
JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

919

ABSTRACT

Cloud computing is being used rapidly by the businesses
around the world. Businesses are migrating the existing IT
infrastructure to Cloud based Infrastructure offed third party
service providers due to cost and availability of the latest
technology at their door front. While that being the Security
of the data and software stored on the Cloud has been a real
threat and still many issues in relation to the security
enforcement within cloud based infrastructure has been the
real issue that must be tackled so that the users of the cloud
based infrastructure are sure of the confidentiality of their
data and software.

OpenStack is open source software that can be used by
anybody for building private cloud. Use of OpenStack
minimizes the cost required almost to nil for building once
own private clouds. Many security related issues crops up
when Open stack is used due existence of several
vulnerabilities Security enhancements are required to make
Open Stack fully reliable in maintaining the secrecy and
confidentially of the data stored in Open Stack.

This paper elaborates on the security lapses exposed within
OpenStack and proposes various enhancements to the
existing provisions so that OpenStack is fully secured
without compromising on Service level conditions.
The Existing Architectures of open stack are expanded
through addition of more components and the interactions
between the new and existing components

Key words: Cloud Commuting, Open Stack, Security
provisions, security enhancements, Vulnerabilities existing
in Open Stack

1. INTRODUCTION

1.1 Introduction to open stack

Cloud computing implies provision of the entire
infrastructure required for the user to implement their
business application and access the application from
location. Cloud computing implies making available
software platform and infrastructure as a service when
demanded by the user. Open Stack is cloud computing
system that provides infrastructure as service. Users can
create their own machine instances on which other open
stack and user defined software components run. Cloud
computing infrastructure provides a platform using which the

users develop their own software and run on the instance
which are allocated to the users.

Open Stack can be defined as a set of tools which are used
for building private and public clouds. Open Stack is open
source which is developed by Open Stack foundation and
since the software is open source users can enhance the
functionality of the same through addition and Integration
user developed components

Users can create their own virtual machines which can run
parallel servicing more users. The Virtual machines are
created as and when the users make a demand for the same.
The computing required is horizontally expanded as more
number of users gets added into the system. User has the
access to the source code using which the cloud computing
system is developed. Users can make changes to the source
code and share the modifications made to all the other users
who use Open Stack software for building their internal
cloud. Thus Open Stack is supported by thousands of the
users around the world. Open stack has become robust due to
involvement of many users in the world.

However there are inherent disadvantages due to
involvement of too many independent developers.Original
Open Stack is offered containing 9 Key components which
form the core of the software and from there many
components have been added by other users existing in the
world. The core of Open stack is maintained and distributed
by Open Stack Foundation.

The Nine Components of OpenStack include Keystone
which provides Identityservice, NOVA that provides
Computing Service, Neutron that provides networking
services, Glance that Provides Image based data management
services, SWIFT that provides object storage services,
Cinder that provides Block storage Services, Trove that
provides conventional database services, Heat that provides
Orchestration services,

Horizon that provides dashboard services and Ceilometer
that provides billing Services. Many other type of
components have been introduced subsequently some of
which include Ironic that provide services to run directly on
physical servers known as bare-metal services, Sahara that
provides data processing services, Zaquar that provides
Messaging services, and Barbican that provides Security
Infrastructure. Figure 1 shows the overall architecture of

JKR SASTRY1, ,M TRINATH BASU2,

Dr.JKR Sastry1,B. Trinath Basu2
1Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, drsastry@kluniversity.in
2Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, miriiyala68@kluniversity.in

Enhancement of Security within OpenStack – Some measures

 ISSN 2347 - 3983
Volume 8. No. 3, March 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter49832020.pdf

https://doi.org/10.30534/ijeter/2020/49832020

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

920

OpenStack and Table 1 shows the details of the components
added till date into Open Stack.

Figure 1: Overall Architecture of the Open Stack.

All OpenStack services expose a RESTful API for
communication among them and use HTTP protocol for each
data exchange. However, the real communication happens
between the internal processes of the services that are
dedicated for certain specific execution required. The
communication happens using AMQP (advanced Messaging
protocol) and using a message bus which is RabbitMQ by
default. Every service / module uses SQL based database for
storing state information. Multiple SQL databases can be
used when more throughputs is required

1.2 Security Issues in Open Stack

Each of the Open Stack components delivers a service
meaning a functionality which can be individually attacked.
Each of modules must be analyzed to find the extent of
security implemented within the Module and the Kind of
Vulnerabilities Exposed by each module. Counter Systems
required can be analyzed and find the extent to which the
mechanism either proposed or implemented as on date. As
such the issue of Security is covered by Keystone Module to
the extent of Authentication and Authorization and the issue

of data security dealt by the modules that deals with data
storage services which include GLANCE that manages the
images, SWIFT that manages Object storage, CINDER that
Manages Block Storage and TROVE that Manages
Conventional Databases.

1.2.1 Identity services

Enforcing security requires the Identification of the users and
the Groups to which they belong. It is also important to
assign roles to the users and the kind of accessing the users
can have based on their roles. Keystone provides the Identify
services to all the other components supported within Open
Stack. Keystone maintains a catalogue of all the services and
the association of services to the users having some access
rights. Keystone maintains accounts to which the users,
projects, user Groups and the services that can be accessed
through those accounts. Key Stone also maintains API end
points where the services are located. Users can access the
services using the API end Points. Users are treated as digital
representations of a system, person or a service.

Keystone receives the user requires and then validates that
the requests or genuine being initiated by the valid users
having a specific roles that has the access to the service that
the user is requesting. Keystone assigns a Token to the users
on finding that the user is valid. The Token contains all the
details that include the roles that the users can play, the kind
of services that they can avail.

User roles essentially define the kind of operations that the
users can perform. Every service component also find
whether the service can be extended to the user based on the
service policies maintained for each of the service separately.
Service polices are stored in JSON format in a policy. son
file. The user credentials are made known to the users as data
and the access to the services are provided through the end
points only. Figure 2 shows the interaction of the
KEYSTONE component with other components.

Figure 2: Overall Interactions within Key Modules

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

921

Following steps are followed when a user tries to access an
OPEN STACK service.

1. Users send their user name and password to the
keystone

2. Keystone checks the validity of the same and if
found OK, sends a temporary token and list of
tenants that the user can opt. Tenant is like an
account to which the users, user groups , roles and
resources as assigned

3. Users send to the keystone the Temporary token and
the desired Tenant

4. Keystone on verifying the identity using the
temporary token and the desired tenant sends a
Token that has all the details of the roles, services
and end points.

5. User selects an end point based on the service that
they desire. End point is a kind of URL provided to
access the service, something like a WEB interface.

6. User’s initiates access to the services through
imitation the end points through sending the token
sent by Keystone

7. The Individual services verifies the token, acquires
the access provided to the token and checks whether
the request made is in line with polices maintained
separately for the service.

8. If the request is found OK, the service is provided.

Figure 3 shows the architecture of the keystone Module.

Figure 3: Keystone architecture

The Keystone module is built using 4 sub-components that
provide several services that include catalogue services,
token services, Identity database services, and overall
policy services. The services interact using its internal API.
The Identify databases services provide the validation of
credentials of the users and also validate the users with
reference to the Tenants to which they belong. Tokenisation
service related to creating and delivering the tokens to the
users who are found to be valid users, Catalogue service

maintains an end point registry. The role and rule based
authorisation engine is maintained by Policy service.

Security issue

Keystone uses two systems tempAuth and swAuth for
checking the credentials of the users which is weak. The
users can apply brute force attack to know the users names
and passwords used by the users. No authentication
delegation system is used by KEYSTONE. It does not
exploit the exiting highly sophisticated authentication
system. The Usernames and passwords are stored in files that
can be attacked, Open Stack does not follow NIST rules that
include passwords length, use of different characters, use of
upper and low case letters etc. for choosing the passwords
and as a result the passwords can be easily attacked. Open
Stack also do not carry any dictionary check on the
passwords used by the users making it easy for attacking.
Open stack stores the passwords in plain text. The user name
and password of admin and super user also are stored in the
file in the plain text making it easy to get hold of the data by
the attackers. File based access restrictions must be imposed
and the passwords must be also stored in encrypted manner.

The data sent to Users upon authentication through tokens
reveals many aspects of the system usage, user, user roles,
services, end points etc. The tokens are issues through use of
WEB interface making it easy for the user to attack the
token. The tokens are not delivered through secured
channels. Transport Layer Security (TLS) is not used for
delivering the tokens. It is easy for a man-in-the-middle to
attack the token.

1.2 2 Virtual Image management services

The essence of any cloud computing is making available
virtual machine for running the user defined tasks. Every
virtual machine is stored as image using a specific format.
The image of Virtual machine contains OS Code, memory
maps, catalogues, and file buffers. Every time a VM is
provisioned to a user, the VM is loaded into physical server
and made to run. For all practical purposes, a VM can be
treated as a task that runs in the Physical server.

