
 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

168


ABSTRACT

Requirement elicitation is important to ensure correct
requirements are elicit for application development.
Wrong elicitation decision leads to a software failure.
The most common challenges task is to ensure
consistent requirements are elicit between engineers
and the users. Most requirements engineers face
difficulties to fulfill the consistency with clients
especially in eliciting IoT security requirements as it
involves many components such as devices, domains
and security attributes. Addition to this, the engineers
also need to have security knowledge and understand
the background and standard related to security for the
business requirements. These constraints resulted to
eliciting poor quality security requirements that leads
to insecure application development. In this paper, we
propose our elicitation approach for security
requirements by using Essential Use Cases (EUCs) and
describe an example usage of eliciting security
requirements for Internet of Thing (IoT) applications
by using an Essential Use Case (EUC). It is found that
EUCs to enhance the process of eliciting security
requirements to produce accurate and complete
security requirements for IoT applications.

Key words : Eliciting, Internet of Things (IoT), IoT
Applications, Security Requirements, Essential Use
Case (EUC), Essential User Interface (EUI).

1. INTRODUCTION

Requirement engineering (RE) in general can
be used to solve the requirements issues and play a
prime help for succession of the software engineering
projects. RE is concerned with the process of defining,
documenting and maintaining of the requirement.
Moreover requirement engineering contains a set of
activities such as: requirements inception or
requirements elicitation, requirements identification,
requirements analysis, requirements specification,

system modeling, requirements validation and
requirements management [1]. The most significant
part in developing an application or software is
requirement elicitation in the early phase of the
development. Requirement elicitation is extract and
determined the requirement from stakeholders,
through the elicitation techniques. In addition, the
requirements include both functional and
non-functional requirements. Thus, the requirement
elicitation is the basic part of requirement engineering
to assure the success of the software development with
high quality. Problems in understanding result from
the necessary involvement of requirements analysts,
sponsors, developers, and end users in requirements
elicitation. The requirements are produced and
interpreted by people with different experience levels
and backgrounds. The form in which the requirements
are expressed and the size of the system described by
the requirements also affect understanding. If the
participants in elicitation do not adequately
understand the output of the process, then the resulting
requirements may be ambiguous, inconsistent, and
incomplete. The requirements may likewise be
mistaken, not tending the true needs of the elicitation
networks.

The number of IoT devices are expected to
increase to 50 billion in the year 2020 [2]. If the
number of connected devices increases and the
management table size and other management
information exceed the system capacity, the
performance of the service may deteriorate or the
service may become uncontrollable. This could
become a serious problem, in particular, if the IoT
devices and applications are related to the life of a
person, property, or social infrastructure. Therefore,
when designing the size of the management table and
other system capacity-related settings, it is necessary to
consider the expected increase in the number of
connected devices. In the development of IoT
application such as logistic and lifetime management,
agriculture and breeding, smart mobility and smart
tourism, smart grid, smart building and many others
[3][4], security requirements are very important. It is
because in today’s world of daily virus alerts,

Eliciting Security Requirements of IoT Applications using Essential Use Case

Asma Asdayana Ibrahim1, Massila Kamalrudin2
1 Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, 76100, Malaysia,

asmaasdayana@gmail.com
2 Innovative Software System and Service Group,

Universiti Teknikal Malaysia Melaka, 76100, Malaysia,
massila@utem.edu.my

 ISSN 2319 – 7595
Volume 8, No.6, November - December 2019

International Journal of Information Systems and Computer Sciences
Available Online at http://warse.org/IJISCS/static/pdf/file/ijiscs01862019.pdf

https://doi.org/10.30534/ijiscs/2019/01862019

 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

169

malicious crackers and various other threats of cyber
terrorism it is very difficult to make the application
development successful. Eliciting security
requirements is very difficult because there is no
well-defined process for eliciting security
requirements and because requirement engineer is
trained to elicit functional requirements and some
non-functional requirements but not security
requirements. Most requirements engineers are poorly
trained to elicit, analyze, and specify security
requirements, often confusing them with the
architectural security mechanisms that are
traditionally used to fulfill them [5]. Thus, the
requirement engineer ends up specifying architectural
and behavioral constraints rather than actual security
requirements. To elicit these security requirements the
engineer must have a clear understanding of various
types of security requirements such as, authentication,
confidentiality, integrity, authorization, access
control, and availability [3] etc. Likewise, we feel that
there must be a well-defined process for eliciting
security requirements so that there is no other
constraint for the design and implementation team of
the application.

