
Desmond Bala Bisandu et al., International Journal of Information Systems and Computer Sciences, 7(5), September – October 2018, 34– 40

34

An Enhanced Text Mining Approach using
Dynamic Programming

Desmond Bala Bisandu1, Nentawe Yusuf Gurumdimma2, Mammuam Titus Alams3, Dachollom Dorcas Datiri4

1, 2, 3, 4 Department of Computer Science University of Jos, Plateau State, Nigeria
bisandud@unijos.edu.ng, yusufn@unijos.edu.ng, alamsm@unijos.edu.ng, datirid@unijos.edu.ng

1Corresponding author

ABSTRACT— Text mining is a pervasive area of research in
Computer Science. This is the process of finding
knowledgeable and useful information and patterns from
very huge text. It is widely applied in several areas of
applications such as information retrievals; computational
biology etc. Keyword-based searching has been extensively
applied in text dataset considering the keywords as strings.
String matching is used in finding all the occurrences of a
given pattern P of length m from a given text T of length n,
where m ≤ n. An occurrence of a pattern inside the text can

simply be characterized as “exact” or “approximate”. This
paper proposes a framework for text mining using a fast bit-
parallel algorithm for searching exact occurrences of a
pattern inside a huge body of text. We evaluate the
performance of three algorithms in the literature on different
text files and discuss their suitability under different
situations.

KEYWORDS— Algorithms; Bit-Parallelism; Data Mining;
String Matching; Text Mining

1. INTRODUCTION
One of the fundamental problems in information retrieval

is searching for key information within huge date sets. Since
data on the web is doubling very quickly, this makes
knowledge discovery increasingly more challenging and
difficult to handle [1]. The act of extracting meaningful
knowledge or patterns from a large data set is simply referred
to as data mining. Data can be in the form of video, voice,
image, document, or text [2, 3].

Data mining has different areas of applications such as
text mining, image processing, and artificial intelligence [4].
Information available in the text data-sets can be structured,
semi-structured, or unstructured such as in the form of
research papers, and electronic mails [5, 42, 43]. Text mining
is the technique of mining information from textual data [6].

Searching the text is required to extract knowledge. It is
widely applied in numerous areas such as information
retrievals, computational biology, text editor, image
processing, data science, and search engines [7, 8]. Keywords
based searching works by considering series of strings [9].

String matching is used in finding the occurrence of a
given pattern P in the given text T [10, 11]. Pattern
occurrence can simply be considered as “approximate” or
“exact” [12]. Some examples are: exact pattern matching,
approximate pattern matching, regular expression searching,
and online string searching (used for casual searching) [13].
In order to speed up the searching, there is a high quest for
better algorithms [14]. Recently, the bit-parallelism algorithm
has been efficiently used to solve pattern matching problems
[15]. This kind of algorithm takes advantage of high-speed
processor.

This research proposes a framework for text mining using
string matching and bit-parallelism with the goal of
addressing the problem of polysemy and synonymy in
keyword search on textual documents.

The rest of the paper is organized as follows. Section II
presents a study of related work. Section III and Section IV
discusses the methods, procedures, and results discussion
respectively. Finally, Section V is the conclusion and
directions for future work.

2. RELATED WORK
The explosive growth of heterogeneous unstructured

data on the Internet [16], prompts for efficient ways of
exchanging information such as dissertations, and electronic
mails through World Wide Web (www) [2, 17]. Generally,
frameworks for the exchange of such information are needed,
for this purpose data mining mechanism are in high demand
[11]. Text mining techniques that are used in converting
unstructured data into structured / knowledge discovery have
numerous areas of applications such as text searching, string
matching, and machine learning [12, 18].

Pattern matching and retrieval of information in text

consider the key principles of data mining such as classical
string matching [19, 20]. The string matching problem is a
pervasive problem widely applied in numerous applications
area such as image searching, computational biology, and
plagiarism detection; generally using the two classes; exact
and approximate string matching [21, 22, 23].