Entire behaviour of the VM is dependent on the VM image
and therefore a tight security is needed to preserve the image
so that no attacking on the Image takes place.

The module GLANCE provides the imaging services. The
imaging services provided by GLANCE include discovering,
registering and retrieving the Virtual machine images.
Glance generates VM images based on the user requirements
and stores in its database repository. Interaction with Glance
can be done using RESTful API that allows querying of VM
image metadata as well as retrieval of the actual image.

The heart of cloud computing system is virtual machines.
Predefined defined and pre-stored VM images helps in easy
provision of the VMs to the users. The GLANCE module

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

922

manages the images. VM images are stored in different
formats depending on the kind of hypervisor used. Images
must be protected. Any attempt to sabotage the image will
spoil the functioning of the entire cloud computing system.

The internal architecture of GLANCE is shown in Figure 4.
The glance module contained several components for
providing different internal services within it. The service
“REST API” exposes Glance functionalities. The Module
has its internal sub-components that include Domain
controller (DC), Database Abstraction Service (DAL),
Storage service (Glance Store - GS), Registry Service (RL).
DAL provides communication interface between Glance
databases and Glance services. GDC provides the
authentication, notification, database connectivity and
maintenance of policies for making available the VM
Images. GS provides the database interaction services. RL
provide secure communication between DC and the DAL.

Security Issue

GLANCE is dependent on SWIFT for managing the VM
Images. The vulnerabilities that exist for SWIFT also are
applicable to GLANCE.

The VM mages may be compromised when the Hypervisor
that is responsible for dealing with the images is attacked.
The attackers can make the Hypervisor in-operable, or
exploit to retrieve the personal information of the other. The
Hypervisor can be attacked through a DDOS (distributed
denial of service) which can be caused by sending too much
of a traffic to the VMS which cannot be handled by the
Hypervisor and as a results the Hypervisor can be broken
out.

Figure 4 :Internal Architecture of GLANCE modules.

1.2.3 Data Management services

In Open stack data related services are supported through
three modules that include SWIFT, CINDER, and TROVE.
Swift manages objects storages. Objects handled by SWIFT
include Images and files. SWIFT follows a kind of directory
hierarchy for containing the data in backend storage devices.
Security to access the objects stored by SWIFT is limited to
make the user know the location of storage of the object. The
vulnerabilities that exist in the way data is manged will be
discussed in subsequent sections.

Object Storage Management Services

Users can manage of their objects which can be a file,
document, programme anywhere within the Open Stack
server either located at one place or distributed across the
Open Stack system. The users can carry all kinds of
operations that include create, modify, and get the objects
and the related Meta data through Use of API which are
implemented through REST (Representational State
Transfer Services). The data related to objects are stored as
shown in Figure 5. The storage is divided into several
directories each for holding an Account. Each account is
further segmented down to a set of containers and each
Container a set of objects along with their access control
lists. An account is like a Tenant and refers to a name space
for the containers and the containers acts like a name space
for the objects contained in it.

ACL (access control lists) related the objects placed in the
containers. ACL is the mechanism using which access to
the objects contained in it is achieved. Objects which hold
data content, images, videos etc. are placed in the container
directory. The container can also store a metadata objects
that describes several objects contained in the container.

Sorage

Account-1 Account-2 Account-N

Container-
1

Container-
2

Container-
N

Objects

ACL
(Access
Control

Lists

Figure 5 :Data Organisation within SWIFT

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

923

OpenStack Swift is implemented using client-server
architecture. SWIFT is developed with sub-components in it
that include REST API, A Proxy and a Storage Service. API
provides the interface required to call the service required
for making operations on the objects. All the service
requests are received by Proxy and then the most suitable
API is made and also communicates with the Storage
service for making object related oper within the account
and container context. SWIFT module is constructed with a
Proxy server, Servers to manage accounts, containers and
objects and also data base repositories to store the details of
accounts, containers and objects.

Figure 6 shows the way data is retrieved using SWIFT
Module. Users access the object using HTTP calls by
providing logical paths to accounts, containers and objects.
The Logical path of the storage required is provided by the
authentication server and then the name of the object to be
referred by is appended to the Logical path using a ”/”
convention.

The physical location of the object that resides on a cluster is
translated by Proxy server using the logical path using the
“rings” concept. Open stack divides cluster of storage devices
into partitions and allocates each partition into devices.

Figure 6: Data Retrieval in OpenStack Object Storage

Rings

SWIFT uses a concept called ring. For each account,
container and set of objects a ring is maintained. A ring for a
set of objects represents a policy that allows the objects to be
accessed provided the user requests confirms to the policy. A
ring as such maps to a physical entity stored in a disk and the
location where the entity is stored. A ring stores the location
of an object in terms of a zone, devices, partitions, and
replicas.

Each partition is replicated and stored in three different
physical locations in the clusters. Every time a user needs an
entity, the ring must be contacted to find its physical
location. Ring stores information about the devices to which

control must be passed in case some error occurs while
accessing the data.

Every account is treated as a device. Weights are assigned to
device. The objects contained in a account are distributed
across the cluster of servers according to the Weight. The
devices with higher weights are more distributed. Device
weights are used to move the device partitions across the
clusters. The ring will help to move minimum partitions
moved at a time.

Storage Policies

SWIFT uses storage policies that can be configured by the
users. The storage polices decides the naming of the objects
and also defines the service levels to each device. Different
service policies are assigned to each device. For each of the
service entrusted to a device, a separate service ring is
maintained which also maintains the information related to
the hardware entrusted to the device. Storage polices can be
extended to the container also, which means a set of storage
policies are related to a container. The storage policies
defined for container are automatically attributed to all the
objects stored within the container.

SWIFT servers

SWIFT uses three servers that include Object server,
Container Server and a Account server. Object server
provides the services required for storing, deleting and
retrieving the objects. Objects are stored as binary files and
the metadata of the objects are stored as attributes of the
files. Each of the objects is stored using a pathname that is
derived through hash on the name of the object and the also
using a time stamp attached to the path name. The addition
and deletions are treated as version of the files; Thus SWIFT
stores several versions of the objects

The container server manages the listings of the objects. The
Listings are stored like SQL Database files. Statistics on the
objects contained in the container are also stored in the
container. Accounts server maintains the listings of the
containers.

Operating the Objects within the containers

OpenStack Object Storage management is based on the roles
assigned to the users. Various kinds of roles are defined with
the Object storage component which includes “Admin”,
“Reseller Admin”, “Super Admin”. No user is allowed to
have user administration role. The main concept is based on
the accounts that are created at the time of entering into SLA
agreements.

Users can be added to the accounts by the persons assigned
with the role “Admin”. Users can be added or deleted by
“Admin” persons interfaced with seAUth () API for addition
seAuth () API for deletion.

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

924

Security issue

The user makes a request for data resources through a
definition of account/container/object, ring name and policy
and the proxy server validates the correctness of the
association and then when found good is allowed to be
streamed to the user through invoking respected server based
on the kind of service requested by the user. The information
made available about the accounts/containers/objects, rings
and polices must be preserved. If this information is leaked,
the un-intended users will get the access to the data.

The data stored in SWIFT is not encrypted, thus providing a
scope for attacking making it necessary to implement the
systems required for securing the data.

The information related to the users, user groups, roles and
role based access is critical to making the object management
within swift. Any leak on the access information will affect
the objects stored in the containers

A hard disk situated on a server that is included in a cluster is
regarded as a device. Each device is recognised as a partition
which is maintained redundantly in order to take care of disk
failures. The ring structure decided the node on which the
replication has to be undertaken. The mapping of partitions to
the nodes is stored in the File that stores a ring structure in it.
The

The physical location of an entity is found by proxy server by
contacting a server on the storage node. The proxy server is
built using processes that are responsible for managing te
containers, accounts and the objects. Details of logical
location of the storage are sent to the entity service processor.
The processor finds the location of the object by using a hash
function.

Ring files and hash_path_suffix are the most important
information in locating an object. Ring files are situated at in
/etc/swift/account.ring.gz and Hash path suffix is stored at
/etc/swift/swift.conffile. These files can be attacked by an
attacker by changing hash value

In a storage device different directories exists for accounts,
containers, and objects have different directory on the storage
device. Information about accounts and containers is stored in
SQLite database files, while objects are stored as files with
extension .data. Temporary directory is used for storing file
chunks during upload. In each of the directory more sub-
directories exists each representing a partition.

The directory is named using numbers. Data isolation is done
using the hash function that uniquely determines the location
where the object is stored. While data isolation is possible the
confidentiality of the data stored must be maintained by the
user who seeks to store the objects in Object storage using
SWIFT module.

