
Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

164

ABSTRACT

The Optical Bust Switching (OBS) network has become the
most promising switching technology for building the next
generation of internet backbone infrastructure. However, an
OBS network still faces a number of security and Quality of
Service (QoS) challenges, particularly from Burst Header
Packet (BHP) flood attacks. If a source node (ingress)
becomes compromised by an attacker, overloading the
network with malicious BHPs, the network resources will be
reserved without proper utilization. This prevents legitimate
BHPs from reserving the required resources, and can lead to
severe issues, such as burst loss and Denial of Service (DoS)
among others. One way to prevent a BHP flood attack is to
detect the misbehaving edge nodes overloading the network
with malicious BHPs, and taking the proper action to secure
and sustain the QoS performance in an OBS network. A
powerful and promising approach in identifying misbehaving
edge nodes causing BHP flooding attacks is Machine
Learning (ML), and in particular, classification techniques. A
classification technique learns models by applying them to a
large historical data set derived from an edge node’s
performance during a simulation run. The data set contains
behavior traces from a number of edge nodes, with respect to
input data characteristics, sensitivity, efficiency performance,
predictive performance, and model content. The learned
model can then be utilized to single out (classify)
misbehaving edge nodes based on their future performance
as accurately as possible, hence disciplining them. In this
paper, we investigate the BHP flood attack problem by
evaluating a number of ML techniques in classifying edge
nodes, and determine the most suitable method to prevent
this type of attack. Specifically, we evaluate Decision Tree
(C4.5), Bagging, Boosting (AdaBosst), Probabilistic (Naïve
Bayes), Rule Induction (RIppleDOwn Rule Learner-
RIDOR), Neural Network (NN-MultilayerPerceptron),
Logistic Regression, and Support Vector Machine-Sequential
Minimal Optimization (SVM-SMO) on a real dataset to
identify the method(s) most appropriate to combat the BHP
flood attack problem in OBS networks.

Key words :Burst Header Packet (BHP) flood attack,
Classification, Computer Network; Machine Learning,
Network Security, OBS Network
.

1. INTRODUCTION

An optical network (ON) is a known medium for data
transmission, adopting an Optical Burst Switching (OBS)
network for the Internet [1]. In an OBS network, burst header
packets (BHPs) are transmitted in advance to allocate enough
resources prior to sending the actual data bursts (DBs),
ensuring network management and Quality of Service (QoS).
This enables attackers to flood the network with malicious
BHPs, reserving the network resources without proper use.
In this case, malicious BHPs continue to reserve the network
resources without sending the actual DBs, hindering the
performance of the OBS network, in some cases causing
Denial of Service (DoS) [2]. Therefore, it is essential to
prevent BHP flooding attacks in OBS networks by blocking
misbehaving ingress nodes that continuously transmit
malicious BHPs, and preventing the legitimate BHPs from
reserving the required resources at the intermediate core
switch.

Limited research works detecting BHP flooding attacks in
OBS networks exist, e.g. [3, 4, 5]. In [3], a data flow
classification architecture was implemented at the optical
layer to combat BHP flooding attacks. This method
distinguishes between the offset time inside the BHP and the
recorded delay between this BHP and its related DB. [4]
utilized optical code words to single out malicious BHPs sent
by ingress nodes in an OBS network. The authors used
statistical data analysis related to packets sent and dropped to
detect the possibility of BHP flooding attacks. [5] developed
a new security model to be implemented into the OBS core
switch to prevent BHP flooding attacks. The countermeasure
security model can detect malicious ingress nodes based on
their behavior, alongside the amount of reserved resources
that are not being utilized, and block any malicious ingress
nodes until the threat ceases. The reported results using the
NCTUns network simulator showed that the security method
of [5] was able to effectively differentiate among legitimate
and malicious ingress nodes, thus maintaining good network
performance.

Detecting BHP Flood Attacks in OBS Networks: A Machine

Learning Prospective
Adel Rajab

College of Computer Science and Information System,
Najran University, 1988,

Najran, Saudi Arabia
adrajab@nu.edu.sa

 ISSN 2278-3083
Volume 8, No.6, November –December 2019

International Journal of Science and Applied Information Technology
Available Online at http://www.warse.org/ijsait/static/pdf/file/ijsait26862019.pdf

https://doi.org/10.30534/ijsait/2019/26862019

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

165

Despite the few recent studies on BHP flooding attacks, the
detection rate is still low. Further, the entire process relies on
the domain experts’ knowledge and experience. Therefore,
there is a need for a more efficient detection system that can
engage the core switch in OBS network, thus identifying
misbehaving ingress nodes in an automated manner as early
as possible. One promising approach to accomplish this is
the Machine Learning (ML) method. This uses the historical
performance of source nodes during data transmission to
construct classification models known as classifiers. The
classifiers then predict whether the source nodes are sending
legitimate BHPs or not, and filter out malicious BHPs that
might cause flooding attacks. The outcomes of the ML
method will enable security administrators to quickly block
misbehaving ingress nodes until they change their behaviors.
(It is the firm belief of the authors) that classifying ingress
nodes using ML to counter BHP flooding attacks is yet to be
studied within an OBS network.

This study examines the performance of ML methods to
counter the risks associated with BHP flood attacks in OBS
networks. The problem studied is a typical predictive task in
classification, in which different variables linked with
ingress nodes’ performances are collected whilst sending
BHPs (in simulation runs), and are saved in a training
dataset. Examples of variables are not limited to iteration
number, but can include the sending node label, packets sent,
packets dropped, delay time, and so on. More details on the
complete dataset of variables can be found at [6], and are
briefly explained in Section 3.1. The ML role involves
processing the different variables in the dataset to obtain
concealed information useful for prediction (classifier). This
classifier is then used to categorize ingress nodes in certain
future scenarios as accurately as possible, improving the
manual classification which indeed requires care, time and
experience.