Gope and Behera in [24] presented a novel algorithm for
pattern matching in the area of bioinformatics. The approach
finds a unique and exact sequence occurrence from the given
DNA gene dataset using a genetic algorithm (GA). The
drawback of the genetic algorithm is in the process of
choosing a prime number (q), it has a worst-case complexity
time of O((n-m+1)m). Similarly, Faro in [14] also presented
a string matching algorithm for the exact online pattern
matching on the DNA sequences of the genome. With a large
amount of biological data, for instance looking at the length
of the given pattern which constitutes a four character set {A,
C, G, T} is making the problem more and more difficult in
providing efficient solutions due to the volume of the dataset.

 ISSN 2319 – 7595
Volume 7, No.5, September - October 2018

International Journal of Information Systems and Computer Sciences
Available Online at http://warse.org/IJISCS/static/pdf/file/ijiscs03752018.pdf

https://doi.org/10.30534/ijiscs/2018/03752018

Desmond Bala Bisandu et al., International Journal of Information Systems and Computer Sciences, 7(5), September – October 2018, 34– 40

35

The authors in [25] proposed a two-way shift-OR (TSO)
algorithm which is the enhancement of the traditional Shift-
And algorithm, with a running time of O(n/m).

Islam and Talukder in [26] proposed a pattern discovery
algorithm framework; using the Index Based Shift (IBS)

algorithm which searches over large DNA sequences of
different pattern length. The IBS algorithm does a
comparison based on the total number of character sets which
makes it more accurate and more efficient especially as the
pattern length increases. Peltola and Tarhio in [27] developed

a word based pattern matching algorithm in the area of
computational biology to analyze textual data either using the
exact (error-free) or approximate (limited error) pattern
matching.

Jangra & Nagpal in [28] proposed a searching algorithm
for pattern matching based on sequence token. The
advantages of the algorithm are that the time consumption is
reduced. Secondly, patterns are represented in a sequential
form which performs the matching using backtracking
techniques. Gupta and Vasgi in [17] proposed an algorithm
for relevant text document retrieval. The algorithm
considered searching in a pattern that performed by passing
through some major process techniques such as deploying
patterns and evolving patterns (noisy removal). Analogously
Anujna and Ushadevi in [29] proposed an algorithm using
Porter D algorithm to remove stop words and stemming (tail
part removal in the text) using regular expression algorithm.

3. METHODS AND PROCEDURES
One of the techniques used in machine learning and data

mining for extracting information from text is called text
mining. Text mining is the process of extracting meaningful
knowledge from a text data; it is also known to be the act of
discovering knowledge from the text [11]. Some major
challenges researchers face in text mining knowledge
extraction stems from the lack of frameworks that can
efficiently extract knowledge in data with noise, word
ambiguity, sensitive context, synonymy, and polysemy
(automobile = vehicle = car = Honda). Application of text
mining is not only limited to bioinformatics (DNA and
RNA), but also in text searching, string matching, soft
computing, machine learning, and artificial intelligence [30].
Text data is said to be in a string if it is in a raw format,
which represents a sequence of characters. String searching
and retrieval of information in text is done using text mining
techniques based on string matching [31, 32].

A. Exact String Matching

The exact string matching problem (ESM) can be solved
using a linear time algorithm when all patterns are
completely identified [12, 19]. Exact string matching
(without allowing errors) is to find the positions of a text
where a given pattern occurs; it does not allow any number
of “errors” in the matches [33]. Numerous algorithms have
been developed for solving exact string matching problems
such as Naïve Approach Algorithm, Knuth-Morris-Pratt
Algorithm, and Boyer-Moore Algorithm etc [34]. The ESM
problem in Computer Science is pervasive due to its different

areas of applications such as: data compressions, image
processing, computational biology, signal processing, and
retrieval of information [19, 35, 36].