In this paper, we present an approach to elicit
security requirements using EUC and EUI. This paper
organized as follows: Section 2 present the background
and motivation. Section 3 presents the example of the
usage for IoT application using EUC and EUI. Section
4 concludes the paper with some discussion about
security requirements and future works.

2. BACKGROUND AND MOTIVATION

2.1 Security Requirements Elicitation

Security requirements are reflected in various
nontechnical security controls that address such
matters as policy and procedures at the management
and operational elements within organizations, again
at differing levels of detail. It is important to define the
context for each use of the term security requirement so
the respective communities (including individuals
responsible for policy, architecture, acquisition,
engineering, and mission/business protection) can
clearly communicate their intent. Meanwhile,
requirements elicitation is a process of deriving the
system requirements through observation of existing
systems, discussions with potential users and
procurers, task analysis, and so on. This may involve
the development of one or more system models and
prototypes. These help users understand the system to
be specified [1]. Numerous requirements engineering
research and practice have tended the capabilities that
the system will provide. So a great deal of
consideration is given to the functionality of the
system, from the user’s perspective, but little
consideration is given to what the on system should not

do [6]. In one discussion requirements prioritization
for a specific large system, ease of use was assigned a
higher priority than security requirements. Security
requirements were in the lower half of the prioritized
requirements. This happened in part because the only
security requirements that were considered had to do
with access control. However, the basic purpose of
eliciting security requirements is to protect the
software or applications. A software system means
along with the software it includes an operating
environment, in which the software runs, the physical
environment, in which the system exists, the people
interacting with the system directly or indirectly, and
other systems. For ensuring such system security
requirements need to be defined.

The requirements elicitation and analysis that
is needed to get a better set of security requirements
seldom takes place. Even when it does, the security
requirements are often developed independently of the
rest of the requirements engineering activity and hence
are not integrated into the mainstream of the
requirements activities. As a result, security
requirements that are specific to the system and that
provide for protection of essential services and assets
are often neglected. In the real world of the current
practice of security guidance and solution, most
developers or engineers refer to the Common Criteria
(CC), although the CC is complex and difficult to
understand by novice [7] [8]. They found that most of
the developers tend to make mistakes when
determining the right security requirements. They
proposed a method that allows users to specify security
requirements, which subsequently allows developers to
specify the security attributes of their products; hence,
allowing evaluators to determine if the products
actually meet their claims. However, the developer
could not specify the security attributes at the early
requirements phase of product development. Further,
eliciting security requirements at the early phase of
development is needed and it is crucial to present the
secure software or applications.

S. Yahya et. al [9] had explore the usage of Essential
Use Case (EUC) to capture the security requirements
from the business requirements. The study evaluates
various security requirement-engineering tools and
analyses the existing gaps in security requirement
engineering tools. They have conducted a review of
seven common security requirement-engineering tools
to identify the gaps and problems that are still
outstanding. They found that there are several works
done using semi-formalized model, but almost none of
the work captures the security requirements from the
textual representations especially by using EUC.

2.2 Essential Use Case (EUC) and Essential User
Interface (EUI)

The EUC is defined by Constantine and
Lockwood [10] as a “structured narrative, expressed in

 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

170

a language of the application domain and of users,
comprising a simplified, generalized, abstract,
technology free and independent description of one
task or interaction that is complete, meaningful, and
well-defined from the point of view of users in a role or
some roles in relation to a system and that embodies
the purpose or intentions underlying the interaction”.
The main objectives are to support better
communication between the developers and
stakeholders via a technology-free model and to assist
better requirements elicitation. These objectives can be
achieved by allowing only specific details relevant to
the intended design to be elicited [11].

An EUC is shorter and simpler compared to a
conventional use case as it comprises an abstraction of
only essential steps and the user’s intrinsic interest. It
comprises just user intentions and system
responsibilities permitting users to capture the core
part of the requirement without the need to describe the
user interface in detail. An EUC aims to identify “what
the system must do” without being concerned on “how
it should be done”. These questions often lead to
critical realizations that allow users to rethink, or
reengineer the aspects of the overall business process.