Block storage Management services

OpenStack has in it a separate module “CINDER” that caters
for providing the block storage.

CINDER provides software which can be called through
RESTful API for provisioning and managing storage in the
form of block of devices called as cinder Volumes. CINDER
provides persistent storage to VM instances. User
applications can also ask for cinder volumes. User
applications can also request for an array of volumes which
have differing characteristics. It is possible that the user to
define differing characteristics of the volumes. The differing
characteristics include mirroring, high performance,
clustering etc.

Cinder component deals with Block storage such as dealing
with Volumes. The storage devices supported on physical
machines can be attached to cinder server nodes. Volumes
that are created on third party storage devices can be attached
to the cinder servers. Cinders plug-in architecture allows any
third party volumes to be attached to the Cinder servers. The
connection between the Compute nodes and the storage
devices attached to the Cinder Servers can be achieved
through use SCSI, NFS or Ethernet. The architecture of
CINDER module is shown in Figure 7.

Figure 7 : Block Storage Architecture

Cinder Module is developed with four components that
include RESTful API (CINDER-API) that provides
interface to manipulate Volumes and Snap-Shots, a
component “Cinder Volume” which is responsible for
reading and writing the CINDER database to manage the
volume state, Cinder-Volume is also responsible to interact
with CINDER scheduler and the driver used for storing the
data. The Component “CINDER-SCHEDULER” is
responsible for selecting the best storing block when a
volume is created. The Component “CINDER-
DATABASE”is responsible for storing volume state. A

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

925

message queue is used to facilitate communication between
the user, CINDER volume, and CINDER scheduler.

Security issue

User request for a volume with certain blocks of storage
and the user is given with the Volume details. Anybody
who has the access to the Volume details can have access to
the volume and tamper with it.

Most cloud providers do not encrypt data before saving it to
storage. In fact, OpenStack does not provide any data
encryption at all; thus, users would need to encrypt their data
before uploading it and manage their encryption keys
themselves.

Conventional Database services through TROVE
Component

OpenStack comes with another important module called
TROVE. Any user who wants to store the data as a relational
database can use this service; Trove provides relational
database. The Internal database used is SQLserver. All the
database administration required is done by TROVE
relieving the users from such a burden. All the Tasks that can
be undertaken using SQL server can also be undertaken
using TROVE. Multiple instance of the database can be
provisioned by the users and Open stack administrators.

Trove is designed for taking care of data isolation with
database while the users take cate of the issues that include
Database creation, taking backups, data retrievals and
Monitoring. The module TROVE is built using four
components include “Trove-API” that provides interface to the
VM based applications through RESTful API that supports
JSON and XML to provision andmanage Trove instances.

Creation and management of database instances and carrying
different database operations are undertaken by Task
manager (T-M). The operations on the database arecarried by
Guest Agent (GA). GA acquires the database operation
related messages through RPC related messages and the
required database operation is performed by the agent. The
messages are first received by Conductor which is the sub-
component of the Trove. The TROVE Architecture is shown
in Figure 8.

Security issue

No security is provided to the data stored within the TROVE
database. KEYSTONE module provides the access to the
trove through the process of identity services. TROVE has
no function to encrypt the data so as to secure the same and
therefore it is left to the users to secure the same.

1.2.4 Horizon Dash board Service

Horizon provides three interfaces which are dashboards for
the users to interact, for administrator to with system related

configurations and all the users and administrator to carry
application setting. Horizon is distributed with standard set
of APIs that the developers can use for interacting with Open
Stack components.

Figure 8: TROVE Architecture

Security issue

Horizon uses signed cookies for storing the session state on
the client side. Get hold of the cookie, introspect and access
all the details contained in the cookie. Use the information to
access the cloud resources OPEN stack stores the
authorisation token in the cookie which can be used to access
the resources. The cookie can be accessed through use of file
system

Some of the initiatives that can be taken to avoid cookie
related vulnerability is to terminate the session when user
logs out, then in which case the session cookies will also be
terminated, Horizon to make a request to Identity service to
invalidate the tokens and to implement server side session
tracking instead of client side session tracking

1.2.5 Nova – The Computing Module

The actual computing is facilitated through Virtual machines
which are handled by Hypervisors installed on physical
servers. The management of theses servers is done by NOVA
Module which provides major part of IaaS (Infrastructure as
service).. This component is most complicated and
distributed across several servers. Keystone provides
authentication service and Glance provides Image services to
NOVA. Users interact with NOVA for computing services
using standard API. NOVA is built on several servers and
the communication between distributed NOVA components
is achieved through using message queues. NOVA uses SQL
database for storing system related data. Figure 9 shows the
architecture of NOVA component.

The Nova module is built using many components and sub-
components. The NOVA API component is responsible for
receiving HTTP requests, converting in t o commands and
communicating with other components via the “Oslo

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

926

Messaging” queue orHTTP.The sub-component “nova-api”
accepts and responds to end user compute APIcalls and the
sub-component “nova-API-metadata” accepts metadata
requests frominstances.

NOVA establishes communication between the VMs and the
Hypervisor. Nova Compute service (NCS) is a daemon that
creates and terminates Virtual machine instances. The
component selects one of the Hypervisor which include Xen,
KVM, or VMware before the VMs are created. The
hypervisor is selected as per the user choice. The VMs are
scheduled on different servers by the sub-component Nova
Schedulers. The interaction between the NCS and Database
service is handled by the sub-component nova conductor.

A sub-component Nova network (NW) manages IP
forwarding, networking Bridges and also configure and
manages Virtual LANS. This is daemon that accepts
networking tasks, which are queued upon receiving requests
from services and the users. This sub-component performs all
the tasks required for setting up bridges, virtual LANS,
sometimes making changes to IP tables and rules.

The sub-component “Console” allows end users to access
their virtual instance’s console through a proxy. It has three
sub-components which include “nova-consoleauth daemon”
which authorizes tokens for users that console proxies
provide; “nova-novncproxydaemon” which provides a proxy
for accessing running instances through a VNCconnection,
“nova-cert daemon” provides x509certificates.

The sub-component “Image” manages interaction with
Glance for image use. The sub-components to facilitate
interaction with GLANCE module includes “nova-object
store daemon” which is an S3 interface for registering
images with the OpenStack ImageService and the sub-
component “euca2ools client” is a set of command-line
interpreter commands for managing cloudresources.

The sub- component “Database” is responsible for storing
most build-time and run-time states for a cloud infrastructure
such as available instance types, instances in use,available
networks and projects.

Nova supports multiple different implementations for
compute via plugins or drivers: NOVA can be configured to
deal with Virtual servers, Containers and Bare Metal
services. Virtualservers, in most cases, provide access to
virtual servers from a single hypervisor; however, it is
possible to have a Nova deployment include multiple
different types of hypervisors. Containers allow using
containers based on LXCorDocker in a similar way virtual
machines are handled. A bare Metal server allows using
physical machines in a similar way the virtual machines are
requested by the user. Figure 9 shows the architecture of
NOVA component

Figure 9: NOVA Architecture

Filterscheduler

The NOVA scheduler carries the filtering and weighing to
decide on the server where the new instances must be created
or can be created. The NOVA scheduler takes into account
only the Physical servers on which COMPUTE component is
installed. NOVA gets details about the physical servers from
a dictionary and then filters the servers on which VMs can be
created based on the filter properties set by the users.

Conductor

The conductor service component of NOVA manages the
execution of workflows which involve the scheduler. This
component is responsible for building, rebuilding, resizing
the virtual machine and migrating the VM from one Physical
server to the other. This Component provides separation of
responsibilities between what compute nodes should handle
and what the scheduler should handle, and to clean up the
path of execution.

As soon as NOVA API receives a request from the user to
build aninstance, API sends an RPC to conductor for
building an instance. Conductor in turn sends an RPC to
scheduler to select an existing VM and waits for a response.
If a response is received, the VM stands selected. If no
response is received from the scheduler, Conductor sends an
RPC to “compute” component for building an instance and
then return the address of the VM back to the conductor.
Security issue

No vulnerability exists when it comes to NOVA. The only
issues are that the VM image is stored in the object storage
through GLANCE Module. An attacker at best will be able
to attack the image itself as it is stored as a resource file
within object storage.

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

927

1.3 Other attacks on Open stack

In OpenStack user / application interface is provided through
RESTfull API. Using this interface a Distributed Denial of
Service attack (DDS) can be executed by sending to much
traffic on a server. The servers however can handle only few
numbers of requests in a go. A DDS attack results into a
complete failure or slow down the services. DDOS is one of
the most dangerous forms of attacks to the modern world as
it cannot be traced easily. At each of the user Interface
provisions are required for sensing the DDS attacks and take
countering action such that entire system is not jeopardised.