B. Backward Directed Acyclic Word Graph (DAWG)
Matching

Backward DAWG matching (BDM) uses the suffix
automaton techniques by constructing a Directed Acyclic
Word Graph (DAWG) using the reversed patterns for finding
all suffixes [17, 37]. The suffix of the reverse pattern is same
as the prefix of the original pattern. The pattern is shifted
when a mismatch occurs, while the automaton continues
reading text from the previous shift position BDM Algorithm
[38].

C. Shift-And Algorithm

 The bit-parallel Shift-And algorithm was invented by
[39]. Its original idea was to match a pattern inside a body of
huge text. The algorithm becomes important as it speed up
the operation by cutting the number of steps to n/w, where
n is the size of the text and w is word length of the computer
used. The algorithm encodes the pattern in the form of bit-
sequence (G) and constructs a finite automaton (with state
vector K) to process the character of the text. Here the length
of G is  m (m being the length of the pattern) and the state
vector is updated by K(K<<1) | G[T[i]], where T is text
[40, 41].

D. Backward Non-deterministic Matching (BNDM)

Navarro & Raffinot, (1998) state reason behind bit-
parallelism implementation. It is simply to speed up the
searching operations, as this technique takes advantages of
intrinsic parallelism of the bit operations inside a computer
word. BNDM is implemented using the Shift–And Algorithm
[35] and BDM, firstly by building a G table which for each
and every z character a bit mask gm…g1 is stored.

 The mask in G [z] has the ith bit set if and only if xi= z.
The state of the search is kept in a machine word K=km…k1,
where ki is set whenever x1x2…xi matches the end of the text
read up to now (State ki is set if and only if it is active).
Therefore, we report a match whenever km is set. We set
K=0m originally and, for each new character sj, updates K
using the formula [38].
K’ ((K<<1) |0m-11) & G [sj]

The beauty of this BNDM algorithm is that, it works only
when m (pattern length) ≤ w (machine word size). The
algorithm is as shown in Figure 1.

Desmond Bala Bisandu et al., International Journal of Information Systems and Computer Sciences, 7(5), September – October 2018, 34– 40

36

 BNDM (P=p1p2…pm, T=t1t2…tn)

Figure 1: BNDM Algorithm [38]

E. Proposed Framework
The newly proposed framework consists of the following

modules: text collection, preprocessing stages which include:
removal of punctuations, extra-whitespaces removal, text
stemming and lastly the stop words removal from the text,

exact string matching using the Bit-parallelism: Backward
Non-deterministic DAWG Matching (BNDM) discovered
patterns and analysis. Figure 2 shows the proposed
framework used in this research.

Figure 2: Proposed framework

4. RESULTS DISCUSSION
A. Presentation of Results
A framework for the text mining using string matching and
bit-parallelism has been implemented using the R
programming language version 3.4.3 and C development
environment. R programming is used during the
preprocessing phase which includes removal of all
punctuations, all extra-whitespaces, stemming of the text, and
lastly stop words. The C language is used in the string
matching phase, fundamentally on the techniques of exact
(without any error) string matching algorithm for finding all
the occurrences of a pattern from a given text using the
Naive, Shift-And and Backward Non-deterministic DAWG
Matching (BNDM) algorithms. Reason behind choosing
above two languages is that the R provides very good tools

for preprocessing and C is highly efficient for bit-parallel
algorithms.

B. Presentation of Performance
Performance-based on execution time and speed was

recorded using all the three algorithms (Naïve, Shift-AND,
and BNDM). For our preprocessing the compilation time and
the running time for all the process (punctuation removal,
extra-whitespaces removal, stemming of text, and lastly the
stop words removal) was generally the same since we are
using the R programming language for the preprocessing
tasks. Search Time was recorded using the compilation +
running time of the same text file after preprocessing using
the Dev-C.