The ultimate aim of this study is to examine the applicability
of ML to the problem of BHP flooding attacks in OBS
networks. To achieve this, we extensively investigated
various ML techniques that adopt different learning
approaches to the research problem considered. We seek to
identify the most relevant ML technique(s) for solving the
issue of BHP flooding attacks, in addition to revealing the
reasons behind the relevancy. Thus, we endeavor to answer
the following research questions:

 Can ML be used as a BHP detection approach in an
OBS network?

 Which ML techniques improve detection rate and
time performance?

 Which ML technique is more suitable to end-users,
and why?

The ML approaches considered in this study are Logistic
Regression, Naïve Bayes, RIDOR, SVM-SMO, NN-
MultilayerPerceptron, C4.5, AdaBoost, and Bagging [9, 5].
The diversity of the ML approaches strengthens the
confidence in the results, hence our recommendations (see
Sections 3 & 4). The performance of the wide range of ML
techniques has been measured using different metrics,

against a published dataset at UCI (University of California-
Irvine) repository [7]. Specifically, we utilized classification
accuracy, classifiers’ construction time in milliseconds (ms),
precision, recall, and the harmonic mean among other
measures (Section 3 gives further details) [8].

The remaining of this paper is organized as follows. Section
2 reviews the related research studies and the considered ML
approaches. Section 3 is devoted to experimental settings,
data description, and results analysis. Lastly, Section 4 will
offer concluding remarks.

2. LITERATURE REVIEW

2.1 Studies Related to Application of Machine Learning
in Detecting and Classification Tasks

A limited amount of studies adopt ML techniques in
attempting to counter BHP flooding attacks in OBS
networks, e. g.. Despite the scarcity of literature, this section
highlights these studies and others related to primarily
utilizing ML in different types of computer networks.
Developed rule sets based on experience to counter the
problem of BHP flooding attacks in OBS networks. The
rules are developed using statistical analysis of the ingress
nodes’ performance during a series of simulated runs, using
different numbers of nodes. The rules then are used to
categorize ingress nodes into two types: Behaving and
Misbehaving. Experimental results showed that the domain
experience rules can be enhanced if the classification
systems built by ML techniques are adopted, since they are
typically more accurate in detection than domain specific
classifications.

[9] investigated the problems of BHP flood attacks in OBS
networks to differentiate the types of data bursts, i.e.
congestion or contention. A new metric named “number of
bursts between failures” (NBBF) was proposed to detect
which type of data bursts losses occur. In the process of
classifying these data bursts, the authors applied two
methods: unsupervised expectation maximization (EM) and a
supervised Hidden Markov Chain (HMC). Reported results
showed that when both methods are integrated, the accuracy
of distinguishing among types of bursts losses is increased.

[24] investigated the Distributed Denial-of-Service (DDoS)
flood attacks on the transport and application layers, and
developed a detection mechanism that analyzes the traffic
according to types of packets, packet arrival rate and server
capacity. The detection mechanism relies on recording and
monitoring information related to address pair (source and
destination), the type of packet, the port addresses of the
source and destination among others. The key to success of
[10]’s method is the predefined setting value of the server
capacity. No experiments have been conducted to reveal the
pros and cons of the detection method of DDoS flood
attacks.

[11] investigated the problems of reducing flood attacks and
other service attacks in computer networks using ML. These
types of attacks normally belong to DDoS flooding attacks,
and other risk that impair Internet security. The aim was to

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

166

identify the misbehaving sources (nodes) in order to block
their messages from their intended destinations. In the
learning model proposed, elements of the network share
behavior information about the network’s performance, so
the classifier may amend or enhance the model’s behavior by
blocking potentially detrimental messages. Reported
experimental results revealed a 95% detection rate using a
probabilistic classifier.

[12] reviewed different learning mechanisms utilized to
detect DDoS flooding attacks, in particular, SYN flooding.
This type of flooding attack harms the network performance:
when packets flood the network, many users may suffer
server access delays. In some cases, the server shuts down
entirely from SYN flooding attacks. The authors of [12]
critically analyzed different approaches related to ML,
statistical analysis, and router based among others.

[13] adopted the Naïve Bayes (NB) probabilistic
classification algorithm [14] to detect the type of Internet
traffic. Before applying NB, features related to traffic flow
such as port identification, elapsed time between two
consecutive flows, and the flow length among others, were
collected. The type of traffic flow variable was assigned by a
domain expert in the dataset, and NB was applied to generate
probabilistic classification systems to predict the traffic flow
variable. The classification system derived by NB shows low
predictive rates, but when the authors utilized feature
selection methods prior to the training phase, the accuracy
rate of the classification systems was improved.

The IP traffic classification problem was studied in the
context of ML by [15]. The authors surveyed and compared
the performance of supervised and unsupervised ML
algorithms, and highlighted the role of feature assessment in
pre-processing the IP traffic dataset. Results showed that NB,
EM and decision tree algorithms often produce consistent
results, with high classification accuracy for the IP Internet
traffic problem. Moreover, a number of recommendations
have been highlighted based on the survey, such as:

1) ML algorithms generate different results for the IP
traffic problem because of the different learning
mechanisms they employ in deriving the
classification systems. Hence, hybrid learning
seems appropriate for future investigation

2) Different requirements are sought by ML
algorithms because learning environments differ
from one algorithm to another, as well as
configurations

3) It is essential to investigate real time learning, at
least for the IP Internet traffic classification
problem, in which the ML will, while in progress,
derive the classifiers rather than using static datasets

4) Feature selection methods can be useful in some
Internet application problems such as IP Internet
traffic classification

The majority of recent research contends that utilizing ML
techniques in computer networks relates to DDoS flood
attacks using primarily adaptive distributed mechanisms,
while other studies investigated data traffic analysis. This

study investigates an entirely new issue – BHP flood attacks
in OBS networks. We believe that ML has not yet been
adopted to develop predictive models to counter BHP flood
attacks in OBS networks.