The users generally interact through HORIZON module as it
provides the dashboard required to interact with Open Stack
system. Attackers can design their own web interface similar
to HORIZON dash board and try to attack the open stack
system by sending spurious requests and random initial user
identifications

2. PROBLEM DEFINITION

The measures provided within open stack for providing
authentication, access control and Data security are
inadequate as they vulnerable and therefore the security
system provided in the open stack needs to be extended.

3. RELATED WORK

[Qihong Shao 2011[[1] presented in his thesis different
models required for implementing software as a service SaaS
under Multi-Tenancy concept. He has presented several
models to enable implementation of effective SaaS. The
models presented by him include service request
prioritisation model, Multi-layered customisation framework,
a hybrid database management model that immensely
support customisation and an ontology based resource access
control O-RBAC (object based role based access control)
system to secure the Multi-Tenant based model.

[RostyslavSlipetskyy 2011] [2] presented various aspects
related object storage management by Open stack module
“SWIFT”, They have discussed the vulnerabilities of
processing the objects stored in the database managed by
SWIFT. They have focussed on the issues related to identify,
access control and data security cellar bringing out the
vulnerabilities and the counter measures that make the
storage system secured.

When it comes to identity and access management, of object
storage they have identified a security vulnerability relating
to administrators with lower permissions could obtain
credentials of administrators with higher permissions, they
have also identified that administrators with higher
credentials could read and delete the files and data of all the
users. They have recommended that the user encrypt the data
before uploading to the Object storage.

They have found vulnerability in storing the passwords in
plain text and acceptance of weak passwords

The location of existence of a file is the confidentially
maintained by OpenStack. Users are provided with the
location of the files based on authentication token provided
by identity services. A malicious user can claim damages to
an existence file to open stack administrator who may
commit a rollback.

[SamanZarandioon 2012] [3]has addressed the security
challenges that one must meet when cloud computing
services are to be offered to the customers.

A new protocol K2C which uses AB-HKU key updating
scheme has been presented. The protocol is focussed at
access control based on Cryptographic principles. A
framework called OMOOS which can be implemented on
client side helps seamless integration with cloud computing
services and resources. A user centric identity management
solution named Web2ID protocol was also presented that
leverages client side cryptography and implements
mechanisms that support Authentication, Exchange of
attributes related user Identity and access delegation.

[Tanisha, 2013] [4] has proposed a new methodology that
implements a security scheme using which the files uploaded
to cloud can be secured. She has proposed a two stage
encryption and decryption algorithm. No implementation on
a live cloud computing system has been presented by this
author.

[Jisha et al., 2013] [5] have presented a comparative analysis
of different open source frameworks that include Nimbus,
OpenStack, Eucalyptus, C-meter, Hadoop, and Open Nebula.
They have not done any comparison with reference to
security issues.

[Sasko Ristov et al., 2013] [6] have used scanners within
OpenStack System for finding security threats and
vulnerabilities using 4 different Operating systems. They
have developed a methodology to determine the security
vulnerabilities existing in compute and controller nodes of
Openstack and using different configuration of virtual
machines especially built on different operating systems.
They have used Nessus 5 vulnerability and configuration
assessment scanner using External Network Scan policy.
Nessus scans all TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol) ports, as well as the
vulnerabilities of the services that work on certain opened
port. Each vulnerability is rated as derived from the
associated Common Vulnerability Scoring System (CVSS)
score

[Ericson 2013] [7] Made a quick study on Identity module of
open stack. They have compared the features supported
within KEYSTONE with a conceptual model that states the
requirements of an ideal Identity and access management
system. They have defined what a generic management

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

928

system is. A generic management unit (IAM) which is
primarily meant for access management that controls
Authorisation and Authentication has been presented. IAM is
designed for manging the accounts and services and
propagating privileges and also for maintaining the user
access policies..

In OpenStack, each service is responsible for authorization
of any request authenticated by the Keystone server. Each
service makes this decision based on the defined policy
(defined rules in policy file) and context information (e.g.,
usernames, tenants, roles) it receives from a validated
request. Although, it supports centralized role (role
information is provided by Keystone service) based
authorization, the current role is not fully compliant with
RBAC model. Some of the missing features include

1. Separation of duty amongroles
2. Role hierarchy
3. Role to permission assignment.
4. Centralized policy management
5. Attribute based access control

The authors have identified different vulnerabilities existing
in the keystone module of Openstack relating to
authorisation, authentication and access control.

[Doudou Fall et al., 2014] [8] Presented that OpenStack has a
logical architecture in which, the degree of
interconnectedness within and between the components is a
source of many security concerns. To prevent the damages
that can be caused by the combination of these security
issues, they have proposed a vulnerability tree security
analysis of OpenStack’s logical architecture that allowed us
to generate ready-to-use vulnerability trees of the major
services or components of the architecture. They have
proposed an amendment of OpenStack’s vulnerability
naming, because the current naming does not cope well with
our proposal.

[Girish L S et al., 2014] [9] Presented the way open stack
can be implemented duly citing the operational
procedures. They have detailed the architectures
considered for building open stack.

[Sasko Ristov 2014] [10] Presented security assessment
methodology including identification of assessment domain,
assessment tools and test targets. They have focussed on
determining security risk among the OpenStack cloud server
nodes which are the physical servers of the cloud provider,

virtual machine instances that are provisioned on the
physical machines, and OpenStack Dashboard. All security
assessments are conducted from inside the cloud as inside
vulnerabilities are reflection of the vulnerabilities that exists
outside the cloud.

 [Maria JorbaBrosa 2014] [11]Presented a thesis that
documents the way the Open stack modules installed,

configured, tested and trouble shouted and specifically the
way VM instances can be created. The installation process to
be followed for each of the module explained in detail.

[HalaAlbaroodi et al., 2014] [12] have presented different
security issues that must be addressed in each deployment
model which include SaaS, PaaS and IaaS. They have
identified the following flaws within open stack system,

1. Users have no right to change their passwords, once
set by the administrator

2. The administrator of open stack has access rights
for all the projects and accounts. The administrator
can tamper with the privileges of other users,
change the projects and some time they have the
privilege to delete the projects.

3. Clear text is used in in the API and also the URLS
referring to the end points, making it easy to attack.
Np support for SSL/TLS is provided making it
possible for man-in-the-middle attacks and also
sniffing the passwords on transit.

4. Any HOST that has the access to the DB and
AMQP messaging system can operate on compute
node for managing the VMs.

5. The user names and passwords are stored in clear
text.

[MeryemeAyache et al., 2015[[13] have explained the
security policies as defined by the cloud provider are used to
effect access control of the cloud computing systems. There
is no provision for high level user defined access control.
Only fine grained access polices are implemented within
open stack to execute a specific tack on a specific defined
object. The authors have implemented middleware to provide
high level security polices which are reduced into fine
grained security polices implemented by swift.

[Ishan Gidwani et al., 2015] [14] have presented a security
architecture built into cloud computing systems in general
and then traced the security architecture built into
OpenStack. They have presented all the known
vulnerabilities in the OpenStack and the way they are
exploited and can be mitigated. They have done the security
assessment of OpenStack using nMaps scan and the have
also presented the OpenStack can be used using tools that
include Metasploit, THC Hydra, and Acunetix. They have
provided some of the mitigation approaches to counter attack
the OpenStack system.

[Doudou Fall, 2015] [15] Have proposed security risk
quantification method that will allow the users and
administrators to measure the level risk that one has to face
when cloud computing systems are opted for use as in-house
infrastructure. The author had used fault tree analysis
approach. He has replaced the faults through probable
vulnerabilities in a cloud system and they have used CVSS
(common validation scoring system) to compute the risk
formula. They have also provided an architecture which can
be used to rank the cloud computing systems

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

929

Cloud computing systems are dynamic which means meets
the demands of the user as and when they happen which
means the security enforcement mechanisms must also be
dynamic, but it is surprising the static security mechanisms
are being used for enforcing security of the cloud computing
systems. Doudou Fall has adapted risk-adaptive authorisation
(RAdAM) model for simple cloud environment. He has used
fuzzy inference system to prove the effectiveness of
RAdAM. He has further extended the RAdAM to include
vulnerability based authorisation mechanism VBAM which
is a real-time authorisation model based on average
vulnerabilities scores of the objects present in the cloud.
They have applied this model to Open stack and
implemented a new authorisation system.

[Yang Ou, 2015] [16] has described different security related
issues that must be addressed by the cloud computing service
provider. He has deliberated on the requirement of including
privacy, data security and confidentiality, data audit,
authentication and access control policy, security of virtual
machine and automated management. He has brought of
some insights into theses areas.

