
M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

213

ABSTRACT

Open source cloud computing systems are frequently being
used for the development of private cloud so that the cloud
computing system can be updated and customized to meet the
needs of the business establishments. Many open-source
cloud computing systems are in use, and most of them suffer
from one vulnerability or the other. Out of all the OpenStack,
the open-source system used by 80% of the customers. The
analysis of security built into the Open Stack reveals that
much vulnerability exists, which makes the cloud computing
system in-secured. Security is the primary concern
considering authentication, authorization, and access control
and data security. The mechanisms built into Open Stack to
ensure a secure environment are vulnerable to attack.

In OpenStack, the process of authentication implemented
through the use of fernet tokens. The use of a fernet token for
authentication reveals many weaknesses. Open Stack did not
give much consideration to use the existing and proven
authentication systems used, such as ADDC and IMS. Uses of
proven authentication systems as a part of the implementation
of authentication systems within the cloud computing system
in conjunction with native Fernet tokens will help to improve
the authentication system so that secured authentication
services implemented within Open Stack. Using two
authentications systems within the same cloud computing
system leads to the requirement of Implementation of
Multi-Factor Authentication. In this paper, the
implementation of a Multifactor Authentication system that
integrates the Native Fernet system and the most stabilized
and worthwhile ADDS Authentication system so that a user
can work with any of the Applications including the Open
Stack system with the single sign-on. The proposed method
implemented within the Open Stack through making
changes to the source code, addition of independent
components, and customization of the configuration files.

Key words: Open Source cloud computing, Open Stack,
ADDS Authentication System, Federated authentication,
Security enforcement within open Stack.

1. INTRODUCTION

1.1 The Authenticating System

Users register with a cloud computing system using the
username name and password. The registration process
sometimes involves the operation of a contract, which
includes pricing, services required, response time, throughput,
penalties, downtime provisions, limitations on the levels of
assistance needed, etc.

Users start communicating with the identity service of a
specific cloud computing system by keying in the user
name and password. The identity service after validating
and verifying the user will send a token, which is a
formatted data string containing the details of the
services availed, Token to be used for access to the
services, Endpoints to start Accessing the services,
projects to which the user belongs, etc. The user then
uses the authentication token to start directly
communicating with the services intended by the user.
The general process used for authentication shown in
Figure 1. The service component verifies the
authenticity of the user after receiving the request from
the user by contacting the authentication mechanism,
and on getting confirmation, the service component
authorizes the user to access the service.

Registration

Identity
Service

Contract
Details

DBMS
System

Services

Identity
Details

DBMS
System Services

related DB

Cloud Computing System

USER

Figure 1: General Process Flow for authentication System

M Trinath Basu1, JKR Sastry2
 1Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, miriiyala68@kluniversity.in
2Koneru Lakshmaiah Education Foundation, Vaddeswaram, India, drsastry@kluniversity.in

Strengthening Authentication within OpenStack Cloud Computing
System through Federation with ADDS System

 ISSN 2347 - 3983

Volume 8, No. 1 January 2020
International Journal of Emerging Trends in Engineering Research

Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter29812020.pdf
https://doi.org/10.30534/ijeter/2020/29812020

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

214

The user first registers into the cloud computing systems and
then logs into the identity services using user name and
password, which after checking the authenticates the user by
passing token used for accessing the service.

1.2 Multi-factor Authentication

Multi-factor authentication means implementing the
process of authentication by using multiple mechanisms.
For example, an authentication system in addition to
ensuring the implementing authentication within itself
but also further check the credentials of the users by
checking with other kinds of authentication systems such
as ADDS, Red Hat IMS, Free IPA, etc.

The multi-factor authentication helps to mitigate various
kinds of attacks that include brute force, social engineering,
spear, and mass phishing attacks, which generally attack
the user names and passwords. There is a need to deploy
third-party tools and integrate the same with the underlying
authentication system built to recognize the users.

Administrators or Automated preinstalled software
programs or users with admin or superuser access facility
configure an application such that both native and external
authentication systems used considering two or more
authentication factors for securing a cloud computing
system. The factors considered include digital signatures,
digital certificates, encryption and decryption methods, etc.
There has been well established external authentication
that includes ADDS, IMS, which are the third party
applications that implement different protocols for
effecting authentication. Multi-factor Authentication
reduces the risk massively while ensuring high security to
the cloud computing system.