2.2 The Considered Machine Learning Techniques

Since the BHP flooding attack is a typical prediction
problem, classification methods in ML seems appropriate to
identify malicious and legitimate edge nodes. In
classification problems, a model called the classifier is
constructed from historical labelled dataset(s). The learned
classifier is then employed to forecast the class label in
datasets that are unlabeled, known as test datasets [16, 5].
The quality of the classifiers extracted by ML methods rely
primarily on the classification accuracy, as well as other
known evaluation metrics such as recall, precision, and
harmonic mean [18]. In addition, classifiers formed after data
processing differ based on the ML techniques used. For
instance, rule induction classifiers contain rules, and Naïve
Bayes classifiers hold just class memberships in a probability
format [19]. In this section, we highlight eight different ML
techniques that generate different type of classifiers.
Specifically, we investigate classifiers extracted by Logistic
Regression, Probabilistic-Naïve Bayes, Rule Induction-
RIDOR, Support Vector Machine -Sequential Minimal
Optimization (SVM-SMO), Neural Network-NN-
MultilayerPerceptron, Decision Tree-C4.5, Boosting-
AdaBoost, and Bagging [20, 21, 22, 23, 24, 25, 26]. The
choices of these techniques are mainly based on the
following facts:

1) Different learning methodologies are employed for
data processing

2) Different classifier formats are presented to the end-
user

3) Applicability and usage in previous domains in
particular computer networks, computer security
among others, i.e. [18,.27,28]

Steps of machine learning are shown in Figure 1, and are
briefly explained below.

1) Data pre-processing (Optional): In this step, any noise
related to the training dataset, such as missing values,
duplications, and feature selection are completed. The
output of this step is a processed dataset.

2) Training: In this step, the ML technique processes the data
for knowledge or patterns. In classification techniques,
the classifier is constructed in this step.

3) Evaluation: The classifier is evaluated on a test dataset to
measure its effectiveness. This step results in different
evaluation metrics.

4) Pattern Visualization (Optional): In this step, the
outcomes as well as its quality measures are presented to
the end-user in a non-technical manner to ease decision
making.

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

167

The next section briefly summarizes known ML learning
approaches that this study investigates to be utilized in
solving the BHP flood attacks problem.

A. Rule Induction - RIDOR

Rule induction is a classification approach that normally
extracts If-Then rules in a sequential fashion. Typically, a
rule induction technique divides the input dataset into splits
according to the available class values. Then, for each class
split, the induction technique learns and derives If-Then rules
based on mathematical metrics, such as a rule’s expected
accuracy (Equation (1)). Data examples in a split, for
instance A, are positive examples for the class of A, and are
considered negative examples for the other class labels in the
other data splits. For a data split, the induction technique
builds an empty rule, and then adds items to the rule’s
antecedent (left hand side/body) until the rule meets a
termination condition. When this occurs, the rule is
generated, and all data examples that the rule classifies are
discarded. Then, the induction technique learns the next rule
from the same split until the data split becomes empty.
Following this, the induction technique moves to the next
data split until all data splits become empty, or no more rules
with acceptable accuracies can be discovered [29]. Common
rule induction techniques are RIDOR and RIPPER [8].

RIDOR, for example, derives a default rule class, and then
learns all the exceptions for that default rule using
Incremental Reduced Error Pruning (IREP) [31], a learning
method. An exception is a rule able to forecast the class label
other than the default class. IREP eliminated one exhausting
phase of an earlier rule induction technique called Reduced
Error Pruning (REP), saving substantial training time. In
RIDOR, the training dataset is divided into pruning (1/3) and
growing (2/3) subsets. Then, RIDOR builds incremental
rules one at a time. When a rule is about to be evaluated for
possible pruning, its training data examples in the pruning
and growing subsets are removed, and the rule gets
extracted. During pruning, RIDOR considers deleting items
from the rule’s body and terminates the pruning phase when
removing an item from a rule cannot improve the rule’s
accuracy.

ݕܿݎܽݑܿܿܣ	݀݁ݐܿ݁ݔܧ	ݏᇱݎ = (ܲ ܶ)⁄
 (1)

where P = the # of positive instances covered by a rule r
(both antecedent and consequent)

T= the total # of instances covered by r’s antecedent

B. Decision Tree Rules – C4.5

C4.5 is a decision technique utilizing Entropy and
Information Gain (IG) (Equations 2-3 below) to construct
tree based classifiers for prediction. To build a classifier,
initially, the IGs for all variables in the training dataset, other
than the class variable, are computed, and a root with the
highest IG is selected. The IG is calculated based on how
informative a data variable is in dividing the examples in the
training dataset with respect to the class label. When a root is
chosen, the algorithm excludes it in the next iteration and
repeatedly calculates the IGs for the other available
variables, until the tree cannot be built any further or the
remaining data examples are linked with just a single class.
In the formed decision tree, a path from the root node to any
leaf denotes a rule, and the leaf denotes a decision (class
label).

,ܶ)	݊݅ܽܩ ݂) = ∑−(ܶ)	ݕݎݐ݊ܧ ((|	 ܶ|	/	|	ܶ	|) 	 ∗

	Entropy	T)) (2)

(ܶ)	ݕݎݐ݊ܧ = 	∑− ܲ	 logଶ ܲ

(3)

 where cP = Probability that T belongs to class l, Tf = Subset

of T for which feature F has value fa. , |Tf| = Number of

examples in Tf, and |T| = Size of T.

C. Probabilistic Methods- Naive Bayes

In classification, when a test example requires a class label,
an efficient way to classify the test example is to use NB
technique, which is based on Bayes theorem. NB calculates
the probability of the test example with respect to each class
label using prior knowledge of the test example’s variables,
and their appearances with each class in the training dataset.
The frequency of each variable and the class in the training
dataset is obtained in addition to the frequency of each class
label. Then, all probabilities are multiplied by each other and
the test data example is given the class with the highest
probability score (Equation 4 below). NB predicates
independent assumptions for variables and the class, which is
not necessarily true in real application data [32].
Nevertheless, this probabilistic technique is highly efficient
in deriving classifiers in contrast to other ML techniques
[33].

