

1 3 0.11 0.793 
0.0
000
9 

B 0.000 No 
Block 

1 9 0.22 0.703 
0.0
000
9 

B 0.008 
M-
No 
Block 

2 3 0.45 0.559 0.0
005 M 0.369 

M-
No 
Block 

2 9 0.42 0.589 0.0
007 M 0.369

7 
M-
Wait 

3 3 0.46
6 0.543 0.0

005 M 0.288
7 

M-
Wait 

3 9 0.41
6 0.593 0.0

006 M 0.254
1 

M-
No 
Block 

4 3 0.47
6 0.532 0.0

006 M 0.362
1 

M-
Wait 

4 9 0.41
5 0.594 0.0

008 M 0.311
2 

M-
No 
Block 

5 3 0.48
2 0.526 0.0

005 M 0.433
7 Block 

5 9 0.41
4 0.596 0.0

008 M 0.384
8 

M-
No 
Block 

 

The Waikato Environment for Knowledge Analysis (WEKA) 
tool was adopted to process the dataset using ML [41]. This 
tool is a Java based open source, containing various methods 
related to ML, data mining, visulization, data filtering, and 
variable selection among others. For all considered ML 
algorithms, a 10-fold cross validation (10 fold-CV) method 
was employed during the training phase [41]. 10 fold-CV is a 
common testing method in ML that ensures the input dataset 
splits into 10 folds. The algorithm is then trained on 9 folds, 
and evaluated against the remaining fold to generate the error 
rate. This procedure is repeated ten times, and all error rates 
are averaged to show the overall performance of the learning 
algorithm. The machine used to run all experiments is Intel® 
Xeon with 3.72 GHz 2 processors. 

A number of ML algorithms have been selected to counter 
the risk of BHP flood attacks by detecting misbehaving 
ingress nodes. In particular, Simple Logistic Regression, 
Naïve Bayes, RIDOR, SVM-Sequential Minimal 
Optimization (SVM-SMO), NN-MultilayerPerceptron, C4.5, 
AdaBoost, and Bagging [37, 9, 12, 25, 32, 29, 10, 5]. We 

would like to evaluate the classification systems’ predictive 
accuracies derived from the aforementioned ML algorithms 
on the BHP flood attack problem. The main metrics used in 
the ML algorithms’ comparisons are:  

1) Classification accuracy in % 
2) True Positives (TPs) and False Positives (FPs) 
3) Precision, Recall and Harmonic Mean (F-measure) 
4) Training time measured in milliseconds (ms) to build 

the classifiers  
5) Classifiers content for the rule induction, Bagging 

and tree based algorithms  

These evaluation measures mathematical descriptions are 
given below: 

ܲ = 	 ்
்ାி

     
         (8) 

ܴ = 	 ்
்ାிே

     
         (9) 

1ܨ = 	2 ∙ 	.		ோ
	ା	ோ

     
                    (10) 

ݕܿܽݎݑܿܿܣ = ்ା்ே
்ାிା்ேାிே

   
                    (11) 

where TP is the number of data examples correctly classified 
by class A, TN is the number of data examples correctly 
classified by class -A, FP is the number of A’s examples 
incorrectly classified as -A, and FN is the number of -A 
examples incorrectly classified as A. 

 
Prior to running the ML learning algorithms against the BHP 
flooding attacks dataset, we pre-processed the dataset using 
Correlation Features Sets (CFS) to determine the most 
influential features [41]. CFS is a well-known feature 
selection method which heuristically examines the 
correlation of each feature with the class label in order to 
discard any redundant or low correlated features. After 
running the CFS on the initial dataset, three features (Drop-
Rate, Bandwidth-Use, BHP-Flood) were identified to be 
more effective to combat the BHP flood attack problem. 
Hence, we will utilize these features during the training 
phase for the classifiers.  

