
B.S.Vishnu Vardhan Reddy et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 878 - 884

878

Securing web application by using qualitative research methods for detection of
vulnerabilities in any application of DevSecOps

B.S.Vishnu Vardhan Reddy1,Burla Kumara Swamy2, Savaram Pavan Siva Sai3,

Dr.K.V.D.Kiran4
Department of Computer Science & Engineering, IV/IV B.Tech CSE Students1,2,3, Professor4

K L E F Deemed to be University, Vaddeswaram, Guntur Dt, Andhra Pradesh, Indiavishnu.boreddy111@gmail.com,
160030196@kluniversity.in, 160031250@kluniversity.in,kiran_cse@kluniversity.in

ABSTRACT

These days an ever increasing number of organizations
execute the DevSecOps approach. It was created to
empower increasingly proficient joint effort between
development (dev) and operations (ops) and security(Sec)
teams. An attacker can access individual information if
there are vulnerabilities in applications. Pipelines can
comprise out of different online applications Continuous
Delivery (CD) tools. The initial segment of this area
considers papers which have managed making sure about
web applications. The subsequent part is about papers
which have occupied with making sure about pipelines. One
model is that the system can be examined by running
infused pernicious unit tests. This can negatively affect the
picture of the organization which works and uses CD
pipelines. In this manner, the inquiry emerges which
vulnerabilities are available in CD pipelines and how they
can be detected. One focal point of the paper is to discover
which devices are accessible to recognize vulnerabilities in
CD pipelines. The hypothetical discoveries of this
exploration are stretched out by a viable case study. Papers
containing security techniques and security tools that
broaden the DevSecOps approach complete this
methodology

Key words: Continuous Delivery ,Development,
Operation, Pipelines, Security, vulnerabilities, web based
applications.

1. INTRODUCTION

According to the agile manifesto rule, it is "The highest
priority is to fulfill the client through right on time and
continuous delivery of valuable software. By applying the
continuous delivery (CD) approach organizations can send
application changes and highlights to the client quickly and
dependably.
In Cater’s interview Francois Raynaud mentioned that the
use of security tools during the deployment process is
necessary to add security to the software.
Rahman and Williams discovered that the automation of
activities, for example, monitoring, testing, and code review

add security practices to the DevOps procedure and can
positively affect the security of the framework. A further
consequence of their exploration is that the decision of
deployment tools and software measurements affect the
security of the framework. Furthermore, Rahman and
Williams exhibited that in eight assessed organizations
numerous DevOps security activities are acted in a non-
automated way. Security prerequisites investigation,
performing security arrangements or information approval
are three activities of that rundown.
Jim Bird described in his book various prospects of how to
add security practices to DevOps tools and to the
development procedure. He referenced that security tests
and practices can be added to each phase of the pipeline. He
suggested that before the source code is checked in threat
modeling or peer code review ought to be performed. SAST
tools ought to be executed in the commit stage. In the
acceptance stage tools, for example, Puppet, Chef or
Docker ought to be utilized to automate the configuration
management. This prompts greater security all the while. In
this stage, tests ought to be performed, for example, fluffing
or DAST tests. Moreover, automated security attacks
(penetration testing) can be performed to detect further
vulnerabilities. In the production stage, he recommended
doing monitoring and automated setup to identify
vulnerabilities. These practices and test techniques are
fundamentally used to secure the source code and the
development process. The point is to program safely and
discover the vulnerabilities as early as possible. Also, Jim
Bird referenced strategies for securing the software supply
chain. An enormous amount of applications are open source
or third-party components. In this way, it is important to
detect the dependencies between the used applications. The
issue is that regular vulnerabilities are accounted for in open
source software. In the event that third party components
are utilized, at that point the application is reliant on these
components. On the off chance that such parts have
vulnerabilities, at that point this application has them as
well. If an organization utilizes Docker, Jim Bird
recommended doing reliance checks in Docker images. For
making sure about CD pipelines Jim Bird referenced that it
is important to survey documents and shows, similar to
Puppet and Docker records. Also, he brought up that

 ISSN 2347 - 3983
Volume 8. No. 3, March 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter44832020.pdf

https://doi.org/10.30534/ijeter/2020/44832020

B.S.Vishnu Vardhan Reddy et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 878 - 884