Cloud computing suffers due to lack standardisation, lack of
customisation and privacy of the user data. Heavy demand
exists for migrating traditional databases to the cloud
meaning support of database as a service. Each database
service requires that a specific standard is used for accessing
the database where as some different kinds of standards are
to be used for making a database as service to be offered
within cloud. Therefore it becomes necessary for the cloud
vendor adapt the database required standards with the service
orientation standard of the cloud computing system.[Mehdi
Bahrami et al., 2016] [17] Proposed a cloud computing
based on service oriented architecture called DCCSOA
(Distributed Cloud Computing based on service oriented
architecture) that enhance the ability to adapt to different
standardisations and customisation within the cloud. A single
layer called Dynamic Template Service Layer (DTS) that
interacts with all native cloud services and any cloud based
services. This layer also provides standardisation for existing
services and future services. The layer also provides
customised services based on the requests of user Groups.

P. Ravi Kumar et al., [18] have presented a detailed survey
on various threats, attacks that can be effected within a cloud
computing system and also various mechanisms that can be
used for counter attacking the attacks that can be made
exploiting the Venerable areas of cloud computing. They
have also detailed different stages of data processing and the
related data security issues that crop up in a Multi-Tenant
environment. They have identified 10 different services that
can be offered by cloud computing where security is required
which include applications, data, runtime, middleware,
operating system, visualisation, server, storage and
networking. The kind of security issues that crops up when
cloud computing is used differ from service model to another
service model. They have described clearly the kind of
attacks that can happen in each layer of cloud computing and

also suggested some mechanisms through which some of the
attacks can be mitigated thoroughly.

[Tianwei Zhang 2017] [19] in his thesis, traced out
different security issues tackled across the cloud
computing system. He has also shown the way the
security threats can be mitigated. He has presented new
architectures and methods to detect and mitigate the
security attacks that happen within a cloud computing
system. He has classified all kind of attacks into 7
different types of attacking vectors which include services
interface, network, cloud managers, virtualised system,
share infrastructure, cloud services He has presented an
architecture that helps monitoring the health of a Virtual
machines. He also dealt three types of vulnerabilities that
needs to be protected that include availability, confidently
and integrity related vulnerabilities,

Bashir Mohammed et al., 2017] [20] have developed security
infrastructure that can be built on top of OpenStack so that
Vulnerabilities existing in OpenStack can be protected. The
have named the security infrastructure called BradStack.
They have explained the way BradStack can be deployed on
OpenStack and the Penetration testing is carried to show the
extent of security protection could be implemented within
OpenStack.

[Marco Anisetti et al., 2017] [21] have proposed a
benchmark which can be used to evaluate the extent to
which security built into a cloud computing system. A
security benchmark is a set of (standard)
recommendations against which the security strength of
different systems can be compared. The benchmark
defines the parameters and the way the scores are
computed. The scores are used to figure out the extent to
which security is provisioned within cloud computing
syste. The have experimented the benchmark using
OpenStack. They have therefore defined a security
benchmark for OpenStack as an instantiation and
refinement of the generic CIS benchmark for IaaS systems
on the basis of the OpenStack security guidelines.

[Bruce Benjamin et al. 2017] [22] Have considered three
major security features in Open- Stack which include, key
management, block storage encryption which provides
confidentiality for data at rest and in transit and image
integrity that ensure that VM images are not modified prior
to boot. The authors have contributed to using Key
Management Interoperability Protocol (KMIP) for storing
keys, encrypting the block storage through which
confidentiality of the data is maintained, and methods for
maintaining the integrity of VM images.

[Darshan Tank et al., 2017] [23] Systematically have
analysed the security aspects of the OpenStack keystone and
explore the threat model against, and security requirements
of, OpenStack keystone. They have proposed a new
authentication model using the RESTful API to satisfy the
security needs of OpenStack Keystone. The proposed

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

930

authentication model can accommodate a diverse set of
security services.

[Kyle Hogan et al., 2018] [24] have presented RAFT the
novel authorisation and Authentication technique of
developing tokens which can be used for authorisation and
authentication that helps that identity is not disclosed even
when the services of OpenStack are corrupted.

[Oliver Schluga et al., 2018] [25] have verified the extent to
which security issues have been addressed in cloud
computing systems in comparison with ISO 27107
regulations. The have assessed the extent to which the
security issues documented within Open stack
documentation meet the ISO 27107 regulations.

[rhos-docs@redhat.com, 2019] [26] has published a guide on
the good practice advice and conceptual information about
hardening the security of a Red Hat OpenStack Platform
environment. This document is applicable when Red Hat
is used as an operating system used as the governing
operating system installed on the HOST servers or made
part of an image of a virtual machine. They have
presented several methods to tie up the loose ends and
hardening the security of open stack cloud computing
system.

A number of Articles have been published by Sastry et al.,
[27][28][29][30][31][32][33][34][35][36][37][38][39][40]
related to cloud computing systems, in particular Open
Stack detailing various issues related to securing the Open
Stack Cloud computing systems.

4. GAP

While many articles have been published in literature
regarding securing Open Stack, none have proposed
complete solutions especially considering the Multi-Factor
Authentication, attribute based and User Privacy policy
enforced access control, and enforcement of user data
security. Open Stack considers three different type data
storage which include VM image related database, Object
based data storage, and Conventional Database oriented
storage. The Module Keystone takes care of Authentication
and Access control, SWIFT module takes care of Object
storage, CINDER is related to Image storage and the Module
Trove is related conventional database storage.This GAP is
bridged to the extent of authentication, access control, and
convention data storage implemented through TROVE
Modules

5. INVESTIGATIONS AND FINDINGS

5.1 Authentication related Security Enhancements

The Major enhancement required is in the area of
authentication. The most important implementation in these
areas is Multi Factor Authentication through use of

JACKSON tokens, ADS system Integration, and IMS system
Integrations

Multifactor authentication through JSON Implementation

The way the multifactor authentication implemented using
JSON server is shown in Figure 10.

JSON tokens are non-persistent, which are based on the
JSON Web Token standard and implement the same as
another component with the Open Stack. This backend will
work the same way as fernet tokens works. The JSON token
developed and signed using JWT(Java Web technologies)
and JWS (java web services) standard, and the token will
contain the authentication payload. Signed tokens are web
safe and integrity verified, but the token payload is not
opaque to its holder. It is possible to decode a token and
inspect the payload with JWS tokens. The JSON Web
Tokens are equivalent to Fernet tokens as they are encrypted
and signed.

JWS tokens will be integrity verified with a private key and
validated using a corresponding public key. Since
the ES256 implementation only uses signing (as opposed to
signed, encrypted payloads), this adheres to slightly better
security practices over fernet because private keys never
have to be synced across keystone API nodes. Only public
keys need to be transferred to other keystone API servers to
validate tokens across a cluster.Since JSON implementation
is an independent application, the administrators of the open
stack system will be able to change, modify, or remove items
in the payload at any point in time and for any reason.

The token provider can undertake changes to the payload.
The payload as such, is developed using the formats and
structures decided by the token providers. The interpretation
of the payloads based on parameters that are to be decoded
by the users is risky as the users may miss-interpret the
contents of the payloads. It is always non-risky if the formal
API is used by users to request information from the
Authentication service provider. The process will help to
provide the payload information to the users which are not
sensitive. Similar to the Fernet, JWTs will require a principal
repository to set up to use for signing tokens. There is a need
to add new command “keystone-manage” to handle
generation and rotation of keys, implemented through the use
of fernet commands “fernet_setup” and “fernet_rotate”
commands. ES256, ES284, ES512 are the recommended
algorithms to be used for signing the authentication message.

JWS tokens will be integrity verified with a private key and
validated using a corresponding public key. Since
the ES256 implementation only uses signing (as opposed to
signed, encrypted payloads), this adheres to slightly better
security practices over fernet because private keys never
have to be synced across keystone API nodes. Only public
keys need to be transferred to other keystone API servers to
validate tokens across a cluster.The Authentication service
(KEYSTONE) should not expose the algorithms used

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

931

internally to the end-user. End-user, as such, should not be
allowed to request a specific JWS algorithm used for the
creation of authentication Tokens. Only trusted algorithms
used for token development.

The enhancement in this case is add a JSON component and
Integrate with Ferret provide by making suitable changes to
the Configuration file.

Multifactor authentication through Keystone integration
with ADDS system

Another option available for implementing multifactor
authentication is integrating the ADDS (Active Directory
domain service) system with Keystone Module of Open
Stack.

Dash Board

Key Stone

ISON Provder

Fernet Provider

JSON KEY
repostory

Figure 10: Enhancement of Open Stack authentication
system through JSON tokens

The Vulnerabilities existing in the Keystone module
investigated from different perspectives, especially the issue
of tokenization and the use of multi-factor authentication.
Several mechanisms can be introduced into the Open Stack
so that the identity of the users can be made more secure.
The measures added into Open Stack include the
introduction of more secured Tokens, implementation of
multi-factor authentication through federation approaches,
etc. Every path leads to some complexity.