3.2 Results Analysis 
Figure 2 highlights the classification accuracies derived by 
the ML classifiers from the dataset. It is clear from the figure 
that the Bagging, rule induction (RIDOR), and decision tree 
(C4.5) classifiers have higher prediction rates than that of the 
remaining classifiers. Noticeably, the C4.5 algorithm 
outperformed the remaining algorithms when it comes to 
predictive accuracy. To be exact, its predictive accuracy is 
4.66%, 14.52%, 20.84%, 1.68%, 26.42%, 39.07%, 18.05% 
higher than those of RIDOR, Naïve Bayes, Simple Logistic 
Regression, Bagging, SVM-SMO, AdaBoost, and NN- 
MultilayerPerceptron, respectively. The superiority of C4.5 
may be due to the intensive backward and forward pruning 
implemented after constructing the tree. C4.5 trims sub-trees 
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that lead to larger errors, replacing them with more accurate 
leaves, resulting in concise, yet highly predictive, classifiers. 
In addition, the C4.5 algorithm triggers an implicit 
discretization procedure based on Entropy, converting 
continuous variables into discrete ones prior to the training 
phase. This ensures small intervals for each continuous 
attribute, easing the data processing, and ensuring its 
efficiency. Finally, Bagging and RIROD classifiers seem 
competitive in the decision tree, both algorithms using 
effective pruning procedures to cut down the number of rules 
produced.  

 
Figure 2.Classification accuracies in % derived by the ML algorithm 

 

Figure 3 displays the classifiers’ sizes for the top three 
predictive classifiers (C4.5, Bagging, RIDOR). It is clear 
from the figure that Bagging derives larger classifiers 
compared to both RIDOR and C4.5 algorithms. This is due 
to the generation of multiple local classifiers, and the 
integration step forming a final tree structure, which may 
lead to many branches and leaves. The classifier presented 
by RIDOR is the least predictive among those of the three 
algorithms, yet it contains a concise set of rules. From the 
user’s perspective, a more concise set of rules could make it 
easier for network administrators to understand and manually 
control the BHP flooding attack problem. C4.5, on the other 
hand, offers moderate-sized classifiers that have superiority 
in classification accuracy over RIDOR and Bagging 
respectively. In fact, C4.5 covered more training examples 
than RIDOR, discovering more rules that may contribute to 
the increase in predictive performance. 

 
Figure 3.The classifier sizes of RIDOR, Bagging and C4.5 algorithms  

Figures 4a – 4d show the true positives (TPs), false positives 
(FPs), true negatives (TNs) and false negatives (FNs) 
respectively for the considered algorithms on the BHP flood 
attack dataset. The TPs and TNs are consistent with the 
classification accuracy rates derived beforehand, in which 
C4.5, Bagging and RIDOR achieved higher TPs and TNs 
than that of the remaining algorithms. For example, RIDOR 
correctly classified “Block”, “No Block” and “M- No Block” 
class labels without any error. However, for the hard-to-
detect cases, i.e. the ones which belong to the “M-Wait” 
class, 28 instances have been misclassified by RIDOR as the 
“M=No Block” label. For the TNs results, AdaBoost 
algorithm seems have the rates because it was unable to 
clearly differentiate among the four class labels in particular 
NB-Wait, which its instances have been completely 
misclassified to NB-No-Block class label. 

 
Figure 4a.The TPs of the ML algorithms 

 
Figure 4b.The FPs of the ML algorithms 

 

 
Figure 4c.The TNs of the ML algorithms 
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Figure 4d.The FNs of the ML algorithms 

The results of the TPs, TNs, FNs and FPs show that “Block” 
and “No Block” cases are easy to detect by the ML 
algorithms except AdaBoost, but cases that belong to class 
labels “M-Wait” and “M-No Block” are harder to be 
detected, due to overlaps between these two class labels. To 
be precise, in terms of FPs and FNs, the three least 
performed algorithms (AdaBoost, SVM-SMO, Logistic) are 
associated with 300, 204, and 254 misclassifications 
respectively. These figures clearly reveal the reasons behind 
the low predictive rates of these three algorithms in detecting 
difficult-to-classify cases of “M-Wait” and “M-No Block”. 
To overcome this issue of overlapping between class labels, 
more data cases covering “M-No Block” and “M-Wait” are 
needed, so the ML algorithms can further distinguish 
between them during the learning phase. This is due to the 
fact that the misbehaving nodes are further decomposed in 
the dataset into three sub-class labels, in order to reflect the 
true nature of the problem and reduce overfitting during the 
learning phase. Moreover, and in terms of FNs, decision tree 
and Bagging algorithms consistently derived good results 
when compared with the remaining algorithms. To be exact, 
Bagging algorithm only wrongly classified 11 instances 8 of 
which belong to the hard to classify class NB-Wait. 
Typically, we do not desire to end up with a binary 
classification problem in which the ML algorithm decides 
whether the ingress node is behaving or misbehaving. 
However, we do aim to understand to which degree the node 
is misbehaving, and if two nodes are misbehaving, which 
may be allowed to transmit data, and which should delay in 
using their flooding or network utilization rates. Therefore, it 
was necessary to further split the misbehaving class into 
multiple class labels during the data collection phase. 