879

investigating the source code or different records is
important to discover mystery certifications. In his eyes,
one solution is to diminish the attack surface. This implies
unused segments which have realized vulnerabilities ought
to be expelled. As he would see it, further viewpoints, for
example, observing of delicate information, logs and
situations (e.g., production, deployment, and testing
environment) are fundamental. To summarize, Jim Bird's
book records and notices techniques which can be utilized
to identify the vulnerabilities of a CD pipeline. The book
gives a overview of tools which can be coordinated into the
CD pipelines.
Kuusela discovered in his paper how to coordinate
accessible software security tools into a CI process. In view
of the literature and the documentation of the tools, he
recognized attributes to choose whether the tools are
reasonable for the CI process. The tools he has found are
constrained to open source/free software which should be
easy to integrate and the tools results should be
understandable. He has done four case studies in which
various tools have been tested. The choice which tools
ought to be coordinated is made by the team members of
the investigated projects. The tested software were web
applications. The accompanying tools were assessed:
Brakeman, FindSecurityBugs, OWASP dependency checks,
Version Maven Plugin and Retrie.js. In the case studies, just
static examination tools and dependency checks were
coordinated and tested. Kuusela found that these two
techniques can be handily coordinated into the CI
procedure. Furthermore, the vulnerabilities distinguished by
the tools can be handily dispensed with or moderated.

1.1 Why Security is required for web applications

A CD pipeline comprises of tools that are in most cases web
based applications (e.g., Jenkins, Bitbucket, JFrog
Artifactory). Deepa and Thilagam made an assortment of
known methodologies that recognize vulnerabilities in web
applications. In addition, they recorded scientific methods
and how developers can prevent vulnerabilities in web
applications. They referenced that vulnerabilities are
available in all phases of the software development
lifecycle (SDL), so it is significant that they are examined
in each phase of the lifecycle. To secure web applications,
the initial step for developers is to create secure program
code. Developers should follow rules and use, for instance,
programming languages which naturally do datatype
checking and memory management (garbage collection).
Vulnerabilities happen for the most part through errors in
the source code. Lee et al. found that vulnerabilities in web
applications and servers can be distinguished with the
fluffing strategy. To utilize this strategy abuse cases which
are made out of known vulnerabilities must be created. It is
examined whether an issue happens in the software when an
input with this generated cases is made.
The OWASP Top 10 list 2017 proposed that SQL injections
are the vulnerability which happens in the most
applications. several tools has been created to detect SQL
injections in web applications. Huang et al. developed a tool
called WebSSARI which recognizes vulnerabilities through

static analysis strategies on the source code and by runtime
assessments. There exist other detection tools for instance
Sania by Kosuga et al. or then again the framework
WAVES of Hung et al. These tools distinguish the
vulnerabilities with various methodologies (syntactic,
semantic analysis or black-box approach). Each SQL query
is parsed into a tree by Sina. For each query a tree must be
generated and stored. Each input query generates a new
tree. An attack can be recognized if the new produced tree
and the stored tree show contrasts. The framework WAVES
attempts to recognize SQL injections and Cross-Site-
Scripting (XSS) with the black-box approach. This tool
detects vulnerabilities in applications and includes an error
scanner. These two standards are essential parts of
increasing the security of web applications.

1.2 Securing Continuity Deployment pipelines

"A key challenge in a continuous deployment is simply the
security of the pipeline". A few people have created
approaches for securing the pipelines. Bass et al., Ullah et
al., and Rimba et al. created approaches in type of strategies
to increase the security level of continuous deployment
pipelines. Bass et al. mapped out an engineering procedure
for increasing the security of a pipeline. For their case, four
stages must be attempted to increase the security level of
the pipeline. In the initial step, the assortment of the
security requirements must be finished. The following step
is to "distinguish the trustworthy and untrustworthy and
segments of the pipeline".
Bass et al. referenced that the detection is complex because
of the variety of tools which are utilized in a pipeline. Each
tool Has its own vulnerabilities.

