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Abstract:This paperaddresses the multi-objective stochastic 

optimization problem that arises in many real-world applications, 
especially in supply chain management and optimization.To this 
end, a simulated annealing algorithm is presented and used for 
solving this problem. The algorithm uses the hill-climbing 
criterionin order to escape from local minimality trap. The paper 
also introduces a new Pareto set for stochastic optimization 
problems and demonstrates the application of simulated annealing 
on this Pareto set. Finally, the proposed algorithm is applied on an 
inventory example that is solved by optimizing three objectives. 
Numericalresults indicate that the algorithm is capable of 
constructing a Pareto set of non-dominated solutions.    
 

Keywords: Multi Objective Optimization, Simulated Annealing, 
Hill-climbing algorithm, Supply Chain Management.  

INTRODUCTION 
Multi-objective optimization (MOO) problems arise in 

many applications, especially in supply chain management 
and optimization. Supply chain performance is concerned 
with optimizing a multi-attribute decision. Altiparmaket al. 
[1] formulated the supply chain design as a multi-objective 
optimization problem in which the objective is not only to 
minimize supply chain costs, but also to maximize customer 
service while at the same time maximizing the capacity 
utilization and balance at the distribution centers. Azaronet 
al. [2] considered three objectives:(i) the minimization of the 
sum of current investment costs and the expected future 
processing, transportation, shortage, and capacity expansion 
costs, (ii) the minimization of the variance of the total cost, 
and (iii) the minimization of the financial risk or the 
probability of not meeting a certain budget. Franca et al. [3] 
considered the multi-objective supply chain that maximizes 
the profit and minimizes supplier defects (increasing the 
quality level). Moncayo-Martínezet al. [4] consideredtwo 
objectives: minimizing the total cost and lead-time 
simultaneously for a product or a family of products. The 
complexity of the supply chain network largely contributes to 
the difficulty of optimizing supply chain performance. 
Jayaraman and Ross [5] described the PLOT (Production, 
Logistics, Outbound, Transportation) system to address 
network design problems involving a central manufacturing 
plant, multiple distribution centers and cross-docking sites, 
and retail outlets stocking multiple products. 

 
 

 

Simulated Annealing, in particular, plays a critical role in 
keeping the time required to optimize the model manageable 
for practical problems. Ulunguet al. [6] conceived a 
Multi-Objective Simulated Annealing (MO-SA) algorithm 
for solving combinatorial optimization problems. Alrefaei 
and Diabat [7] also proposed a simulated annealing algorithm 
for solving a multi-objective optimization problem and 
implemented it toan inventory problem. Another example of 
using SA for SCM optimization can be found in [8].  

 

MULTI-OBJECTIVE OPTIMIZATION 
Consider an n-vector function ݂ =  ( ଵ݂, … , ௡݂), where ௝݂is 

the jth objective function, ݆ = 1, 2, … , ݊, usually ௝݂  is the 
expected performance of a complex stochastic system whose 
evaluation encounters some noise;  

௝݂(ݏ) =  ൧                                 (1)(௦ܻ ;ݏ)ℎ௝ൣܧ 
Assume that we are interested in selecting a system that 

optimizes all the objective functions ଵ݂ , … , ௡݂. We need to 
keep in mind that there may be no single optimal solution that 
solves all objective functions and the optimization objective 
maybe conflicting. One way of solving this problem is to give 
a weight for the various objective functions based on their 
importance and then aggregating them into a single objective 
optimization problem as follows: 

(ݏ)݂ =  ෍ݓ௝ ௝݂(ݏ), where෍ݓ௝ = 1,
௡

௝ୀଵ

௡

௝ୀଵ

௝ݓ ≥ 0                                                 (2) 
Then, one can use any optimization problem to solve the 

aggregated problem.This approach was used by Alrefaei and 
Diabat [13] to solve a multi-objective inventory optimization 
problem. Santé-Riveiraet al. [9] alsoused this approach for 
optimizing the land use allocation.  A key challenge for this 
method is in determining the weights ݓ௝ , ݆ = 1, 2, … ,݊. 