The more security built into the cloud computing system, the
more will be the cost, especially in terms of loss of response
time, which also requirement of sophisticated security
models to be added into the system. The security models
chosen must match the risk involved in providing a specific
service required by the customers. The risk mitigation based
security model is the most ideal.

Microsoft introduced Active Directory (AD) in which
information about the domains and its related IP addresses,
valid users and their passwords, details of the devices such as

printers, disks, files, telephone numbers, etc. The directory
queried using a standard API. The directory can be moved
into different clients so that checks/decoding required carried
in client location. The directory, as such moves over a
network. AD is a shared infrastructure for managing and
administering various network resources. Sometimes the
directory is stored in a server, and the server queried for want
of information especially the domain names and decoding of
which to the IP addresses. AD considers every resource as an
object and maintains different attributes of those objects.

A set of rules used to name the resources the details stored in
AD. The user names used by AD are unique, and there will
not be a name collision. The ADDS (Active Directory
Domain system) implements the access control mechanisms
so that only eligible users and the processes could
access/Query the AD. ADDS is called the domain controller
as it provides unique resource IDs given the name of the
resources. ADDS system controls access to the information
related to the resources - the details of which stored in AD. It
implements the authentication and authorization system that
regulates access by the users .to the resources contained in
AD based on access policies. ADDS system provides that
include directory services, federation services, certificate
service, rights management services, and Lightweight
Directory Services using LDAP (Lightweight directory
access protocol). Users can access the services through a
standard API supported ADDS.

ADDS server can be stand-alone or installed as a cluster. AD
is distributed among several servers when clustered
architecture used primarily when high availability is
required. To implement a fault-free environment, ADDS
performed as a Primary domain (PD), and a secondary
domain (SD) with SD replicated using PD from time to time.
In the case failure of PD, SD accessed until the time PD
repaired and replicated again.

Each time a user makes a request for a resource, ADDS logs
in the request, accesses a network resource, or runs an
application, and the AD domain controller either
authenticates the request are rejects the request if
permissions for the resource access does not exist.
Corruption in the ADDS database or the failure of the
domain controller server can devastate an enterprise, so
administrators often set up ADDS on a server cluster for
automatic replication and synchronization for resiliency and
added performance.

Smaller organizations can use Active Directory Lightweight
Directory Services, which functions almost identically to
ADDS but does not need domains or separate domain
controllers.

Active Directory Certificate Services creates, validates, and
revokes public key certificates used to encrypt files, emails,
virtual private network traffic, and Transport Layer
Security/IPsec network traffic. Active Directory Federation
Services provides a single sign-on service to give users

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

932

access to resources or services -- typically outside of the
enterprise -- using one set of credentials. Active Directory
Rights Management Services controls encryption and access
control for email, documents, and web content.

ADDS system used for authenticating and authorizing the
users to have access to different resources contained in the
computer system. Every user needs to be authenticated by
the operating system before the user is allowed to have
access to the application. The Application intern depended
on the access provided by the operating system or enforces
an additional security system built within the application.
The app uses the ADDS services for verifying the access
rights of the user. The access mechanism as supported by the
ADDS systems, shown in Figure 11.

WIndows
Operating System

Active Directory
Domain services

Application

List of
Accesses

permitted

Active
Diretcory

List

Figure 11: Authentication and authorizations ADS system

As explained earlier, Keystone uses fernet services for
authenticating and authorizing to have access to different
resources, and the bottlenecks of using such a tokenization
system need consideration. Active services proved to be a
versatile system of enforcing security, and ADDS system
provides extensive services used to enforce security.
Federation of ADDS system with fernet gives high-security
provisions, and also existing users need not have any
additional registrations with Open Stack. The way the ADDS
system federated with Fernet shown in Figure 12.

Dash Board

Key Stone

ADDS System

Fernet Provider

ADDS Active
Diretcory

Figure 12 :ADDS federation with Fernet Tokenization
system

It is necessary to complete prior tasks that include
installation, configuration, and operationalization of ADDS,
Open Stack, and DNS Systems and also that ADDS
configured to use LADAP using port number 636, so that
ADDS properly integrated with Keystone services All
components of Open Stack that include NOVA, COMPUTE,
KEYSTONE, HORIZON restarted for effecting the ADDS
system for authentication purposes. Users account created in
the ADDS system for making the users interact through
DASHBOARD.

Multifactor authentication through Keystone integration
with IMS system

The Vulnerabilities existing in the Keystone module are
investigated from different perspectives, especially the issue
of tokenization and the use of multi-factor authentication.
Several mechanisms can be introduced into the OpenStack so
that the identity of the users can be made more secure. The
measures added into OpenStack include the introduction of
more secured Tokens, implementation of multi-factor
authentication through federation approaches, etc. Every path
leads to some complexity. The more security built into the
cloud computing system, the more will be the cost,
especially in terms of loss of response time, which also
requirement of sophisticated security models to be added into
the system. The security models chosen must match the risk
involved in providing a specific service required by the
customers. The risk mitigation based security model is the
most ideal.

RED HAT introduced the identity Management system
(IMS) for assuring security. The IMS system used for
authenticating and authorizing the users to have access to
different resources contained in the computer system. Every
user needs to be authenticated by the operating system before
the user is allowed to have access to the application. The
Application intern depended on the access provided by the
operating system or enforces an additional security system
built within the app. Every application running under the Red
Hat operating system uses the IMS services for verifying the
access rights of the user.

As explained earlier, Keystone uses Fernet services for
authenticating and authorizing to have access to different
resources, and the bottlenecks of using such a tokenization
system need consideration. The IMS system provides several
services through standard API for enforcing security based
on international standards such as NIST. Federation of IMS
system with Fernet gives high-security provisions, and also
existing users need not have any additional registrations with
OpenStack. The way the IMS system federated with Fernet
shown in Figure 13.

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

933

Dash Board

KeyStone

IMS System

Fernet Provider

IMS
repository

Administrator

USER

Keystone
repository

OS Access
repository

Figure 13 :Multifactor Authentication with IMS Integrated

It is necessary to complete prior tasks that include
installation, configuration, and operationalization of IMS,
Open Stack, and DNS Systems and also that IMS configured
to communicate with Keystone using port number 636, so
that IMS properly integrated with Keystone services All
components of Open Stack that include NOVA, COMPUTE,
KEYSTONE, HORIZON restarted for effecting the IMS
system for authentication purposes. Users’ accounts created
in the IMS system for making the users interact through
DASHBOARD. If a firewall installed to filter the
communication between OpenStack and other services, then
a configuration of the firewall is needed to allow the traffic
between Keystone and IMS systems. An Open Stack
controller node should be able to communicate with IMS and
port number TCP636.

IMS (Identity Management System) is the Authentication
system implemented by the Red Hat operating system which
is known as the “Red Hat Identity Management” System and
in short, it is referred to as IMS. IMS is used extensively for
enforcing security when RED HAT used as an operating
system. IMS proved to be a system that provides extensive
protection. The keystone identity system needs strengthening
so that the open-source software used for the development of
public and private cloud to the utmost satisfaction of the
clients. Multi-factor authentication by integrating the IMS
with keystone gives a higher level of security

Identity Service (IMS) authenticates certain Red Hat Identity
Management (IdM) users while retaining authorization
settings and critical service accounts in the Identity Service
database. As a result, Identity Service has read-only access to
IdM for user account authentication, while retaining
management over the privileges assigned to authenticated
accounts. Before configuring and integrating IMS with
OpenStack, the modules that include Red Hat Identity
Management, Red Hat OpenStack Platform, and DNS name
resolution installed, configured, and made operational. These
steps allow IdM users to authenticate to OpenStack and
access resources. OpenStack service accounts (such as
keystone and glance), and authorization management
(permissions and roles) will remain in the Identity Service

database. Permissions and roles are assigned to the IdM
accounts using Identity Service management tools.

For the IDM to work appropriately with Keystone, the
Keystone for adding the IdM backend and Compute services
on all nodes needs restarting for switching over to Keystone
V3. Users will be unable to access the dashboard until their
accounts created in IdM.

5.2 Authorization Related to Security Enhancements

While the Auutheication is implemented for providing the
identity service, Access control is implemented through
Authorizations Systems. The Identity service of open stack
supports the notion of groups and roles. Users belong to
groups while a group has a list of roles. OpenStack
services reference the roles of the user attempting to
access the service.The OpenStack policy enforcer
middleware takes into consideration the policy rule
associated with each resource then the user’sgroup/roles
and association to determine if access is allowed to the
requested resource.