Figure 1: Continuous deployment pipeline used in the
paper

In this work, the figure 1 investigated pipeline tools are
Chef, Jenkins, Docker, Bazzar, and AZURE. The focus in
the work of Bass et al. is only set on Jenkins. The result of
their work is that they give untrustworthy parts lower rights.
Through the confinement of access and permissions they
attempt to make the pipeline secure. Subsequently, the
attacker can just access the trusted components. These
components should be able to prevent the attacks.
The five tactics are:
1. Securing repository through controlled access
 2. Securing connection to the main server through use of
private key over Secure Shell (SSH).
3. Using roles on the main server to control access

B.S.Vishnu Vardhan Reddy et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 878 - 884

880

 4. Setting up the CI server to start up a Virtual Machine
(VM) with a clean state
5. Using Jenkins roles plug-in
The structure of the continuous deployment pipelines is
outlined in Figure 1. The continuous deployment pipelines
comprise of the following parts: Bazzar, Jenkins, Selenium
and Maven. All components are facilitated on an AZURE
server aside from the Bazzar repository. Ullah et al. gave no
reason why they picked this exceptional structure of
continuous deployment pipeline. The considered security
parts of this work are access control and visualization. The
assessment of their executed strategies were finished with
two analysis techniques. The first is a qualitative analysis of
continuous deployment pipeline. With the goal structuring
notification (GSN) they discovered that their strategies
improve the security level of the continuous deployment
pipeline. The quantitative analysis which was led with the
tools OWASP Scan and OWASP Zed Attack Proxy
Scanner gave the outcomes which exhibited that the secure
continuous deployment pipeline has less vulnerabilities than
the non-secure pipeline. The results of the work additionally
show that the Bazzar repository and CI Server (Jenkins)
without these actualized strategies have a larger number of
vulnerabilities than the primary server (AZURE).
Rather than Lipke, the point of this paper is additionally to
look for tools that can detect vulnerabilities in the CD
pipeline structure. The referenced papers show that the
threat modeling approach is utilized to identify threats and
vulnerabilities in critical systems with the objective to
ensure the system security. Hence, in this paper threat
modeling approach isn't being assessed however the
methodology is effectively utilized to detect the threats and
vulnerabilities in CD pipelines.

2. QUALITATIVE RESEARCH METHOD

So as to get the information on the organization's
developers, a survey was led in form of an in-depth online
interview. In the initial part of the following section, it is
depicted what the qualitative research strategy is and why
this technique is picked to gain the information of the
developer If a theme isn't known then a subjective
methodology can assist with getting fundamental
information about it. Mack et al. recommended the
qualitative research strategy to comprehend the present
issue or the context of a topic. The strategy acquires the
experiences and opinions of a sample of the population.
Furthermore, Mack et al. referenced that the gained
information is utilized to depict the point or issue and not to
anticipate or measure the information. They found that the
most well-known technique to do subjective research is the
in-depth interview. An interview comprises predominantly
of open questions, this implies the members answer them
with their own words and not just with yes and no. It is
important to define the questions so that the members can't
reply with yes or no. As per Mack et al., the researchers
increase an overview of this technique and more profound
understanding into the subject and through the open-ended
questions it doesn't limit the participant's perspective.

Toward the start of the research of this paper topic, the in-
depth interview technique should assist with getting the
information on developers of a software organization.
Because of the way that the employees have brief period to
spare, the interview is structured in type of an online
survey.

2.1 Methodology of Survey design of Qualitative

research methods

To gain the information of the employees two distinct
surveys were planned. With the primary survey the
knowledge on an example of employees is acquired. The
subsequent survey is organized as follows. The initial part
of this survey contains indistinguishable questions as the
first survey. The subsequent part incorporates a particular
question regarding the CD pipelines which are team
members of the projects using the investigated CD pipelines
of the case study. The Appendix A incorporates the total
questionnaires of both surveys.
Nine inquiries are the equivalent in the two surveys. The
initial four questions are about different aspects of CD
pipelines (security goals, security attributes, attack
scenarios). The following five questions are utilized to gain
the profiles of the participants.
 The first four questions are:
1. In your opinion which security objectives should be
pursued to CD pipelines? Please do not focus on a specific
used pipeline. Think in general.
2. In your opinion which security attribute is the most
important one in respect to CD pipelines (artifacts, files,
scripts, connections, ...)? Order the following security
attributes (confidentiality, integrity, availability,
authorization, authentication, nonrepudiation) according to
their importance. The attribute on top is the most important
one for you.
3. In your opinion what are possible attack scenarios for the
pipeline you use? Against which attacks would you like to
protect your pipeline?
4. Which security objectives are pursued in your project in
respect to CD pipelines? Which are implemented? The first
question should give an overview about the employee’s
thinking in regard to the security of CD pipelines. The
gained data of the second question should help to delimit
the subject because it reflects the interest and the thought
necessity of the employees. The questions in the second
part are mostly multiple-choice questions.
5. How many years of experience in software development
do you approximately have?
6. Which tools do you know and/or use? Response options:
(DevOps tools) Jenkins; Kubernetes; TeamCity; Spinnaker;
Travis; GoCD; Concourse CI; JFrog Artifactory; (static
analysis tools) PMD; Checkstyle; FindBugs; FindBugs
Security; (security tools) OWASP ZAP; BDD Security;
JFrog Xray; Security Monkey; Black Duck; Snyk
7. In which role do you interact with your CD pipeline?
Response options: user (committing code to the project,
usage of the CD pipeline); installation and operation of the
pipeline; configuration of the pipeline; other