Another way of solving the MOO is to construct a Pareto 
set, which is a set of alternative solutions that are not 
dominated by any other solution. A solution ݔ  is said to 
dominate solution ݔ’  if all components of ݔ ; ௝݂(ݔ), ݆ =
1, … ,݊ are at least as good as those of ݔ’ (with at least one 
strictly better component). In other words  

௝݂(ݔ)  ≤  ௝݂(ݔ’), for all ݆ = 1, … ,݊ 
and ௝݂(ݔ) < ௝݂(ݔ’), for at least one ݆. 
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Solution ݔ belongs to the Pareto optimal set if it is not 
dominated by any other feasible solution. 

Other approaches that were suggested to solve MOO 
problems include thetwo well-known approaches ofPAES 
(Knowles and Corne [10]) and NSGA-II (Deb et al. [11]). 
The first popular algorithm is called the Non-dominated 
Sorting Genetic Algorithm (NSGA-II) proposed by Deb et al. 
[11]. Initially, a random parent population is generated 
andsorted based on the non-domination relation. A fitness 
function is then assigned to each solution based on 
itsnon-domination level. A child of population smaller than 
the parent population is generated from the parent population 
and all the solutions are sorted based on their non-domination 
status. The new population is now used as a parent. The other 
known approach in this regard is proposed by Knowles and 
Corne [10].They suggested a simple multi-objective 
Evolutionary Approach (EA) using a single parent, single 
child EA. Both the parent and the child are compared;, the 
one that dominates the other is added to the Pareto set, and if 
they do not dominate each other, then they are compared with 
the solutions in the Pareto set.  

MULTI OBJECTIVE SIMULATED ANNEALING 
ALGORITHMS 

Simulated Annealing is a heuristic optimization technique 
that was developed earlier by Kirkpatricket al.[12] for 
solving deterministic combinatorial optimization problems. It 
is assumed that the solution space is well organized. The 
simulated annealing uses a hill-climbing criteria in order to 
escape the local minimality. Given a current solution,a new 
candidate is selected from the neighborhood of the current 
state and compared with the current solution, if its function 
value is better than it is accepted as the new solution. If its 
function value is larger, then there is a chance for selecting it 
as a new solution with probability that depends on the 
difference in their objective function values. Suppose that the 
current solution is ܺ  and the candidate solution is ܼ  with 
objective function values ݂(ܺ) and݂(ܼ), then the probability 
of accepting the candidate solution is given by 

݌ = ݌ݔ݁  ቈ
−[݂(ܼ) − ݂(ܺ)]ା

௞ܶ
቉ 

where ௞ܶ  is a control parameter, that is decreased to zero with 
a predetermined rate in order to converge to optimal solution, 
and 

[݂(ܼ) −݂(ܺ)]ା = ൜ 0  ݂݅ ݂(ܼ) ≤ ݂(ܺ)
݂(ܼ) −   ݁ݏ݅ݓݎℎ݁ݐ݋,(ܺ)݂

 
Note that if ݂(ܼ) ≤ ݂(ܺ)  then ݌ =  1  and the candidate 
solution ܼ is accepted.  
The simulated annealing has been modified for solving 
stochasticoptimization problems. Alrefaei and Andrad´ottir 
[13] propose a SA algorithm that uses a constant parameter T 
instead of a decreasing sequence. Ahmed and Alkhamis [14] 
use a simulated annealing approach that uses the Ranking and 
Selection procedure to compare the current solution with its 
neighboring solution.  
Several authors consider the use of simulated annealing for 
multi-objective optimization. Suppapitnarm et al.[15] used 

the simulated annealing algorithm for solving  
multi-objective problems.Their method startswith an initial 
solution X in the Pareto set, then selects a candidate Z from 
the neighborhood of X and uses the acceptance probability 

ܲ = min ቊ1,∏ ݌ݔ݁ ቈ
ିൣ௙ೕ(௓)ି௙ೕ(௑)൧శ

்ೖ
቉௡

௝ୀଵ ቋ  for moving to a 

candidate solution Z, where ௝݂(ݐ)  is the ݆௧௛  objective 
function, and ௞ܶ is a decreasing sequence. If Z is accepted, 
then the algorithm adds it to the Pareto set. Suman [16] has 
also used a Pareto dominated simulated annealing for 
multi-objective optimization problems where he has made 
extensive comparisons of multi-objective simulated 
annealing algorithms.  