Establish Formal Access Control Policies

Prior to configuring roles, groups, and users, one should
document required access control policies for the
OpenStack installation. The policies should be consistent
with any regulatory or legal requirements for the
organization. Future modifications to the access control
configuration should be done consistently with the formal
policies. The policies should include the conditions and
processes for creating, deleting, disabling, and enabling
accounts, and for assigning privileges to the accounts.
Periodically review the policies and ensure that the
configuration is in compliance with approved policies. Open
Stack provides access control only for fine grained access to
the services. They do not support user defined polices
especially for accessing the data

Each OpenStack service defines the access policies for its
resources in an associated policy file. A resource, for
example, could be APIaccess,the ability to attach to a
volume, or to fire up instances.The default policy rules
can be modified by creating a JSON format file called
policy.json.

For example, for the Computeservice, create a file called
policy.json in the nova directory.Note that the exact file
path might vary for containerized services.. These policies
can be modified or updated to control access to various
resources. Ensure that any changes to the access control
policies do not unintentionally weaken the security of any
resource.

Open stack offers Access control based on the roles
assigned to the users. The access control is enforced
through allocation of a system defined roles to the users.
Users have their own functional roles which can be

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

934

defined based on the attributes of a user. The access to the
users must be provided based on their functional roles.
Thus there is a requirement of converting the functional
roles to the fine grained user roles as defined by the Open
stack and also user defined access policies must also be
implemented which are to be converted to system defined
access polices.

Figure 14 shows the extension of the access control
system implemented by Open Stack, After the user is
authenticated by keystone, the user has the identity token
which is exchanged with all the servers in the Open stack.
The user then sends the token to a Middleware server where
the user attributes are found and the same are converted to
the system defined User Access. Using User attributes user
defined polices are accessed which are then converted to
System defined Polices for accessing a specific service, Both
the System define Access right and the System policies are
fed to the services server which uses rights and polices to
decide dynamically the extent to which the service can be
give at fine Grained Level.

Dash Board Key Stone Fernet Server JSON Server

Trove

User Attribute
Repository Server

System Defined
Access Server

User Defined
Acess Policies

System Defined
Policies

ADDS Server

IMS Server

Figure 14: Enhancement of Access control system

implemented in Open Stack

5.3 Data Related Security Enhancements

Open Stack supports three types of storage to access Images,
Objects and Conventional Databased. The kid of security
built within each service to provide the access to the data
resources varies. In this section an enhancement to the
security provision made within Trove Module is
proposed.Any user who wants to store the data as a relational
database can use this service; Trove provides Database as a

Service for OpenStack. TROVE designed to run entirely on
OpenStack allowing users to quickly and efficiently utilize
the features of a relational database without the burden of
handling complex administrative tasks. Cloud users and
database administrators can provision and manage multiple
database instances as needed.

Initially, the service will focus on providing resource
isolation at high performance while automating complex
administrative tasks, including deployment, configuration,
patching, backups, restores, and monitoring.

The module TROVE built using four components includes
“Trove-API” that provides the interface to the VM based
applications through RESTful API that supports JSON and
XML to provision andmanage Trove instances. The
component “Trove-Task Manager” helps in providing
database instances, managing the database instances, and
also carries the required database operation. The SQL server
used as a database engine in the backend. The component
“Trove-guest agent” as service runs within the guest
instance, responsible for managing and performing
operations within the Database itself. The Guest agent listens
for RPC messages through the message bus and completes
the requested transaction. ‘Trove-conductor” is a service that
runs on the host, responsible for receiving messages from
guest instances to update information on thehost. The
Architecture Trove is shown in Figure 15

Figure 15: Trove Architecture

TROVE is not designed with built-in security features to
protect the data.KEYSTONE module provides access to the
trove through the process of identity services. Most cloud
providers do not encrypt data before saving it to storage.
OpenStack does not provide any data encryption at all; thus,
users would need to encrypt their data before uploading it
and manage their encryption keys themselves. The way the
Users can access the database is shown in figure16.

To the standard OpenStack Architecture, an additional
component added for providing the data security to protect
the data when several applications placed in a VM, and
several users are given access to the applications. Addition of

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

935

an additional component “Data Security” needed for
achieving data Isolation to be effected among the users
accessing several applications running on the same Virtual
Machine. Figure 17shows theExtended Architecture. The
data security components implement three different sub-
components, each responsible for performing data security
using one of the approaches that include Multi-Instance,
Multi-User Spaces, or Multiple database segments. The sub-
components interact with TROVE for carrying database
operations through calling Restful-API.

Security under the implementation of Multi-Tenancy The
way data security is implemented when Multiple Database
segments, Multiple User spaces and Multi instances are used
could designed developed as per user requirements

Single
Instance

Application

Single DB

Multiple
Partitions in
the Same DB
and Machine

Multi-User
Spaces in the
Same DB and

Machine

Single DB on
the same
Machine

Multiple DB
on the Same

Machine

Multiple DB
on different

Machines

Multiple
Instances

Multuple
Partitions in

different
machines

Figure 16: Data organization mechanisms under cloud

Dash Board KeyStone

Compute VM-
Application

VM-
Application

ADDS IMS

Access Repositary

Multi Segments

Multi User Spaces

Multi Instances

Data-Security

JSON

Figure 17: Extending OpenStack for implementing Data

6. CONCLUSION

Open Stack is not fully secured as many vulnerabilities exists
in many of the process that include Authentication, access
control and data security especially when data have to be
stored and managed in the conventional database using the
TROVE Module

Multi factor authentication provides full proff tokens when
JSON tokens are used or by integrating ADDS or IMS
system

For proper access control to be implemented, Attribute based
and user defined policy based Access control is to be
implemented which needs proper integration with the Open
Stack defines user access systems.

When it comes to storage using conventional databases,
TROVE offers least protection to the user data and therefore
required additional security is to be Built over and above
TROVE. Users have to build a security system considering
the uses of databases in terms of multi instances, Multi user
spaces and Multi Partitions.

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

936

REFERENCES

1. Qihong Shao, Towards Effective and Intelligent Multi-

tenancy SaaS, Thesis submitted to Arizona State
University, 2011

2. RostyslavSlipetskyy, Security issues in Open Stack,
Thesis submitted to University of Norwegian University
of Science and Technology, 2011

3. SamanZarandioon, Improving the security and
usability of Cloud services with user-centric Security
models, Dissertations submitted to State University of
New Jersey, 2012

4. Tanisha, Ensuring File Security on cloud using two tire
encryption and decryption, thesis submitted to school of
mathematics and computer science, Thaper University,
2013

5. Jisha S. Manjaly, Jisha S., A comparative study on open
source cloud computing frameworks, International
Journal Of Engineering And Computer Science, Volume
2, Issue 6 June, 2013 Page No. 2026-2029

6. SaskoRistov, MarjanGusev and AleksandarDonevski,
OpenStack Cloud Security Vulnerabilities from Inside
and Outside, The Fourth International Conference on
Cloud Computing, GRIDs, and Virtualization, 2013

7. https://www.ericsson.com/open stack keystone
analysis.pdf

8. Doudou Fall, Takeshi Okuda, YoukiKadobayashi, and
Suguru Yamaguchi, Towards a Vulnerability Tree Security
Evaluation of OpenStack’s LogicalArchitecture, T.
Holz and S. Ioannidis (Eds.): TRUST 2014,
LNCS 8564, pp. 127–142, 2014.

9. Girish L S, H. S. Guru Prasad, Building Private Cloud
using OpenStack, International Journal of Emerging
Trends & Technology in Computer Science (IJETTCS),
Volume 3, Issue 3, May – June 2014

10. SaskoRistov, MarjanGusev, and AleksandarDonevski,
Security Vulnerability Assessment of OpenStack
Cloud, Sixth International Conference on Computational
Intelligence, communication Systems and Networks,
2014

11. Maria JorbaBrosa, Study and Development of an
OpenStack solution, Thesis submitted to University of at
Politècnica de Catalunya, 2014

12. HalaAlbaroodi, SelvakumarManickam and Parminder
Singh, Critical review of openstack security: issues and
weaknesses, Journal of Computer Science 10 (1): 23-33,
2014

13. MeryemeAyache, Mohammed Erradi and Bernd
Freisleben, Access Control Policies Enforcement in a
Cloud Environment: Openstack, 11th International
Conference on Information Assurance and Security
(IAS), 2015

14. Ishan Gidwani, Mane, Security issues in openstack,
International Journal of Computer Science and
Information Technology Research, Vol. 3, Issue 2, pp:
(1147-1158), 2015

15. Doudou Fall, Security quantification and Risk-Adaptive
authorisation mechanism in cloud computing, Thesis

submitted to Nara Institute of Science and technology,
Japan, 2015

16. Yang Ou, The concept of cloud computing and the main
security issues in it, Thesis submitted to Turku University
of Applied Sciences, 2015