B.S.Vishnu Vardhan Reddy et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 878 - 884

881

8. In your opinion how important is the topic security
vulnerabilities in CD pipelines? Response options: 1; 2; 3;
4; 5 (1: not important, 5: very important)
9. How often do you deal with security in your development
process? Response options: Never; only occasionally; quite
often; most of the time; no answer
The fifth, seventh and ninth questions are posed to discover
how familiar employees are with security and how
frequently they come into contact with the CD pipeline. The
sixth question shows to the researcher how much
information the employees have in various DevSecOps tool
classifications. Since there is an immense number of
DevSecOps tools, the selection of tools is made for those
which are utilized and known by each employee of the
organization or that are known to the researcher so far in
time. The static analysis tools are also asked because the
organization utilizes these tools in every project to identify
mistakes in the source code. Question eight shows to the
researcher what priority the security has in their thinking.
The extra question of the subsequent part is given below:
10. In the next step think about the security of the [...] CD
pipeline. In your opinion how secure is this pipeline?
Response opinion: 1; 2; 3; 4; 5 (1: means CD pipeline is
insecure, 5: means CD pipeline is secure (pipeline has no
vulnerabilities))

Figure 2: Tools which are known and/or used

The role of the developers if they interact with a CD
pipeline.

Graph 1: The importance of the topic in an industrial
company.

Graph 2: The developer’s security involvement frequency
during the development process

Graph 3: Assessment of the six security attributes through
developers of a selected company

0

26.32

15.79

42.11

15.79

0

10

20

30

40

50

1 2 3 4 5

pa
rt

ic
ip

an
ts

 (%
)

1 : not important ; 5 : very important

1

13

5

0
0

3

6

9

12

15

Never Only
occasionally

Quite often Most of the
time

pa
rt

ic
ip

an
ts

55
66

58

36

54

16

0
10
20
30
40
50
60
70
80

Im
po

rt
an

ce

B.S.Vishnu Vardhan Reddy et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 878 - 884

882

Security objectives in industrial projects

• Requiring authentication and authorization
• Securing credentials and hide critical data.
• Review the process
• No information should be included in the source code of
applications
• Implemented access control (not all team members have
administrator rights)
• Keep the pipeline components and software up to date
In the figure 2 , It tends to be seen that in the industrial
projects authentication and authorization approaches are
implemented. furthermore, securing sensitive data and
access rights adds to the security of the pipeline. Two
participants referenced that they have too less or none
security destinations. If a project does not pursue security
goals, it can't be ensured to the client that the software will
be deployed safely. The results of these four questions help
to discover the vulnerabilities in CD pipelines and in the
further course to research the pipelines in the case study. A
non-recognition of these referenced security targets (results
of survey question 4) prompts vulnerabilities and open
attack entry points into the CD pipeline. In the case study, it
is important to check which sorts of the security goals are
kept in the investigated CD pipelines with Graph1 ,2 and 3

3. VULNERABILITIES IN CD PIPELINES

Before vulnerabilities in CD pipelines can be recognized,
two requirements must be defined. These essentials, a
generalized pipeline and potential kinds of threat
classifications, are depicted in the initial part of this section.
After this, the STRIDE technique is then applied to the
generalized pipeline to detect threats and vulnerabilities.
The main component which is utilized in both investigated
CD pipelines in the case study is Jenkins. Subsequently, the
following section of this chapter describes the
vulnerabilities in Jenkins which can influence CD pipelines'
security. The last section summarizes the results of the
survey and of this chapter.