Figure 1.Steps of ML classification technique

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

168

Given a test data example as a vector A = (a1, a2, …, am)
where each a is a variable, using NB, the conditional
probability can be obtained as:

(ܣ|ܥ)ܲ = 	 ().(|)
()

 (4)

The test data example will be given the class with the
greatest probability	ܲ(ܥ|ܣ).

D. Boosting and Bagging

Bagging and Boosting learning approaches use the training
dataset in multiple trails to produce numbers of weak
classifiers, that are then merged to form a global classifier
[34]. The idea is to utilize both the weak and the strong
classifiers in predicting the class label of test data.

In Boosting, a weak classifier is simply built from the input
dataset, and then utilized to assign class labels to the training
data examples. The next weak classifier is built from the
training data, and training examples that have not been
correctly classified by the previous weak classifier are
selected more often to be re-classified by the current weak
classifier, improving the model’s predictive accuracy. The
below steps clarify how Boosting algorithms, such as
AdaBoost [10, 34], work:

1) Select a base ML algorithm for learning such as a
rule based classifier

2) The base algorithm learns a weak classifier from the
training dataset and assigns an equal weight for
each training data example

3) When there are misclassification cases (incorrectly
classified data examples), we re-apply the base ML
algorithm, and pay more attention to the
unclassified data examples to improve the
predictive performance

4) Repeat steps 2-3 until the intended accuracy has
been derived

5) Merge the weak classifiers to produce a strong
classifier

6) When a test data needs to be classified, use a voting
mechanism to assign the class label from the strong
classifier and the weak classifiers.

In the Bagging classification approach [5], sample data
examples are generated for each trail (iteration) from the
original training dataset (often with the same size of the
original training dataset). Then, a base ML algorithm is used
to generate a classifier from the sample, and the process is
repeated a number of times. Finally, all derived classifiers
are aggregated together to form a global (strong) classifier.
When test data is about to be classified in the Bagging
approach, the class is assigned based on a voting mechanism
using both the global and weak classifiers, similar to the
Boosting approach. The difference between Bagging and
Boosting approaches is that in Bagging, when the data
sample is produced from the training dataset, the resembling
process is not reliant on the performance of any previously
derived classifiers, as it is in Boosting.

E. ANN

An Artificial Neural Network (ANN) consists of
interconnected neurons that transform a set of input
examples into desired output (class) without having to reveal
the transformation details [20]. The ANN advantage comes
from choosing the right numbers of the hidden neurons, and
the results often rely on the input variables features and
weights associated with their interconnections. Nevertheless,
determining the numbers of hidden neurons and other
important thresholds prior to data processing is fundamental
to the quality of the outcome in ANN algorithms. Questions
such as, what is the right number of hidden layers, epoch
size, and acceptable learning rate, among others, need to be
set by a domain expert in order to generate fair and
acceptable classifiers. Overall, researchers still utilize train-
and-error methods to tune the aforementioned parameters
since there is no clear methodology for setting these up [35].
ANNs utilize sigmoid functions during constructing
classifiers, in which weights are repeatedly amended to come
up with the desired error rate that the domain expert had set
prior to the beginning of the learning phase.

F. SVM

SVM is a classification approach proposed to enhance the
predictive performance of classic classification techniques
[36]. This approach depends on hyperplanes, which divide
data examples based on class memberships. The SVM
learning mechanism sorts data examples using mathematical
functions known as kernels. A kernel computes the similarity
of data examples using the available classes in the training
dataset [36]. Often, kernels are determined by SVM experts,
and then utilized for the classification phase.

SMO trains SVM on a large quadratic programming (QP)
optimization problem [37]. SMO decomposes the QP
problem into a number of smaller problems, and then solves
them by avoiding a numerical QP inner loop. The computing
resource needed in the particular memory for SMO is linear
in the training dataset size, which permits the SMO
algorithm to process larger input datasets. Reported
experimental results revealed that SVM algorithms such as
SMO generate high predictive classification systems in
multiple domains, especially text categorization rather than
probabilistic, and induction [37, 38].

G. Logistic Regression

When the target variable in classification dataset is
continuous, (numeric) classic ML methods such as rule
induction, decision trees, and covering are not able to
produce a classifier. Linear regression can solve such a
problem by offering methods describing the training dataset
in the context of a predictive task, by revealing the
relationships between independent variables and the class
variable (dependent). Unlike linear regression, in Logistic
regression, the class variable is not continuous, but is rather
categorical (predefined possible values) [37, 18].

Logistic regression is formulated based on Equation 5 below:

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

169

 = ೌశ್

ଵାೌశ್

 (5)

where p = probability of Y = 1

 e = base of the natural logarithm(around 2.718)

 a and b = inputs parameters of the logistic model

Due to the curvilinear correlation between p and X, b in
(Equation 5) is different than b in a typical linear regression
model.

We can linearize the logistic regression model by converting
the dependent variable from a likelihood (probability) to a
logit, as shown in Equation 6.

݈݊ ቀ
ଵି

ቁ = ܽ + ܾܺ
 (6)

݈݊ ቀ
ଵି

ቁ = logit (log odds) of Y = 1
 (7)

where

a and b = inputs of the logistic model

The logit (Equation 7) is often named a link function,
because it gives a linear conversion of the logistic regression
model.

3. DATA AND EXPERIMENTAL RESULTS

3.1 Experimental Settings and Data

This section investigates the ML algorithm’s performance on
a simulated dataset generated by the NCTUns simulator for
over a thousand runs on NSFNET topology [39]. The aim is
to enhance the performance of UDP on OBS networks by
automatically detecting misbehaving ingress nodes that may
cause BHP flood attacks, helping to manage the network’s
resources. By employing NSFNET topology, we can insert
and simulate with any number of nodes in order to
investigate different scenarios. The simulation parameters for
the OBS network configuration are displayed in Table 1. The
simulator may need to run for 15 to 45 minutes to obtain the
result for just “one second” depending on the load assigned.