THE PROPOSED -MOSA 

The underlying MOO problem in this paperis a stochastic 
optimization problem that has no exact objective function 
values. Instead, optimization values are estimated using 
simulation. Thus, we cannot check the dominance criterion 
with certainty. To address this issue, we define the 
-dominance as follows: 

Definition 1:For two solutions x and z, we say that x is 
-dominated byz if for all objectives j, the confidence 
interval ܥ∝ 

௝ = (1−∝)100% for the difference  ௝݂(ܼ) − ௝݂(ݔ) 
are contained in the interval (−∞, 0]  and at least one 
 ∝ܥ
௝ = (1−∝)100% is contained in the interval (−∞, 0). If x 

is not -dominatedby z, then we say that x is 
-non-dominated by z.  

In the proposed method, we construct a Pareto optimality set 
that consists of -non-dominated solutions. All the previous 
simulated annealing methods use a control parameter ௞ܶ  
(called the temperature) that is decreased to 0 in order to 
make the probability of moving to a new solution small when 
the algorithm becomes closer to the optimal solution. 
However, in our approach, we let the temperature ܶ be 
constant all the time.In this way, we give more chancesforthe 
algorithm to explore the set of feasible solutions in order to 
locate an optimal or a near optimal solution. It is assumed that 
the solution set is well structured, that is, for each feasible 
solution ܺ, there is a neighborhood ܰ(ܺ), the neighborhood 
ܰ(ܺ) is assumed to be symmetric, i.e., if  ܼ ∈  ܰ(ܺ), then 
ܺ ∈  ܰ(ܼ), and each feasible solution ݔ′ is reachable from 
ܺ ;i.e. there is a sequence of feasible points ܺ଴ =
ܺ, ଵܺ, ଶܺ, … , ௥ܺ = ܺ′  such that ଵܺ ∈ ܰ( ଴ܺ),ܺଶ ∈
ܰ( ଵܺ), … ,ܺᇱ ∈ ܰ( ௥ܺିଵ).  At the beginning, a set of size n is 
selected randomly as the initial Pareto set. The Pareto set is 
then updated using the hill-climbing algorithminthe 
simulated annealing method. At the beginning, the algorithm 
starts by initial Pareto set ଴ܲ . At any iteration k, a new 
candidate Z is selected from the neighborhood of the current 
solution X. All the objective functions at the current and at the 
candidate solutions are estimated and compared through the 
probability selection  

݌ = ෑ݁݌ݔ ൥
−ൣ ௝݂(ܼ) − ௝݂(ܺ)൧

ା

ܶ
൩

௡

௝ୀଵ

                           (3) 
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If the new candidate is accepted, then it is compared with 
the Pareto set ௞ܲ . If the new candidate -dominates one of the 
solutions in ௞ܲ , then the candidate solution enters the Pareto 
set and the solution that is dominated is removed from ௞ܲ . 

The MOSA algorithm: 
 

Step0: Select a starting set ଴ܲ  as the initial Pareto set. 
Let ݇ = 0. Select ܺ௞ from ௞ܲ  

Step1: Given ܺ௞ = ܺ , select a candidate ܼ௞  from 
theneighborhood of ܺ;ܰ(ܺ). 

Step2: Given ௫ܺ = ܺ and ܼ௞ = ܼ ,get estimates of all 
objective function values ଵ݂, … , ௡݂ at ܺ  and ܼ  as 
൫ ଵ݂(ܺ), … , ௡݂(ܺ)൯  and ൫ ଵ݂(ܼ), … , ௡݂(ܼ)൯  through 
simulation. 

Step3: Generate a uniform random number ௞ܷ in [0,1], 
If ௞ܷ  ≤ ݌ , where the probability selection ܲ  is 
given by (3), compare Z with the solutions in the 
Pareto set ௞ܲ , if there exists ݔᇱ ∈ ௞ܲ at which ݔᇱis 
-dominated by z then replace ݔᇱ  by the candidate 
ܼ in ௞ܲ . 