3.1. Prerequisites for vulnerability detection

The initial phase in the threat modeling approach is the
deterioration of the pipeline in its components and data
flows. For the detection of vulnerabilities in CD pipelines, it
is important to know which parts and data flows are
available. To detect vulnerabilities, a generalized pipeline is
required. Subsequently, in the initial part of this section,
such a generalized CD pipeline is described.
Vulnerabilities can be derived from threats. So as to detect
vulnerabilities, it is important to discover who has an
enthusiasm for attacking the pipeline. The following stage
is to distinguish the dangers of the CD pipeline. Moreover,
a distinction is made among external and internal threats
which are described in the subsequent part.

Figure 3: Components and data flows of a generalized CD
pipeline

Generalized CD pipeline

Figure 3 outlines the key components and data flows of a
generalized CD pipeline. This pipeline is a generalized
mixed version of the named pipeline towards the starting
and the investigated CD pipelines.
The components of the pipeline in Figure 2 are the source
code repository, the CI server, the library store, the artifact
repository and the deployment server. The pipeline's
procedures are as per the following: First, a developer
submits code changes into the repository. From that point
onward, the CI Server is told about this changes. Therefore,
the build step is triggered and the external libraries are
downloaded from the library store. From that point forward,
the code is assembled. The following step is that the built
artifact is put away in the artifact repository. The sixth step
is that the tests are activated and environment for the test
session is set up. If the tests are effectively executed and no
mistakes have happened the deployment step is activated.
Right now, the artifact is downloaded from the artifact
repository and is deployed on a deployment server. If the
artifact is accessible on the deployment server, at that point
the client can install the artifact and make use of it.

3.2. Detection of vulnerabilities in Jenkins

Jenkins is the CI server utilized in both investigated CD
pipelines. If the right conditions exist, the accompanying
threats could happen: A difference in the Jenkins setup
without warning on the Jenkins UI and without Jenkins
approval, a difference in security properties without notice
on the Jenkins UI and an removal of documents with
Jenkins.

3.3 Change Jenkins configuration file without
notification and Jenkins authorization

The vulnerability is to change the setup document in the
Docker environment with no warning on the Jenkins UI.
The vulnerability is that the setup file of Jenkins can be
changed with no approval and warning on the UI. The
consequence of the exploit is that the Jenkins URL is open
for all users who knows the URL. Moreover, all users have
administrator rights and can do anything they need.

B.S.Vishnu Vardhan Reddy et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 878 - 884

883

The precondition for the exploit is that you approach the
framework where the Docker container is running. With the
primary command the Docker name is discovered. The
second to fourth commands help the individual to discover
the way where the config.xml is put away in the Docker.
The following step is to duplicate the insecure config.xml
(Appendix A) from outside into the configuration directory
of the Docker.

The path to the Docker here is: jenkins-
ace:/var/jenkins_home/config.xml. The initial part is the
Docker name (here: jenkins-ace) and the subsequent part is
the path to the config.xml in the Docker. After that the
Docker container must be restarted.

3.4. Remove relevant files with Jenkins

Jenkins grants the execution of discretionary shell
commands. The result of this is it is conceivable to
irreversibly evacuate folders or files. If the required plugin
isn't installed there exists no notice which shows changes on
pipeline jobs. Listing 5.2 lists commands which must be
executed to remove a folder. The required steps for this
action is that you need to install Jenkins in a Docker
container and make a pipeline in Jenkins. While making a
project, select "execute shell" and insert the following lines
of code (see Listing 5.2) into the field. Besides, an folder
with the name "removeFolder" must be made in the Docker
container under the path /jenkins_home/. From that point
onward, the pipeline must be saved. In the following step
the pipeline must be built and the "removeFolder" is erased.
The first and third command just showcase the directory
context when the folder erasure. Accordingly, every folder
or pertinent document (e.g., Jenkins config record) can be
erased. This can damage the CD pipeline or it is
conceivable that the CI server crashes because of this
attack.