All experiments have been conducted utilizing a recently
developed simulated dataset that belongs to the authors. This
can be obtained from the UCI Machine Learning Repository
(University of California-Irvine) dataset [40]. This contains
twenty-two variables related to flooding attacks, including
the class variable. The variables collected during the
NCTUns simulator directly associate with the OBS
network’s performance. The dataset size consists of 1075
examples, and each example denotes one iteration (a

simulation run) in which an ingress node is sending data over
the OBS network. Different scenarios, including BHP flood
attacks without pre-setting values, have been generated
during the simulation, ensuring that ingress nodes have
random levels of BHP flood attacks. This is essential to show
situations of occupied network resources without proper
utilization and with different occupancies. During the
simulated runs, two ingress nodes were used. In addition, for
each simulation run, the bandwidth of the node was initially
assigned to 100 Mbps, and then incrementally increased to
200 Mbps, 300 Mbps, 400 Mbps, and so forth, until the
maximum bandwidth, i.e. 1000 Mbps, is reached.

Table 1. NCTUns Network Simulator parameter of the OBS
Network configuration in evaluation

Parameter Value

Link bandwidth 1000Mb/s

Propagation delay 1 μs

Bit error rate 0

Maximum burst length 1500 bytes

Number of BHP channels 1

Number of DB channels 2

Use of Wavelength Conversion No

Use of Fiber Delay Line (FDL) No

Transport Layer Protocol UDP

For illustration purposes, Table 2 depicts eight variables
with five iterations exhibiting how the ingress nodes for
every simulation run were used to transmit data. The table
displays iterations that demonstrated behaving and
misbehaving edge nodes. The dataset contains four possible
class labels (Block, No Block, Misbehaving-No-Block,
Misbehaving-Wait), and thus the problem is a multi-class
classification. In Table 2, at iteration #1, ingress node 3 was
permitted to send data, since it was classified as a behaving
node. Ingress node 9, associated with a low BHP flooding
rate, was slightly misbehaving, yet because of its low
packet dropping rate, it was not blocked. However, at
iteration #5, ingress node 3 was blocked, since this node
was causing high BHP flooding, its BHPs reserving
bandwidth without utilization. At the same iteration, despite
node 9 misbehaving, it was still permitted to send data
(misbehaving but no block). A trickier scenario is
illustrated at iteration #4, in which both ingress nodes are
misbehaving, yet are not reaching a BHP flooding attack.
Therefore, node 3, due to its higher BHP flood rate, delays
until node 9 transmits its data.

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

170

Table 2. Sample of five iterations of the multi-class training
dataset

Iter
atio
n

No
de

Dro
p-
Rate

Bandw
idth-
Use

Del
ay

Node
Statu
s

BHP
Floo
d

Class

1 3 0.11 0.793
0.0
000
9

B 0.000 No
Block

1 9 0.22 0.703
0.0
000
9

B 0.008
M-
No
Block

2 3 0.45 0.559 0.0
005 M 0.369

M-
No
Block

2 9 0.42 0.589 0.0
007 M 0.369

7
M-
Wait

3 3 0.46
6 0.543 0.0

005 M 0.288
7

M-
Wait

3 9 0.41
6 0.593 0.0

006 M 0.254
1

M-
No
Block

4 3 0.47
6 0.532 0.0

006 M 0.362
1

M-
Wait

4 9 0.41
5 0.594 0.0

008 M 0.311
2

M-
No
Block

5 3 0.48
2 0.526 0.0

005 M 0.433
7 Block

5 9 0.41
4 0.596 0.0

008 M 0.384
8

M-
No
Block

The Waikato Environment for Knowledge Analysis (WEKA)
tool was adopted to process the dataset using ML [41]. This
tool is a Java based open source, containing various methods
related to ML, data mining, visulization, data filtering, and
variable selection among others. For all considered ML
algorithms, a 10-fold cross validation (10 fold-CV) method
was employed during the training phase [41]. 10 fold-CV is a
common testing method in ML that ensures the input dataset
splits into 10 folds. The algorithm is then trained on 9 folds,
and evaluated against the remaining fold to generate the error
rate. This procedure is repeated ten times, and all error rates
are averaged to show the overall performance of the learning
algorithm. The machine used to run all experiments is Intel®
Xeon with 3.72 GHz 2 processors.

A number of ML algorithms have been selected to counter
the risk of BHP flood attacks by detecting misbehaving
ingress nodes. In particular, Simple Logistic Regression,
Naïve Bayes, RIDOR, SVM-Sequential Minimal
Optimization (SVM-SMO), NN-MultilayerPerceptron, C4.5,
AdaBoost, and Bagging [37, 9, 12, 25, 32, 29, 10, 5]. We

would like to evaluate the classification systems’ predictive
accuracies derived from the aforementioned ML algorithms
on the BHP flood attack problem. The main metrics used in
the ML algorithms’ comparisons are:

1) Classification accuracy in %
2) True Positives (TPs) and False Positives (FPs)
3) Precision, Recall and Harmonic Mean (F-measure)
4) Training time measured in milliseconds (ms) to build

the classifiers
5) Classifiers content for the rule induction, Bagging

and tree based algorithms

These evaluation measures mathematical descriptions are
given below:

ܲ = 	 ்
்ାி

 (8)

ܴ = 	 ்
்ାிே

 (9)

1ܨ = 	2 ∙ 	.		ோ
	ା	ோ

 (10)

ݕܿܽݎݑܿܿܣ = ்ା்ே
்ାிା்ேାிே

 (11)

where TP is the number of data examples correctly classified
by class A, TN is the number of data examples correctly
classified by class -A, FP is the number of A’s examples
incorrectly classified as -A, and FN is the number of -A
examples incorrectly classified as A.

Prior to running the ML learning algorithms against the BHP
flooding attacks dataset, we pre-processed the dataset using
Correlation Features Sets (CFS) to determine the most
influential features [41]. CFS is a well-known feature
selection method which heuristically examines the
correlation of each feature with the class label in order to
discard any redundant or low correlated features. After
running the CFS on the initial dataset, three features (Drop-
Rate, Bandwidth-Use, BHP-Flood) were identified to be
more effective to combat the BHP flood attack problem.
Hence, we will utilize these features during the training
phase for the classifiers.