Figure 2.1 demonstrates an example of text
requirements (left hand side) and an example of an
EUC (right hand side) while capturing the
requirements (adapted from [12]). The text
requirements from which the important phrases are
extracted (highlighted) are shown on the left hand
side. From the text requirements, a specific key phrase
(essential requirement) is abstracted and is shown in
the EUC on the right-hand side of Figure 2.1. The
EUC depicts two interrelated sets of information: the
user intentions and system responsibility as shown in
Figure 2.1. An EUI prototype is a type of abstract
prototype or paper prototype that is a low-fidelity
model. Also known as a “UI prototype” for a software
system, it represents the general ideas rather than the
exact details of the UI [12][13]. An EUI prototype
represents the user interface requirements in a
technology independent manner; just as the EUC
models do for the behavioral requirements. An EUI
prototype is particularly effective during the initial
stages of user interface prototyping for a system. It
models user interface requirements that are evolved
through analysis and design to the final user interface
of a system [13]. It also allows some investigation of
the ease of use of a system.

Figure 0.1: Example of Textual Requirement (left) and

Example of Essential Use Case (EUC) (right)

When capturing requirements from textual

requirement, the EUC model is found to be more
reasonable than the conventional Unified Modelling
Language (UML) use case. An equivalent EUC
description is generally shorter and easier than a
conventional UML use case as it just includes the basic
steps (core requirements) of user’s intrinsic interest. It
contains the user’s intentions and the system
responsibilities to document the specific interaction
without the need to describe the user’s interface in
detail. It is reported in [14][15] that EUC are beneficial
for capturing security requirements.

EUI prototyping is a low fidelity prototyping
approach [16]. It provides the general idea behind the
UI instead of its exact details. Focusing on the
requirements rather than the design, it represents UI
requirements without the need for prototyping tools or
widgets to draw the UI [17]. EUI prototyping extends
from and works in tandem with the semi-formal
representation of EUC that also focuses on the users
and their usage of the system, rather than the system
features [18]. It thus helps to avoid clients and REs
from being misled or confused by chaotic, evolving
and distracting details. EUI also allows some
explorations of the usability aspects of a system. Figure
2.2 shows examples of EUI prototype developed from
EUC models.

Figure 0.2: Examples of EUI Prototype from EUC Models

3. EXAMPLE USAGE

IoT has the capabilities to make homes and our
life smarter. It consists of different supporting

 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

171

technologies. Technologies help people in many ways,
for example, a mobile application assist travelers to
travel via LRT using PDA and GPS [19]. Therefore,
people percentage having access to technologies is
rapidly increasing and need to have access to
information anytime, anywhere. These innovative
technologies provide convenience in everyday
activities, energy efficiency, security, and comfort
[20]. Adding intelligence capabilities to various IoT
industry could provide increased life quality for the
sick and elderly, for example. Much of the attention in
research has revolved around wireless technologies
that are supportive of remote data control, sensing, and
transfer, such as mobile networks, RFID, Wi-Fi, and
Bluetooth, [3] which have been used to embed
intelligence into the environment. Our previous study
[21] has demonstrate the use of IoT security library to
elicit security requirements based on Smart Parking
System scenario. Table 1 shows the EUC and EUI for
Smart Parking.

Textual Requirement:
User need to book the parking area by using

mobile applications. The user is required to enter ID
of the required parking area. User finds a parking
area from the list of area, registered by parking
details. The system will find the shortest path and sent
the information to the user. The system gives the
details of the selected parking areas such as the name,
price per minute, number of total available slots. User
finds the location selected by using GPS. Then, the
GPS location updated to a cloud server. After that,
user enter the parking. The system read the RFID tag
and all the information updated to cloud and to
neighbor car park. After the user exit the parking,
again RFID tag will read and updated to cloud. Lastly,
billing information will send to the user after
checkout.