 1. for c do B[c]0m
 2. for i1….m do B[Pm-i+1] B[Pm-i+1] | 0 m-i 1 0i-1
 3. pos0
 4. while pos ≤ n - m

5 do j  m, last  m, D1m
6 while D≠0m
7 do DD& B[tpos+j]
8 jj-1
9 if D& 10 m-1 ≠0m
10 then if j>0 then last j
11 else report an occurrence at pos+1
12 DD<<1
13 pos  pos + last

Desmond Bala Bisandu et al., International Journal of Information Systems and Computer Sciences, 7(5), September – October 2018, 34– 40

37

The textual data with file name testcrude.txt from
(http://staff.utia.cas.cz/vomlel/data/TEST_CRUDE_DAT.GZ
) has been loaded on the R platform; the program is coded to
read in all the text line by line and displays 4176 as the total
number of characters in the entire text. Table I show that
BNDM algorithm has the best performance in general with
1.01 sec. as compile time and 0.99 sec. running time, and
cumulative time of 2.0 sec. Fig. 3 is the bar plot of the
performance of all the three algorithms based on execution
time.

On increasing the file size, we used the 16 bit size, pattern

= “crude”. The results are shown in Table II. We noticed that
the number of the pattern occurrences increases as soon as
we increase the file size. From Table II, BNDM has the best
performance in terms of speed with both compilation and
running time. This table also shows that Naïve performs
better on smaller text size but drops in performance behind
the shift-and as text size increases. The study has been
conducted on another data set which has been collected from
the repository
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation. Table
III shows the results of running BNDM algorithm on this
data set.

Data set on car evaluation has the same objectives on

finding the rate on how many people that uses car based on
all the attributes: unacc, med, small, low, high, vhigh, big,
more. After preprocessing our textual data set on the same R
programming language environment, we recorded a number
of 53,516 character sets, and after running the program
several time on Dev-C environment in searching based on the
individual attributes, BNDM algorithms still gives best result
as shown in Table 3 and Figure 4.

Our findings show that a total number of 2500 people buy
cars based on the attribute “high”, which displayed a very
simple and straightforward bar chart plotted from the R
environment.

5. CONCLUSION AND FUTURE WORK
We concluded our research findings by demonstrating a

better performance in results and discussions. The study has
been classified into two distinct aspects of preprocessing
(removal of punctuations, extra-whitespace removal,
stemming of the text, and removal of stop words) the textual
data set and then performing the matching on the pattern
from the given text after preprocessing. Naïve, Shift-And,
and bit-parallel BNDM algorithm have been applied for the
implementation of finding the number of occurrences of
pattern from the textual data sets. Performance was measured
using the execution time and speed, which all comprises of
both compilation and running time in seconds.

Looking into another data set on car evaluation with same

objectives on finding the rate on how much number of people
that uses car based on all this attributes (unacc, med, small,
low, high, vhigh, big, more). After preprocessing our textual
data set on the same R programming language environment
we recorded a number of 53,516 character sets, and after
running the program several time on Dev-C environment in
searching based on the individual attributes. Bit-parallel
BNDM algorithms still give a much better results in
recording both the compilation and running time in seconds.

A. Future Work

 As future work, this research study can further be
experimented on the approximate string matching algorithm
as well as more classes of string matching. Huge data set can
be considered for the study and C can be integrated into R /
Python programming language. The technique can be used to
convert unstructured data to structured data which can be
more helpful in decision making.