3.5. Summary of vulnerabilities in CD pipelines

The results of the survey and this chapter summarize that
CD pipelines may have the following vulnerabilities:
• Internal employees (human errors)
• Unencrypted connections between CD pipeline
components
• Insecure environment of the CD pipeline components
• None or few access restrictions
• Use of vulnerable versions of the CD pipeline components
• Vulnerable CD pipeline configurations
• Vulnerable code commits, CD pipeline scripts, Docker
images/containers, artifacts
• No review of changes on the CD pipeline

4.CONCLUSION

The objective of this paper was to find which vulnerabilities
exist with respect to CD pipelines. For the detection of
vulnerabilities the qualitative analysis technique for the
threat modeling approach was executed on a generalized
CD pipeline. It was found that CD pipelines have a few

vulnerabilities. If the association between two CD pipeline
components is decoded, for instance, an attacker would be
able to incorporate malicious code into the CD pipeline.
Since just two industrially utilized CD pipelines of a chosen
organization were examined, further CD pipelines of
different organizations could be tested to recognize extra
vulnerabilities in existing CD pipelines. A case study with a
few participants from various organizations could affirm
that the CD pipelines utilized by most organizations have
vulnerabilities where the overall risk level is among
medium and conceivably high.

REFERENCES

[1] M. Shahin, M. Ali Babar, L. Zhu. “Continuous
Integration, Delivery And Deployment: A Systematic
Review on Approaches, Tools, Challenges and Practices
“In: IEEE Access. Vol. 5. 2017, pp. 3909–3943
https://doi.org/10.1109/ACCESS.2017.2685629
[2] P. Rimba, L. Zhu, L. Bass, I. Kuz, S.
Reeves.“Composing Patterns to Construct Secure
Systems.” In: Proceedings of the 2015 11th European
Dependable Computing Conference (EDCC). 2015, pp.
213–224
https://doi.org/10.1109/EDCC.2015.12
[3] K.V.D.KIRAN,” Integrated Distributed Architecture to
Integrate Wireless Sensor Networks (WSN) with Grid for
Healthcare, ”International Journal of Bio-Science and Bio-
Technology”, Vol.7, No.3 (2015), pp.243-250, ISSN:
2233-7849 IJBSBT.
https://doi.org/10.14257/ijbsbt.2015.7.3.26
[4] K.V.D.KIRAN,”A Critical study of information
security risk assessment using fuzzy and entropy
methodologies,” International Journal on Computers and
Communications”, Pages: 17-22,Vol1,Isuue1,Dec-,12,
ISSN: 2319 – 8869.
[5] K.V.D.KIRAN,”A tool for analyzing & mitigating
application vulnerabilities in any web application, Journal
of Advanced Research in Dynamical and Control Systems,
Volume 12, Issue 2, 2020, Pages 59-68.
[6] K.V.D.KIRAN,” “Literature Review on Risk
Literature Review on Risk and their Components”
International Journal for Research in Emerging Science and
Technology (IJREST) “,Volume-1, Issue-6,
 November 2014”, (e-ISSN 2349-7610).
[7] K.V.D.KIRAN,” Performance Analysis of Layered
Architecture to Integrate Mobile Devices and Grid
computing with a resource scheduling algorithm”, IEEE
CS’07, SIVAKASI, TAMIL NADU, India.
[8] F. Ullah, A. J. Raft, M. Shahin, M. Zahedi, M. Ali
Babar. “Security Support in Continuous Deployment
Pipeline.” In: Proceedings of the 12th International
Conference on Evaluation of Novel Approaches to Software
Engineering. SCITEPRESS - Science and Technology
Publications, 2017, pp. 57–68.
https://doi.org/10.5220/0006318200570068

B.S.Vishnu Vardhan Reddy et al., International Journal of Emerging Trends in Engineering Research, 8(3), March 2020, 878 - 884

884

[9] Adele Mailangkay, Eko Indrajit, Raymond Kosala and
Acep Hidayat, Analysis of the factors that affecting
intention to use Tourism Online Booking,IJATCSE,2019
https://doi.org/10.30534/ijatcse/2019/04862019
[10]. Multiple Level Information Security Using Image
Steganography and Authentication, Marilou O. Espina,

Arnel C. Fajardo, Bobby D. Gerardo and Ruji P. Medina.
IJATCSE,2019
[11]. Security Mechanisms leveraged to overcome the
effects of Big Data characteristics, P Amarendra Reddy and
O Ramesh, IJATCSE,2019.