17. Mehdi Bahrami, A Dynamic Cloud with Data Privacy
Preservation, Thesis submitted to University of
California, Merced, 2016

18. P. Ravi Kumar, P. Herbert Raj, P. Jelciana, Exploring
Security Issues and Solutions in Cloud Computing
Services – A Survey, Cybernetics and information
technologies ��volume 17, No 4, 2017

19. Tianwei Zhang, Detection and Mitigation of
Security Threats in Cloud Computing, thesis submitted to
Princeton University

20. Bashir Mohammed, SibusisoMoyo, K. M Maiyama,
SulaymanKinteh, Al NoamanM.K. Al-Shaidy, M. A.
Kamala and M. Kiran, Technical Report on Deploying a
highly secured openStack Cloud Infrastructure using
BradStack as a Case Study.Cloud Computing Modelling
and Simulation Research Group School of Electrical
Engineering and Computer Science University of
Bradford.UK

21. Marco Anisetti, Claudio A. Ardagna, Filippo
Gaudenzi, Ernesto Damiani, A Security Benchmark for
OpenStack, IEEE 10th International Conference on
Cloud Computing, 2017

22. Bruce Benjamin, Joel Coffman, HadiEsiely-Barrera,
Kaitlin Farr, Dane Fichter, Daniel Genin, Laura
Glendenning, Peter Hamilton, Shaku Harshavardhana,
Rosalind Hom, Brianna Poulos, Nathan Reller, Data
Protection in OpenStack, IEEE 10th International
Conference on Cloud Computing, 2017

23. Darshan Tank, Akshai Aggarwal, and NirbhayChaubey,
Security Analysis of OpenStack Keystone, International
Journal of Latest Technology in Engineering,
Management & Applied Science (IJLTEMAS) Volume
VI, Issue VI, June 2017 | ISSN 2278-2540

24. Kyle Hogan, HodaMaleki, Reza Rahaeimehr, Ran
Canetti, Martenvan Dijk, On the Universally Composable
Security of OpenStack, National Science Foundation as
part of the MACS Frontier project,

25. Oliver Schluga, Elisabeth Bauer, Ani Bicaku,
SiliaMaksuti, Operations Security Evaluation of IaaS-
Cloud Backend for Industry 4.0, Proceedings of the 8th
International Conference on Cloud Computing and
Services Science, pages 392-399, 2018

26. rhos-docs@redhat.com, Red Hat OpenStack Platform 12
Security and Hardening Guide- Good Practices,
Compliance, and Security Hardening, 2019, (Information
Science), 2015 (11): 700-706.

27. JKRSastry, M TrinathBasu, Securing SAAS service
under cloud computing-based multi-tenancy
systems, Indonesian Journal of Electrical
Engineering and Computer Science, Volume 13, Issue
1, Page 65-71, 2019

28. JKRSastry, M TrinathBasu, Securing Multi-tenancy
systems through multi DB instances and multiple
databases on different physical servers, International

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

937

Journal of Electrical and Computer Engineering
(IJECE), Volume 9, Issue 2, Pages 1385-1392, 2019

29. M. TrinathBasu, Dr.JKRSastry, A full security
included Cloud Computing architecture,
International Journal of Engineering & Technology,
Volume 7, Issue 2.7, Page 807-812, 2018

30. JKRSastry, M TrinathBasu, Securing Multi-tenancy
systems through user spaces defined within the
database level, Jour of Adv Research in Dynamical &
Control Systems, Volume 10, issue 7, Page 405-
412, 2018

31. J. K. R. Sastry, K. Sai Abhigna, R. Samuel and D. B.K.
Kamesh, Architectural models for fault tolerance within
clouds at the infrastructure level, ARPN Journal of
Engineering and Applied Sciences, VOL. 12, NO. 11,
2017, Pages 3463-3469,

32. DBK Kamesh, JKRSastry, Ch. Devi Anusha, P.
Padmini, G. Siva Anjaneyulu, Building Fault
Tolerance within Clouds at Network Level,
International Journal of Electrical and Computer
Engineering (IJECE), Vol. 6, No. 4, pp. 1560~1569, 2016

33. S. L. SUSHMITHA, Dr. D. B. K. J.K. R. SASTRY, V.
V. N. SRI RAVALI, Y.SAI KRISHNA REDDY,
building fault tolerance within clouds for providing
uninterrupted software as service, Journal of
Theoretical and Applied Information Technology,
Vol.88. No.1, Pages 65-76, 2016

34. NVSPavan Kumar, Dr.JKRSastry, Dr. K Raja
Sekhara Rao, Mining Distributed Databases for
Negative Associations from Regular and Frequent
Patterns, International Journal of Advanced Trends,
Volume 8, Issue 4, Pages 1440-1463, 2019

35. NVSPavan Kumar, Dr.JKRSastry, Dr. K Raja
Sekhara Rao, On Incremental mining Databases for
Regular and Frequent Patterns, International Journal of
Emerging Trends and engineering research, Volume
7, Issue 9, Pages 291-305, 2019
https://doi.org/10.30534/ijeter/2019/12792019

36. NVSPavan Kumar, Dr.JKRSastry, Dr. K Raja
Sekhara Rao, Mining Negative Frequent regular
Itemsets from Data Streams, International Journal of
Emerging Trends and engineering research, Volume 7,
Issue 8, Pages 85-98, 2019
https://doi.org/10.30534/ijeter/2019/02782019

37. M. TrinathBasu, JKRSastry, Improving the Open
Stack Authentication system through federation with
JASON Tokens, International Journal of Advanced
Trends n Computer Science and Engineering, 3596-
3614,2019.
https://doi.org/10.30534/ijatcse/2019/143862019

38. JKRSastry, M TrinathBasu, Multi-Factor Authentication
through Integration with IMS System, International
Journal of Emerging Trends in Engineering Research,
Volume 8, Issue 1, 2020, PP. 87-113

39. JKRSastry, M TrinathBasu, Strengthening Authentication
within OpenStack Cloud Computing System through
Federation with ADDS System International Journal of
Emerging Trends in Engineering Research, Volume 8,
Issue 1, 2020, PP. 213-238

40. JKRSastry, M TrinathBasu, Enhancing Data Security
under Multi-Tenancy within Open Stac, International
Journal of Advanced Trends in Computer Science and
Engineering, Volume 8, Issue 1, 2020, PP. 533-544

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 919 - 938

938

Table 1: Major Modules of the Open Stack - Functionality
Serial
Number Name of the Module Description of the Module

1. NOVA Nova is the primary computing engine behind OpenStack. It is a "fabric controller," which
is used for deploying and managing large numbers of virtual machines and other instances
to handle computing tasks.

2. SWIFT Swift is a storage system for objects and files. Rather than the traditional idea of a
referring to files by their location on a disk drive, developers can instead refer to a unique
identifier referring to the file or piece of information and let OpenStack decide where to
store this information. This makes scaling easy, as developers don’t have the worry about
the capacity on a single system behind the software. It also allows the system, rather than
the developer, to worry about how best to make sure that data is backed up in case of the
failure of a machine or network connection

3. CINDER Cinder is a block storage component, which is more analogous to the traditional notion of
a computer being able to access specific locations on a disk drive. This is more traditional
way of accessing files might be important in scenarios in which data access speed is the
most important consideration.

4. NEUTRON Neutron provides the networking capability for OpenStack. It helps to ensure that each of
the components of an OpenStack deployment can communicate with one another quickly
and efficiently.

5. HARIZON Horizon is the dashboard behind OpenStack. It is the only graphical interface to
OpenStack, so for users wanting to give OpenStack a try, this may be the first component
they actually see. Developers can access all of the components of OpenStack individually
through an application programming interface (API), but the dashboard provides system
administrators a look at what is going on in the cloud, and to manage it as needed

6. KEYSTONE Keystone provides identity services for OpenStack. It is essentially a central list of all of
the users of the OpenStack cloud, mapped against all of the services provided by the cloud
which they have permission to use. It provides multiple means of access, meaning
developers can easily map their existing user access methods against Keystone

7. GLANCE Glance provides image services to OpenStack. In this case, images refers to images (or
virtual copies) of hard disks. Glance allows these images to be used as templates when
deploying new virtual machine instances.

8. CEILOMETER

Ceilometer provides telemetry services, which allow the cloud to provide billing services
to individual users of the cloud. It also keeps a verifiable count of each user’s system
usage of each of the various components of an OpenStack cloud.

9. HEAT Heat is the orchestration component of OpenStack, which allows developers to store the
requirements of a cloud application in a file that defines what resources are necessary for
that application. In this way, it helps to manage the infrastructure needed for a cloud
service to run.