Table 1: Execution Time of the three Algorithms

Execution Time

(sec)

Naïve Shift-AND BNDM
Compile Running Compile Running Compile Running

Reading Text
Files

0.00 0.03 0.00 0.03 0.00 0.03

Punctuations
Removal

0.00 0.01 0.00 0.01 0.00 0.01

Extra-
whitespaces

Removal

0.00 0.03 0.00 0.03 0.00 0.03

Stemming of
Text

0.00 0.79 0.00 0.79 0.00 0.79

Stop words
Removal

0.00 0.05 0.00 0.05 0.00 0.05

Search Time 1.47 0.38 1.92 0.26 1.01 0.08

Total 1.47 1.29 1.92 1.17 1.01 0.99

 2.76 3.09 2.0

Desmond Bala Bisandu et al., International Journal of Information Systems and Computer Sciences, 7(5), September – October 2018, 34– 40

38

Figure 3: Results showing the comparison of all the algorithms

Table 2: Comparison of the Speed of three Algorithms on Increasing the File Size

Speed
(sec)

Naive
Average time

(running +
compilation)

Shift-and
Average

time
(running +

compilation)

BNDM
Average

time
(running +

compilation)

No. of
occurrences

File Size:
10243

1.85

2.18

1.09

76

File Size:
25528

3.64

3.08

2.43

631

File Size:
68508

4.58

3.36

2.89

645

File Size:
99833

5.49

4.01

3.06

659

Table 3: Comparison of the Speed of the BNDM Algorithm on Car Evaluation

Figure 4: Results showing the comparison of the BNDM algorithm

Speed (sec) BNDM Average time (running +
compilation)

No. of people

unacc 2.9 1210

Med 4.0 2016

small 1.4 576

Low 3.5 1440

High 5.0 2304

vhigh 2.1 864
big 1.3 576

more 2.3 1008

Desmond Bala Bisandu et al., International Journal of Information Systems and Computer Sciences, 7(5), September – October 2018, 34– 40

39

REFERENCES

1 S. Hussain, “Survey on Current Trends and Techniques
of Data Mining Research” Expert Systems with
Applications, vol. 39, no. 4, pp. 4609-4617, 2017.

2 B. Singh and H. K. Singh, “Web data mining research: a
survey,” In Computational Intelligence and Computing
Research (ICCIR), IEEE International Conference on,
IEEE, 2010, pp.1-10.

3 D. K. Sharma and A. K. Sharma, “The Dark Web:
Breakthroughs in Research and Practice: Breakthroughs
in Research and Practice,” Deep Web Information
retrieval Process, vol. 5, no. 1, pp. 1-22, 2017.

4 K. S. Deepashri and A. Kamath, “Survey on Techniques
of Data Mining and its Applications,” ACM, vol. 6, no.
2, pp. 198-201, 2017.

5 K. V. Prasad, S. K. Saritha, and D. Saxena, “A Survey
Paper on Concept Mining in Text Documents,”
International Journal of Computer Applications, vol.
166, no. 11, pp. 32-38, 2017.

6 S. Shehata, F. Karray, and M. Kamel, “An efficient
concept-based mining model for enhancing text
clustering,” IEEE Transactions on Knowledge and Data
Engineering, vol. 2, no. 10, pp. 1360- 1371, 2010.

 https://doi.org/10.1109/TKDE.2009.174
7 P. Patil, Application for Data Mining and Web Data

Mining Challenges. Springer, 2017.
8 E. M. Tzanakou, Supervised and unsupervised pattern

recognition: feature extraction and computational
intelligence. CRC Press, 2017.

9 R. Sudhir, “A survey on image mining techniques: Theory
and applications,” Computer Engineering and
Intelligent Systems, vol. 2, no. 6, pp. 44-52, 2011.

10 G. Kesavaraj and S. Sukumaran, “A study on
classification techniques in data mining,” In Computing,
Communications and Networking Technologies
(ICCCNT), Fourth International Conference on, IEEE,
2013, pp. 1-7.