The identity service usually is designed to work with
backbends used as plugins, which may use a further
extension to the process of authentication. The Identify
service configured to use one or more plugins so that the
authentication system implemented using multiple factors.
The process called a federated authentication system.
Figure 2 shows the way the multi-factor authentication
system works

Registration

Identity
Service

Contract
Details

DBMS
System

Services

Identity
Details

DBMS
System Services

related DB

Cloud Computing System

USER

IMS

ADDS

Tokenization
Services

Figure 2 : Process Flow for Multi-Factor Authentication

1.3 Use of token

The token often passed as a specific structure containing the
details of the services, resources that can be accessed, etc. The
authentication token also provides a catalog of various
services that a cloud computing system can offer — each
service listed with its name, Access endpoints for internal,
admin, and public access.

The token, once distributed, can be revoked by the system that
made available the Token. Users can use API of the Identity
service to revoke the tokens, get the list of revoked tokens, get
the list of various services offered by the cloud computing
system to the user who has access to the token, to remove the
existing token — all queries related to the tokens initiated by
the users or the services supported through API calls. The
identify service provides API, which can be used for token
management through operations such as token revocation, to
list existing tokens, remove tokens, cache tokens, etc.

There are many types of taken management systems used in
the literature, which include UUID, Fernet, PKI, PKIZ, JSON,
etc. which differ from each other in many ways in terms of the
content of those tokens and the way content in the token is
secured. The token is the most venerable elements within the
cloud computing system.

1.4 Authentication system as implemented in OpenStack

Open Stack is an open-source Infrastructure as a Service
(IaaS) cloud computing software, where users can provision
virtual machines by using its components such as storage
(called “swift”), compute (called “nova”), etc. Figure 3 shows
a high-level overview of Open Stack.

Open Stack deployed in standard hardware and its resources
like computation, networking, and storage shared in the cloud.

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

215

These resources controlled using an Open Stack dashboard.
Users can avail of these resources by using a client program
such as an Internet browser. Open Stack has a modular
architecture.

Open Stack is composed of a set of Modules that together
deliver the functionality required by the user. Many modules
are available, and each module provides a kind of service
needed by the user. The functioning of the OPEN stack
module individually attacked. To understand the extent to
which an open stack is secured, each Module assessed to find
the vulnerabilities and the level of security built into each of
the Modules. The weaknesses of the OPEN STACK
component that can be exploited by attackers must be known
to make the Modules secured from attacking through the
implementation of counter-attacking mechanisms.

The Security enforcement under open Stack recognized in
terms of authorization, authentication access control, and data
security.

The authorization and authentication service and the access
control archived through KEYSTONE Module. KEYSTONE
Module handles all the issues related to the identification of
the users.

Virtual Images managed through GLANCE Module, but the
security of virtual images handled through SWIFT, which
stores all the VM images and security of which is dealt with
by it.

Data in Open Stack managed through three distinct modules
that include SWIFT (Object Storage), CINDER (Block
Storage), Trove (Relational Databases), Regular applications
use a database, and therefore, the use of Trove done extensively.
Securing when TROVE used is the Major Issue. A certain level
of enforcement of security done within these modules

One of the most important issues connected with the security is
identifying the users, group of users, and their roles and
privileges that the users have in availing the resources. The
Module KEYSTONE provides the Identity services to all the
other modules in Open Stack. The security issue is very much
related to identifying the users and the rights that are granted to
those users, such that the users provided with access to the
resources for which permissions granted.

Keystone is a component of Open Stack that handles the issue
of authenticating the users to have access to different services.
Keystone implemented a standard authenticating system that
uses a repository in which details required for authentication are
stored. Users, user groups, user roles, group roles, access points,
etc. are stored in a repository. Many functions implemented
within keystone for effecting authentication of the users who
log in with their user name and passwords.

Keystone verifies the authentication of the users by checking
the association between the users, user groups, roles, and the
entry points for the users to start accessing the services.
Keystone maintains a catalog of the services and entry points,

which are API endpoints using which the users access the
services.

A user, group, service, or system is a digital representation of an
Open Stack system. A tenant is an entry point form in which
location the user starts accessing the service. The Keystone
verifies the authenticity of the digital signature, assigns an entry
point that is used by the user to access the resource.