3.2 Results Analysis
Figure 2 highlights the classification accuracies derived by
the ML classifiers from the dataset. It is clear from the figure
that the Bagging, rule induction (RIDOR), and decision tree
(C4.5) classifiers have higher prediction rates than that of the
remaining classifiers. Noticeably, the C4.5 algorithm
outperformed the remaining algorithms when it comes to
predictive accuracy. To be exact, its predictive accuracy is
4.66%, 14.52%, 20.84%, 1.68%, 26.42%, 39.07%, 18.05%
higher than those of RIDOR, Naïve Bayes, Simple Logistic
Regression, Bagging, SVM-SMO, AdaBoost, and NN-
MultilayerPerceptron, respectively. The superiority of C4.5
may be due to the intensive backward and forward pruning
implemented after constructing the tree. C4.5 trims sub-trees

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

171

that lead to larger errors, replacing them with more accurate
leaves, resulting in concise, yet highly predictive, classifiers.
In addition, the C4.5 algorithm triggers an implicit
discretization procedure based on Entropy, converting
continuous variables into discrete ones prior to the training
phase. This ensures small intervals for each continuous
attribute, easing the data processing, and ensuring its
efficiency. Finally, Bagging and RIROD classifiers seem
competitive in the decision tree, both algorithms using
effective pruning procedures to cut down the number of rules
produced.

Figure 2.Classification accuracies in % derived by the ML algorithm

Figure 3 displays the classifiers’ sizes for the top three
predictive classifiers (C4.5, Bagging, RIDOR). It is clear
from the figure that Bagging derives larger classifiers
compared to both RIDOR and C4.5 algorithms. This is due
to the generation of multiple local classifiers, and the
integration step forming a final tree structure, which may
lead to many branches and leaves. The classifier presented
by RIDOR is the least predictive among those of the three
algorithms, yet it contains a concise set of rules. From the
user’s perspective, a more concise set of rules could make it
easier for network administrators to understand and manually
control the BHP flooding attack problem. C4.5, on the other
hand, offers moderate-sized classifiers that have superiority
in classification accuracy over RIDOR and Bagging
respectively. In fact, C4.5 covered more training examples
than RIDOR, discovering more rules that may contribute to
the increase in predictive performance.

Figure 3.The classifier sizes of RIDOR, Bagging and C4.5 algorithms

Figures 4a – 4d show the true positives (TPs), false positives
(FPs), true negatives (TNs) and false negatives (FNs)
respectively for the considered algorithms on the BHP flood
attack dataset. The TPs and TNs are consistent with the
classification accuracy rates derived beforehand, in which
C4.5, Bagging and RIDOR achieved higher TPs and TNs
than that of the remaining algorithms. For example, RIDOR
correctly classified “Block”, “No Block” and “M- No Block”
class labels without any error. However, for the hard-to-
detect cases, i.e. the ones which belong to the “M-Wait”
class, 28 instances have been misclassified by RIDOR as the
“M=No Block” label. For the TNs results, AdaBoost
algorithm seems have the rates because it was unable to
clearly differentiate among the four class labels in particular
NB-Wait, which its instances have been completely
misclassified to NB-No-Block class label.

Figure 4a.The TPs of the ML algorithms

Figure 4b.The FPs of the ML algorithms

Figure 4c.The TNs of the ML algorithms

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

172

Figure 4d.The FNs of the ML algorithms

The results of the TPs, TNs, FNs and FPs show that “Block”
and “No Block” cases are easy to detect by the ML
algorithms except AdaBoost, but cases that belong to class
labels “M-Wait” and “M-No Block” are harder to be
detected, due to overlaps between these two class labels. To
be precise, in terms of FPs and FNs, the three least
performed algorithms (AdaBoost, SVM-SMO, Logistic) are
associated with 300, 204, and 254 misclassifications
respectively. These figures clearly reveal the reasons behind
the low predictive rates of these three algorithms in detecting
difficult-to-classify cases of “M-Wait” and “M-No Block”.
To overcome this issue of overlapping between class labels,
more data cases covering “M-No Block” and “M-Wait” are
needed, so the ML algorithms can further distinguish
between them during the learning phase. This is due to the
fact that the misbehaving nodes are further decomposed in
the dataset into three sub-class labels, in order to reflect the
true nature of the problem and reduce overfitting during the
learning phase. Moreover, and in terms of FNs, decision tree
and Bagging algorithms consistently derived good results
when compared with the remaining algorithms. To be exact,
Bagging algorithm only wrongly classified 11 instances 8 of
which belong to the hard to classify class NB-Wait.
Typically, we do not desire to end up with a binary
classification problem in which the ML algorithm decides
whether the ingress node is behaving or misbehaving.
However, we do aim to understand to which degree the node
is misbehaving, and if two nodes are misbehaving, which
may be allowed to transmit data, and which should delay in
using their flooding or network utilization rates. Therefore, it
was necessary to further split the misbehaving class into
multiple class labels during the data collection phase.

Figure 5 shows three more types of measures: precision,
recall, and F-measure. The precision results displayed in
Figure 5 shows a consistency with classification accuracy
rates, and highlights that malicious ingress nodes are harder
to be detected than behaving ingress nodes, at least for the
dataset and algorithms used. Usually, high precision rates,
such as in C4.5, RIDOR and Bagging, relate to their low
FPs. C4.5 achieved the largest precision and AdaBoost the
lowest. In the precision results, seven out of eight algorithms
have consistent results when compared to their accuracies,
except for the AdaBoost algorithm. The precision of
AdaBoost declined significantly to 0.397 (39%) due to a
large number of FP cases, as shown in Figure 5. Precision
shows the number of correctly classified cases from all that

have been classified. On the other hand, recall results in the
same figure denotes the number of correctly classified cases
in all cases intended to be correctly classified. In the recall
results, all the ML algorithms have consistent results when
compared to their predictive accuracies.