Table 1: EUC and EUI for Smart Parking

Essential Use Case (EUC) Essential User
Interface (EUI) Attributes IoT Security

Requirements
IoT

Technologies User
Interaction(UI) System Responsibility (SR)

1. Enter ID 1. Input ID

Username
Password
PIN
ID card

Authentication

 2. Verify user ID 2. Display
ID

Permission
Verify
Gain access

Authorization

3. Update
location and type of
vehicle

3. List
location and
type of vehicle

Accessible
Obtainable
Software
patching

Availability

 4. Verify location 4. Display
location

Permission
Verify
Gain access

Authorization

 5. Verify type of
vehicle

5. Display
type of vehicle

Permission
Verify
Gain access

Authorization

6. Enter
parking detail 6. Input

detail

Username
Password
PIN
ID card

Authentication

 7. Finds the shortest
path and sent the info to user

7. Display
shortest path

Accessible
Obtainable
Software
patching

Availability

 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

172

8. Find the
location 8. Submit

location

Limits access
Unreadable
data
Restricted
access

Confidentiality

9. Mobility
Networks (GPS) location
updated to cloud server

9. Notify
GPS location

North
coordinate
East
coordinate
Altitude
Signals

 GPS

SubEUC (1)
UI SR

Check GPS
coordinate

Permission
Verify
Gain access

Authorization

 Show
coordinate

Accessible
Obtainable
Software
patching

Availability

Update
location

Limited access
Control the
access

Access Control

10. Receive
GPS location 10. Display

GPS location

Limited access
Control the
access

Access control

11. Enter the
car park 12. Input

detail

Username
Password
PIN
ID card

authentication

13. RFID tag is read and
authenticated by RFID
reader

13. Verify ID
using RFID

RFID tags/
transponder
RFID readers

 RFID

SubEUC (2)

UI SR

Tag read the
code and ID ID tag Authentication

 Verify code
and ID

Permission
Verify
Gain access

Authorization

 Request
information

Limits access
Unreadable
data
Restricted
access

Confidentiality

Receive
information

Limited access
Control the
access

Access Control

14. Info updated to cloud
and to neighbour car park

14. Display
status

Accessible
Obtainable
Software
patching

Availability

 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

173

15. Exit the car
park 15. Notify

system

Protect data
Unmodified
data
Unaltered data

Integrity

16. RFID tag is read by
RFID reader and updated to
cloud

16. Verify ID
using RFID

RFID tags/
transponder
RFID readers

 RFID

SubEUC (3)
UI SR

Tag read the
code and ID

Username
Password
PIN
ID card

Authentication

 Verify code
and ID

Permission
Verify
Gain access

Authorization

 Request
information

Limits access
Unreadable
data
Restricted
access

Confidentiality

Receive
information

Limited access
Control the
access

Access Control

 17. Billing info is sent to
the user.

17. Submit
billing info

Permission
Verify
Gain access

Authorization

 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

174

4. CONCLUSION AND FUTURE WORK
Requirements Engineering research has been

established for many years and requirements are the core part
of any application or system development. It is found that
requirements written in natural language are error-prone,
incorrect and incomplete. Complexity in security
requirements requires requirements engineers to have a
security experience and knowledge in the process of eliciting
and analyzing requirements. Due to these deficiencies,
semi-formal models such as EUC have been developed to
improve the quality of the requirements as well as to
minimize the time taken and to ease the requirements
capturing process. However, almost none of the work explores
the usage of EUC for capturing security requirements. This
study attempts to investigate the usage of EUC to improve the
process of capturing the security requirements for IoT
applications. Thus, we believe this study will positive impacts
to the IoT industry as it contributes to the improvement of
developing secure IoT applications, hence leading to the
better quality security requirements. For future work, we will
work on the possibility of automating the complicated usage
of the standard to the easier and simpler practice by using our
tool support. In addition, this approach creates the possibility
to allow a consistent and complete eliciting proses of the
security requirements from IoT applications. Thus, the focus
is to provide the end-to-end support for both the requirement
engineers and the client in confirming the consistency of
requirements.

ACKNOWLEDGEMENT

The authors would like to acknowledge Universiti
Teknikal Malaysia Melaka (UTeM) and Ministry of
Education (MoE) for its support and the funding of this FRGS
research grant: FRGS/1/2016/ICT01/FTMK-CACT/F00325.

REFERENCES

1. I. Sommerville, Software Engineering Ninth
Edition, Ninth. Boston, Massachusetts: Person
Education, Inc., Addison-Wesley, 2011.