11 Y. Zhang, Image Understanding. Walter de Gruyter
GmbH & Co KG, 2017.

 https://doi.org/10.1515/9783110524130
12 V. Hugot, A. Boiret, and J. Niehren, “Equivalence of

Symbolic Tree Transducers,” In International
Conference on Developments in Language Theory.
Springer, Cham, 2017, pp. 109-121.

 https://doi.org/10.1007/978-3-319-62809-7_7
13 Y. Cheng, I. Izadi, and T. Chen, “Pattern matching of

alarm flood sequences by a modified Smith–Waterman
algorithm,” Chemical engineering research and design,
vol. 91, no. 6, pp. 1085-1094, 2013.

 https://doi.org/10.1016/j.cherd.2012.11.001
14 S. Faro and M. O. Külekci, “Efficient algorithms for the

order preserving pattern matching problem,” In
International Conference on Algorithmic Applications in
Management, Springer, Cham, 2016, pp. 185-196.

 https://doi.org/10.1007/978-3-319-41168-2_16
15 T. Chhabra, S. Faro, M. O. Külekci, and J. Tarhio,

“Engineering order of preserving pattern matching with
SIMD parallelism,” Software: Practice and Experience,
vol. 47, no. 5, pp. 731-739, 2017.

 https://doi.org/10.1002/spe.2433
16 N. Kofahi and A. Abusalama, “A framework for

distributed pattern matching based on multithreading,”
Int. Arab J. Inf. Technol., vol. 9, no. 1, pp. 30-38, 2012.

17 S. Gupta, R. Prasad and S. Yadav “Fast and Practical
Algorithms for Searching the Gapped Palindromes,”
Current Bioinformatics, vol. 12, no. 3, pp. 225-232,
2017.

 https://doi.org/10.2174/1574893610666150828193203
18 S. Mitra and T. Acharya, Data mining: multimedia, soft

computing, and bioinformatics. John Wiley & Sons,
2005.

19 G. Navarro and A. O. Pereira, “Faster compressed suffix
trees for repetitive collections,” Journal of Experimental
Algorithmics (JEA), vol. 2, no. 11, pp. 1-8, 2016.

 https://doi.org/10.1145/2851495
20 R. S. Boyer and J. S. Moore, A computational logic

handbook: Formerly notes and reports in computer
science and applied mathematics, Elsevier, 2014, pp. 32-
44.

21 R. Prasad, A. K. Sharma, A. Singh, S. Agarwal, and S.
Misra, “Efficient bit-parallel multi-patterns approximate
string matching algorithms,” Scientific Research and
Essays, vol. 6, no. 4, pp. 876-881, 2011.

22 M. Aldwairi, A. M. Abu-Dalo, and M. Jarrah, “Pattern
matching of signature-based IDS using Myers algorithm
under MapReduce framework,” EURASIP Journal on
Information Security, vol. 2017, no. 1, pp. 9-15, 2017.

 https://doi.org/10.1186/s13635-017-0062-7

Desmond Bala Bisandu et al., International Journal of Information Systems and Computer Sciences, 7(5), September – October 2018, 34– 40

40

23 R. Singh, D. Rai, and R. Prasad, “A review on

parameterized string matching algorithms,” Journal of
Information and Optimization Sciences, vol. 39, no. 1,
pp. 275-283, 2018.

24 A. P. Gope and R. N. Behera, “A Novel Pattern Matching
Algorithm in Genome Sequence Analysis,” IJCSIT)
International Journal of Computer Science and
Information Technologies, vol. 5, no. 4, pp. 5450-5460,
2014.

25 T. Hirvola, H. Peltola, and J. Tarhio, “Improved Two-
Way Bit-parallel Search⋆,” In Prague Stringology
Conference, 2014, pp. 71-75.

26 T. Islam and K. H. Talukder, “An improved algorithm for
string matching using index based shifting approach,” In
Computing, Analytics and Security Trends (CAST),
International Conference of Computer and Information
Technology (ICCIT), IEEE , 2017, pp. 138-143.

 https://doi.org/10.1109/ICCITECHN.2017.8281772
27 H. Peltola and J. Tarhio, “Alternative algorithms for bit-

parallel string matching,” In International Symposium on
String Processing and Information Retrieval Springer,
Berlin, Heidelberg, 2003, pp. 80-93.

 https://doi.org/10.1007/978-3-540-39984-1_7
28 A. Jangra & S. Nagpal, “Enhancement of Pattern

Matching In Data Mining And Comparative Analysis
With Knuth-Morris-Pratt, Boyer-Moore Algorithm”.
International Journal of Research in Management,
Science & Technology. Vol. 5, no. 1, pp. 137-139, 2017.