Figure 5.The Precision, Recall and F1 scores of the ML algorithm

To have a clearer insight into precision and recall alongside
one another, we generated the scores when using the F1
measure. The F1 score takes the weighted average of recall
and precision (false negatives and false positives) into
consideration, especially when involving data such as our
four unevenly distributed class labels. In our study, we can
observe that C4.5, RIDOR and Bagging still generate highly
competitive F1 scores compared to the remaining considered
algorithms on the BHP flood attack dataset.

Lastly, Figure 6 depicts the runtime in millisecond (ms)
taken from the ML algorithms in constructing the classifiers.
Here, the fastest algorithms were Naïve Bayes and C4.5.
Naive Bayes uses simple likelihood calculations for all
variables in the test dataset using their frequencies in the
training dataset, hence no rule learning being involved.
Alternately, the C4.5 algorithm employs fast learning based
on computing Entropy for the variables in the training
dataset to build tree based classifiers. Hence, these two
algorithms are quite efficient in building predictive
classifiers in contrast to alternative ML algorithms. The
MultilayerPerceptron NN algorithm was the slowest
algorithm in building the classifier due to the exhaustive
search this algorithm employs, which is based on pre-setting
the desired expected error achieved. This often necessitates
repetitive training dataset scans.

Figure 6.The time in ms needed to build the classifier of the ML algorithm

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

173

4. CONCLUSIONS

In spite of the many benefits of an OBS network, such as
bandwidth efficiency, economic values and resiliency, OBS
network can become vulnerable when burst loss occurs
during ingress nodes sending data, causing BHP flood
attacks. This fundamental issue in OBS networks may
deteriorate the overall network’s performance, due to the
allocating of resources without proper usage. BHP flood
attacks hinder the QoS of the OBS network, hence
potentially causing a severe problem – the Denial of Service
(DoS). This paper investigated the aforementioned issue by
applying machine learning (ML) to automatically detect
misbehaving ingress nodes, and blocking them in a
preliminary stage. We evaluated various ML algorithms via
simulation data, involving more than two ingress nodes and
over 530 runs.

The aim was to classify ingress nodes as accurately as
possible, using variables related to their performance, such as
packet drop rate, bandwidth used, and average delay time
among others. Experimental results from a processed dataset
related to BHP flood attacks showed that rule based
classifiers, in particular decision trees (C4.5), Bagging, and
RIDOR, consistently derive high predictive classifiers
compared to alternate ML algorithms, including AdaBoost,
Logistic Regression, Naïve Bayes, SVM-SMO and NN-
MultilayerPerceptron. Moreover, the harmonic mean, recall
and precision results of the rule based and tree classifiers
were more competitive than those of the remaining ML
algorithms. Lastly, the runtime results measured in terms of
millisecond showed that decision tree classifiers are not only
more predictive, but are also more efficient than the rest of
the algorithms. Thus, this is the most appropriate technique
for classifying ingress nodes to combat the BHP flood attack
problem. This paper is one of the initial attempts on adopting
ML techniques to automatically classify ingress nodes in
OBS networks.

In the near future, we intend to build a new rule-based
classifier using the decision tree, and embed it inside the
simulator to detect misbehaving nodes during the simulation
phase.

REFERENCES

1. Y. Chen, C. Qiao, and X. Yu, Optical burst

switching: A new area in optical networking
research,IEEE Network,vol. 18, no. 3, pp. 16–23 Jun
2004,

2. A. Rajab, C. T. Huang, M. Al-Shargabi, and j. Cobb
Countering Burst Header Packet Flooding Attack in
Optical Burst Switching Network,ISPEC 2016:
Information Security Practice and Experience, 2016, pp
315-329.

3. M. Sliti, M. Hamdi, and N. Boudriga, (2010) A novel
optical firewall architecture for burst switched
networks, in Proc. 12th Intl. Conference on
Transparent Optical Networks (ICTON),2010, pp. 1-5.

4. M. Sliti, and N. Boudriga, BHP flooding vulnerability
and countermeasure,Photonic Network
Communications, vol. 29, no. 2, pp.198-213, 2015.

5. N. Abdelhamid, and F. Thabtah.Associative
Classification Approaches: Review and
Comparison,Journal of Information and Knowledge
Management (JIKM), vol. 13, no. 03, pp. 145-227,
2014.

6. A. Rajab, Burst Header Packet (BHP) flooding
attack on Optical Burst Switching (OBS) Network
Data Set,University of California Irvine Data
Repository, 2017.

7. M. Lichman, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and
Computer Science, 2013.

8. F. Thabtah, A review of associative classification
mining,The Knowledge Engineering Review,vol. 22,
no. 1, pp. 37-65, Mar 2007.

9. A. Jayaraj, T. Venkatesh, and C. Murthy, (2008) Loss
classification in optical burst switching networks
using machine learning techniques: improving the
performance of tcp,IEEE Journal on Selected Areas in
Communications,vol. 26, no. 6, pp. 45 –54, Aug 2008.

10. N. Patani1, R. Patel, A Mechanism for Prevention of
Flooding based DDoS Attack,International Journal of
Computational Intelligence Research, vol. 13, no. 1 pp.
101-107, 2017.

11. J. L. Berral, N. Poggi, J. Alonso, R. Gavaldà, J. Torres,
and M. Parashar, (2008) Adaptive distributed
mechanism against flooding network attacks based
on machine learning,Proceedings of the 1st ACM
Workshop on Workshop on AISec, October 2008,
pp.43–50.

12. R. C. Prathibha, R. R. Rejimol Robinson, A
Comparative Study of Defense Mechanisms against
SYN Flooding Attack,International Journal of
Computer Applications, vol. 98, no.18, pp. 0975 –
8887, July 2014.

13. A. W. Moore, and D. Zuev, Internet traffic
classification using Bayesian analysis techniques,In
ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS) 2005,
Banff, Alberta, Canada, June 2005, vol. 33, No 1, pp.
50-60.