Figure 5 shows three more types of measures: precision, 
recall, and F-measure. The precision results displayed in 
Figure 5 shows a consistency with classification accuracy 
rates, and highlights that malicious ingress nodes are harder 
to be detected than behaving ingress nodes, at least for the 
dataset and algorithms used. Usually, high precision rates, 
such as in C4.5, RIDOR and Bagging, relate to their low 
FPs. C4.5 achieved the largest precision and AdaBoost the 
lowest. In the precision results, seven out of eight algorithms 
have consistent results when compared to their accuracies, 
except for the AdaBoost algorithm. The precision of 
AdaBoost declined significantly to 0.397 (39%) due to a 
large number of FP cases, as shown in Figure 5. Precision 
shows the number of correctly classified cases from all that 

have been classified. On the other hand, recall results in the 
same figure denotes the number of correctly classified cases 
in all cases intended to be correctly classified. In the recall 
results, all the ML algorithms have consistent results when 
compared to their predictive accuracies.  

 
Figure 5.The Precision, Recall and F1 scores of the ML algorithm 

To have a clearer insight into precision and recall alongside 
one another, we generated the scores when using the F1 
measure. The F1 score takes the weighted average of recall 
and precision (false negatives and false positives) into 
consideration, especially when involving data such as our 
four unevenly distributed class labels. In our study, we can 
observe that C4.5, RIDOR and Bagging still generate highly 
competitive F1 scores compared to the remaining considered 
algorithms on the BHP flood attack dataset. 

Lastly, Figure 6 depicts the runtime in millisecond (ms) 
taken from the ML algorithms in constructing the classifiers. 
Here, the fastest algorithms were Naïve Bayes and C4.5. 
Naive Bayes uses simple likelihood calculations for all 
variables in the test dataset using their frequencies in the 
training dataset, hence no rule learning being involved. 
Alternately, the C4.5 algorithm employs fast learning based 
on computing Entropy for the variables in the training 
dataset to build tree based classifiers. Hence, these two 
algorithms are quite efficient in building predictive 
classifiers in contrast to alternative ML algorithms. The 
MultilayerPerceptron NN algorithm was the slowest 
algorithm in building the classifier due to the exhaustive 
search this algorithm employs, which is based on pre-setting 
the desired expected error achieved. This often necessitates 
repetitive training dataset scans.  

 
Figure 6.The time in ms needed to build the classifier of the ML algorithm 
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4. CONCLUSIONS  

In spite of the many benefits of an OBS network, such as 
bandwidth efficiency, economic values and resiliency, OBS 
network can become vulnerable when burst loss occurs 
during ingress nodes sending data, causing BHP flood 
attacks. This fundamental issue in OBS networks may 
deteriorate the overall network’s performance, due to the 
allocating of resources without proper usage. BHP flood 
attacks hinder the QoS of the OBS network, hence 
potentially causing a severe problem – the Denial of Service 
(DoS). This paper investigated the aforementioned issue by 
applying machine learning (ML) to automatically detect 
misbehaving ingress nodes, and blocking them in a 
preliminary stage. We evaluated various ML algorithms via 
simulation data, involving more than two ingress nodes and 
over 530 runs.  

The aim was to classify ingress nodes as accurately as 
possible, using variables related to their performance, such as 
packet drop rate, bandwidth used, and average delay time 
among others. Experimental results from a processed dataset 
related to BHP flood attacks showed that rule based 
classifiers, in particular decision trees (C4.5), Bagging, and 
RIDOR, consistently derive high predictive classifiers 
compared to alternate ML algorithms, including AdaBoost, 
Logistic Regression, Naïve Bayes, SVM-SMO and NN-
MultilayerPerceptron. Moreover, the harmonic mean, recall 
and precision results of the rule based and tree classifiers 
were more competitive than those of the remaining ML 
algorithms. Lastly, the runtime results measured in terms of 
millisecond showed that decision tree classifiers are not only 
more predictive, but are also more efficient than the rest of 
the algorithms. Thus, this is the most appropriate technique 
for classifying ingress nodes to combat the BHP flood attack 
problem. This paper is one of the initial attempts on adopting 
ML techniques to automatically classify ingress nodes in 
OBS networks. 

In the near future, we intend to build a new rule-based 
classifier using the decision tree, and embed it inside the 
simulator to detect misbehaving nodes during the simulation 
phase. 
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