Step4: If the stopping criterion is not met, let ݇ =  ݇ +  1, 
Go to Step 1. 

NUMERICAL EXAMPLE 

The proposed approach is tested on an inventory 
multi-objective stochastic optimization problem. Consider 
the following as a (ܵ,ݏ)  multi-objective inventory model 
presented in Alrefaei and Diabat [7]. In (ݏ,ܵ)policy, an order 
is placed as soon as the inventory position declines to or 
below thereorder point s. The order size is chosen so that the 
inventory position increases to S. A stockout occurs if the 
sum of theundershoot plus the total lead time demand goes 
below s (see Fig. 1).  We assume that the (s, S) inventory 
model consists of three minimizing objectives: the average 
orderingcost, the average holding cost (storage cost), and the 
average shortage cost. We assume that the time between 
successivedemands is exponentially distributed with a mean 
interarrival time of k days, and that the size of each demand is 
a discreterandom variable with the following probabilities 

Table 1: The demand size distribution 
Demand size 1 2 3 4 5 6 7 

Probability 0.15 0.25 0.3 0.1 0.1 0.05 0.05 

The lead time (the time between placing an order and 
receiving it) is assumed to be uniformly distributed between1 
and 2 days. The inventory is reviewed every month. The 
setup cost to place an order is K = $50 and the cost of each 
itemordered is ܥ௜  =  $5. The holding cost per item per month 
is ℎ௜ =  $2, and the shortage cost per item per month is 
assumed to beߨ =  $5.  

We are interested in constructing a Pareto set that consists of 
three solutions that are not dominated by other solutions. It is 
assumed that the feasible solution set consists of  
ܵ = 20 :(ܵ,ݏ)}   ≤ ≥ ݏ 115;  45 ≤ ܵ ≤  235;  ܵ −  ݏ

≤  .{are multiples of 5 ܵ,ݏ   ,25

We coded the algorithm by Fortran Power station and ran 
the algorithm to the described inventory model for 500 
iterations. Table 2 summarizes the obtained results, it shows 
the three values of the objective function in the final Pareto 
set ܲ = {(30, 95), (25, 90), (25,95)}.  

 
Figure 1: The (s, S) inventory model 

 
Table 2: The three costs in the final Pareto set 

 ORDER (ܵ,ݏ) (݆)ܲ
COST 

HOLDING 
COST 

STORAGE 
COST 

Total 
COST 

1 (  30  95 ) 103.93 33.51 8.83 146.28 
2 (  25  90 ) 103.57 29.37 12.73 145.67 
3 (  25  95 ) 103.54 31.41 12.55 147.50 
 

The function values for the first solution in the Pareto set is 
depicted in Figure 2: the horizontal axis represents the 
iteration number and the vertical axis represents the function 
value. It is clear that the obtained holding cost decreased over 
the iterations, but  the other two costs increased slightly. The 
results for the other 2 solutions in the Pareto set are depicted 
in Figures 3and 4, and, as can be seen again in these figures, 
the holding cost decreases. The decrease is because the 
holding cost varies more than the other two costs.  

 

 
Figure 2: The objective function values for the first solution in 

the Pareto set 

 
Figure 3: The objective function values for the second solution 

in the Pareto set 
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Figure 4: The objective function values for the third solution in 

the Pareto set 
CONCLUSION 

This paper presented a simulated annealing algorithm for 
solving multi-objective stochastic optimization problem. The 
algorithm uses the hill-climbing feature to escape the local 
minimality trap. A new Pareto set for multi-objective 
stochastic optimization is also introduced to assist the 
simulated annealing algorithm attain optimality. Simulation 
is used to estimate the objective function values. The 
algorithm is applied to an (ݏ,ܵ) inventory model where the 
numerical results showed that the algorithm is capable of 
selecting a set of non-dominated solution.  In the future, the 
proposed algorithm will be applied to a large-scale supply 
chain optimization problem at a major steel producer. 
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