2. S. Morisaki, Guidance for Practice Regarding
‘IoT Safety / Security Development Guidelines,
2017.

3. A. A. Ibrahim and M. Kamalrudin, Security
Requirements and Technologies for The Internet
of Things (IoT) Applications: A Systematic
Literature Review, J. Theor. Appl. Inf. Technol.,
vol. 96, no. 17, pp. 5694–5716, 2018.

4. E. Borgia, The Internet of Things Vision: Key
Features, Applications and Open Issues, Comput.
Commun., vol. 54, pp. 1–31, 2014.

5. D. G. Firesmith, Engineering Security
Requirements, J. Object Technol., vol. 2, no. 1, pp.

53–68, 2003.
https://doi.org/10.5381/jot.2003.2.1.c6

6. P. Salini and S. Kanmani, A Survey on Security
Requirements Engineering, Int. J. Rev. Comput.,
vol. 8, no. December, pp. 1–10, 2011.

7. E. Paja, F. Dalpiaz, M. Poggianella, P. Roberti, and
P. Giorgini, STS-Tool : Socio-technical Security
Requirements through Social Commitments, pp.
331–332, 2012.

8. M. S. Ware, J. B. Bowles, and C. M. Eastman, Using
the Common Criteria to Elicit Security
Requirements with Use Cases, in Proceedings of
the IEEE, Memphis, TN, USA, 2006, pp. 273–278.

9. S. Yahya, M. Kamalrudin, and S. Sidek, A Review
on Tool Supports for Security Requirements
Engineering, in 2013 IEEE Conference on Open
Systems, ICOS 2013, 2013, pp. 190–194.

10. L. L. Constantine and L. A. . Lockwood, Software
for Use : A Practical Guide to the Models and
Methods of Usage-Centered Design. New York:
ACM Press, Inc/Pearson Education, Inc., 1999.

11. R. Biddle, J. Noble, and E. Tempero, Essential Use
Cases and Responsibility in Object-Oriented
Development, J. Aust. Comput. Sci. Commun., vol.
24, no. 1, pp. 7–16, 2002.

12. L. L. Constantine and L. A. D. Lockwood, Structure
and Style in Use Cases for User Interface Design,
vol. 1, no. 978. Addison-Wesley Longman
Publishing Co., Boston, MA, 2001.

13. S. W. Ambler, Essential (Low Fidelity) User
Interface Prototypes, 2003. .

14. S. Yahya, M. Kamalrudin, S. Sidek, and J. Grundy,
“Cases (EUCs),” in Asia Pacific Requirements
Engineering Symposium (APRES) 2014, 2014, pp.
16–30.

15. M. Kamalrudin, J. Hosking, and J. Grundy,
MaramaAIC: Tool Support for Consistency
Management and Validation of Requirements,
Automated Software Engineering, pp. 1–45, 2016.

16. S. W. Ambler, Essential (Low Fidelity) User
Interface Prototypes, 2003.

17. L. L. Constantine and L. A. D. Lockwood,
Usage-Centered Software Engineering : An Agile
Approach to Integrating Users , User Interfaces ,
and Usability into Software Engineering Practice
2. Agile Methods and Usability, in 25th
International Conference on Software Engineering,
Portland, Oregon, 2003, 2003, pp. 746–747.

18. S. W. Ambler, The Object Primer: Agile
Model-Driven Development with UML 2.0 (3rd
ed.), 2004.

19. A. M. H. Lim, A. A. Azlianor, S. M. Suhaizan, and
K. Massila, Architecture of Mobile Web
Application for Generating Dynamic Route Map,
Int. J. Comput., vol. 2, no. 2, 2008.

20. E. Alsaadi and A. Tubaishat, Internet of Things :
Features, Challenges, and Vulnerabilities, Int. J.

 Asma Asdayana Ibrahim et al., International Journal of Information Systems and Computer Sciences, 8(5), September -October 2019, 168 - 175

175

Adv. Comput. Sci. Inf. Technol., vol. 4, no. 1, pp.
1–13, 2015.

21. M. Kamalrudin, A. A. Ibrahim, and S. Sidek, A
Security Requirements Library for the
Development of Internet of Things (IoT)
Applications, in Requirements Engineering for
Internet of Things, vol. 809, 2018, pp. 87–96.
https://doi.org/10.1007/978-981-10-7796-8_7