29 M. Anujna and A. Ushadevi, “Converting and Deploying
an Unstructured Data using Pattern Matching,”
American Journal of Intelligent Systems, vol. 7, no. 3,
pp. 54-59, 2017.

30 M. Allahyari and K. Kochut, Semantic tagging using
topic models exploiting Wikipedia category network, In
Semantic Computing (ICSC), IEEE Tenth International
Conference on. IEEE, 2016, pp. 63-70.

31 R. Baeza and G. Navarro, “New and faster filters for
multiple approximate string matching,” Random
Structures and Algorithms, vol. 20, no. 1, pp. 23-49,
2002.

 https://doi.org/10.1002/rsa.10014
32 C. C. Aggarwal. Data Mining. Cham: Springer

International Publishing, 2015.
33 K.. Fredriksson and S. Grabowski, “Efficient algorithms

for pattern matching with general gaps, character classes,

and transposition invariance,” Information Retrieval,
vol. 11, no. 4, pp. 335-357, 2008.

 https://doi.org/10.1007/s10791-008-9054-z
34 G. Cormode, and S. Muthukrishnan, “The string edit

distance matching problem with moves,” ACM
Transactions on Algorithms (TALG), vol. 3, no. 1, pp. 2,
2007.

 https://doi.org/10.1145/1186810.1186812
35 S. Faro and T. Lecroq, “The exact string matching

problem: a comprehensive experimental evaluation,”
ArXiv preprint arXiv: 1012.2547. pp. 1-22, 2010.

36 R. Cánovas and G. Navarro, “Practical compressed suffix
trees,” In International Symposium on Experimental
Algorithms. Springer: Berlin, Heidelberg, 2010.pp. 94-
105.

 https://doi.org/10.1007/978-3-642-13193-6_9
37 G. Navarro, “A self-index on block trees,”. In

International Symposium on String Processing and
Information Retrieval. Springer, Cham, 2017, pp. 278-
289.

 https://doi.org/10.1007/978-3-319-67428-5_24
38 G. Navarro and M. Raffinot, “Fast and flexible string

matching by combining bit-parallelism and suffix
automata,” Journal of Experimental Algorithmics (JEA),
vol. 5, no. 4, pp. 20-28, 2000.

 https://doi.org/10.1145/351827.384246
39 R. A. Baeza-Yates, “Improved string searching,”

Software: Practice and Experience, vol. 19, no. 3, pp.
257-271, 1989.

 https://doi.org/10.1002/spe.4380190305
40 K. Fredriksson and S. Grabowski, “Practical and optimal

string matching,” In International Symposium on String
Processing and Information Retrieval. Springer, Berlin,
Heidelberg. 2005, pp. 376-387.

 https://doi.org/10.1007/11575832_42
41 I. Hussain, S. Kausar, L. Hussain, and M. A. Khan,

“Improved approach for exact pattern matching,” Int. J.
Computer Science vol. 10, no. 2, pp. 59-65,2013.

42 B. D. Bisandu, R. Prasad, M. M. Liman “Clustering news
articles using efficient similarity measures and N-grams”
Int. J. of Knowledge Engineering and Data Mining vol.5,
no.4, pp.333-348, 2018.

 https://doi.org/10.1504/IJKEDM.2018.095525
 43 Jain, Rekha, Rupal Bhargava, Sulochana Nathawat, and

G. N. Purohit. "Retrieval of Web Pages Using Integrated
Content and Structured Exploration." International
Journal of Information 2, no. 2, pp. 9- 13, 2013.