14. R. O. Duda, and P. E. Hart, Pattern Classification and
Scene Analysis, New York: John Wiley & Sons, vol. 3,
pp. 731-739, 1973.

15. T. T. Nguyen, and G. Armitage, A survey of
techniques for internet traffic classification using
machine learning,IEEE Communications Surveys and
Tutorials, vol. 10, no. 4, pp. 56-76, 2008.

16. N. Abdelhamid, A. Ayesh, and F. Thabtah, Phishing

Adel Rajab, International Journal of Science and Advanced Information Technology, 8 (6), November - December 2019, 164 - 174

174

detection based associative classification data
mining,Expert Systems with Applications, vol. 41, no.
13, pp. 5948-5959, Oct 2014.

17. H. Abdel-Jaber, F. Thabtah, M. Woodward, A. Jaffar,
and H. (2014). Random Early Dynamic Detection
Approach for Congestion Control,Baltic Journal of
Modern Computing, vol. 2, no. 1, pp. 16-31, 2014.

18. F. Thabtah, W. Hadi, N. Abdelhamid, and A. Issa,
Prediction Phase in Associative Classification. In
Journal of Knowledge Engineering and Software
Engineering,vol. 21, no. 6, pp. 855-876, 2011.

19. I. Qabajeh, F. Thabtah, and F.Chiclana, A dynamic
rule induction method for classification in data
mining,Journal of Management Analytics, vol. 2, no. 3,
pp. 233–253, Jul 2015.

20. M. Sumner, E. Frank, and M. Hall, Speeding up
logistic model tree induction Knowl,Discov.
Databases: Pkdd, Vol. 37, no. 21, pp. 675–683, 2005.

21. B. R. Gaines, and P. Compton, (1995). Induction of
Ripple-Down Rules Applied to Modeling Large
Databases,J. Intell. Inf. System, vol. 5, no. 3, pp. 211-
228, Nov 1995.

22. J. Platt, Fast training of SVM using sequential
optimization, (Advances in kernel methods – support
vector learning, B. Scholkopf, C. Burges, A. Smola
eds), MIT Press, Cambridge, 1998, pp. 185-208

23. D. E. Rumelhart, G. E., Hinton, and R. J. Williams,
Learning representations by back-propagating
errors,Nature,vol. 323, no. 6088, pp. 533–536, Oct
1986.

24. J. Quinlan, C4.5: Programs for machine learning,
San Mateo, 1993, CA: Morgan Kaufmann.

25. Y. Freund, and R. E Schapire, (1997) A Decision-
Theoretic Generalization of On-Line Learning and
an Application to Boosting,Journal of Computer and
System, vol. 55, no. 1, pp. 119-139, Aug 1997.

26. L. Breiman, Bagging predictors,Machine Learning,
vol. 24, no. 2, pp. 123-140, Aug 1996.

27. R. Bunker, and F. Thabtah, (2017) A Machine
Learning Framework for Sport Result Prediction,
Applied Computing and Informatics Journal, Vol. 15,
no. 1, pp. 1-21, Jan 2017.

28. R. M. Mohammad, F.Thabtah, and L. McCluskey,
An Improved Self-Structuring Neural
Network,Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2016, pp. 35-47.

29. F. Thabtah, I. Qabajeh, and F. Chiclana, Constrained
dynamic rule induction learning,Expert Systems with
Applications, vol. 30, no. 63, pp. 74-85, Nov 2016.

30. W. Cohen,Fast Effective Rule Induction. In
Proceedings of the Twelfth International Conference on
Machine Learning, Tahoe City, California, 1995,pp.

115-123Morgan Kaufmann.

31. J. Fürnkranz, and G. Widmer, (1994). Incremental
reduced error pruning,In Machine Learning:
Proceedings of the Eleventh Annual Conference, New
Brunswick, New Jersey,1994, pp. 70-77. Morgan
Kaufmann.

32. N. A. Zaidi, J. Cerquides, M. J. Carman, and G.
I.Webb, Alleviating naive bayes attribute
independence assumption by attribute
weighting,Journal of Machine Learning Research, vol.
14, pp. 1947 – 1988, 2013.

33. J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang,
Internet traffic classification by aggregating
correlated naive bayes predictions,IEEE Transactions
on Information Forensics and Security, vol. 8, no. 1,
pp. 5–15, Oct 2013.

34. J. Quinlan, Bagging Boosting and C4.5, 2006.

35. R. Mohammad, F. Thabtah, and L. McCluskey,
Predicting Phishing Websites based on Self-
Structuring Neural Network,Journal of Neural
Computing and Applications, vol. 25, no. 2, pp. 443-
458, Aug 2016.

36. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, and I. Witten, (2009). The WEKA Data
Mining Software: An Update,In SIGKDD
Explorations, vol. 11, no. 1, pp. 10-18, Nov 2009.

37. M. Hall, Correlation-based Feature Selection for
Machine Learning, Thesis, department of computer
science, Waikaito University, New Zealand, 1999.

38. H. Joachims, Large-scale support vector machine
learning practical, Advances in kernel methods:
support vector learning, MIT Press, Cambridge, MA,
1999.

39. T. Joachims, Text categorization with support vector
machines: Learning with many relevant features, In
European conference on machine learning, Springer,
Berlin, Heidelberg, April 1998, pp. 137-142.

40. S. Le Cessie, and J. C. Van Houwelingen, Ridge
Estimators in Logistic Regression,Applied
Statistics,vol. 41, no. 1, pp. 191-201, Mar 1992.

41. J. Shawe-Taylor, and S. Sun, A review of optimization
methodologies in support vector machines,
Neurocomputing,vol. 74, no. 17, pp. 3609–3618, Oct
2011.

42. R. Schapire,The strength of weak
learnability,Machine Learning, vol. 5, no. 2, pp. 197-
227, Jun 1990.

43. NSFNET : [Online]. Available:
http://nsl.csie.nctu.edu.tw/nctuns.html [accessed August
25, 2017].