Users, groups, tokens, tenants, roles, and endpoints are the
elements used by Keystone for effecting authentication. A
tenant combines resources that include processes, customers
and users, etc. Roles are rights assigned to the users for being
able to undertake a set of operations. Keystone issues a token to
the users, which contain details related to the roles and the
tenants that can be accessed by the user. Users access the
services by providing the tokens to the services. A service
verifies the roles using its internal policies and allows access to
the service if the policies maintained by it enable access to the
user having a specific role.

A token designed using a standard structure. The token
intended to provide details related to the resources that can be
accessed. A token is valid for some specific time, and the
token revoked once issued after its expiry, in which case, the
token deleted. An endpoint is a URL provided by keystone for
the users to start accessing the resource

Figure 3 shows the way the keystone interacts with other
components of the OpenStack. Security with the Open Stack
implemented through 3 different processes relating to
authentication, authorization, and data security.

The following steps followed when a user tries to access an
OPEN STACK service.

1. User logs into the Keystone using the user name
password, which gets established when the user
registers into the Open Stack system.

2. If the username and password found to be correct,
the keystone develops a token containing the details
of the tenants, which is a group including the details
related to the users or resources. All the users placed
in a group given access to the services contained in
the Group specification. The Group, as such, is
called as a Tenant.

3. The user sends a cross to the service the allocated
token to the user.

4. The service verifies with the keystone the
authentication details using its internal policies. The
user is provided with the access if keystones confirm
that the token is issued by it and also that the user
request confirms to one of its policies.

5. If access is allowed, the service provides the
endpoint to the user, which is nothing but the URL
using which the resource required is accessed.

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

216

6. If access is not allowed, the user is notified of the
rejection to permit the service, giving the reasons.

The architecture of the KEYSTONE module shown in Figure
4.

Figure 3: Overall Interactions within Key Modules

Figure 4: Keystone architecture

Within keystone architecture, four-component services
include token service, Catalogue service, and Policy service,
and database service included. The identity service provides
authentication service that provides validation of credentials
of the users, and the validation of the users concerning roles
and Accounts and also validation regarding metadata data.

The “Keystone” component of Open Stack provides identity
service for authenticating and high-level authorization. A
token-based and service-based authorization system
implemented by the Keystone component of Open Stack.
Keystone is the centralized identity and access management
component of Open Stack. The keystone module uses a
pluggable data store (SQL, LDAP).

Keystone stores the user access details in a SQL based
database or the details stored in a server that implements the

LDAP protocol. The database maintained by the Keystone for
storing the access details is independent, and therefore, no
other data stored in the database in which access details
stored.

Many external authentication systems are available, which
can be opted by an organization for adaption provided that
there is a compatible with its internal authentication system
and when desired to implement a stronger authentication
system and also that the risk involved significantly reduced.
While the internal authentication system checks the
correctness of the usernames and passwords, the external
authentication system taken into account the digital
certificates, digital signatures for authentications and also
provides the endpoints based on the access control and its
internal policies that it enforces.

A user can manage the OpenStack session using its dashboard
(Horizon), accessed using a web browser. To be able to get the
services from various services, the user has to authenticate to
the Keystone server.

First, the user gives identity and credentials (e.g., password)
to Keystone. Assuming the user is registered, Keystone
authenticates the user, creates a tamper-evident digital token
that contains information about the user, the endpoint
information of each service (e.g., Nova, Neutron, etc.), and
the operations the user is allowed to perform at each of those
services.

Keystone authentication performed by using public-key
cryptography. It uses a digital signature, and the usage of the
digital signature in this system is unconventional. It is
well-known that a significant drawback of the digital
signature is that it takes a longer time to sign and decrypt the
data. For this reason, in the real-world, a digital signature is
used for small-sized data (typically hashed data). But the
existing system of keystone signs large amounts of data, and
this makes the keystone exists system a non- standard and
inefficient for high-volume deployments.

The critical point is that a significantly more efficient and
standards-based authentication protocol for Open Stack
developed. It is feasible to re-designing and re-implements
Open Stack’s authentication protocol implemented in its
Keystone component by employing different approaches.
Either the authentication protocol is modified, or sometimes
the multi-factor authentication system is implemented.
Keystone is one of the Open Stack components used for
providing identification, authentication, and authorization
service. This service categorized into two primary functions,
which include user Management and Service Catalogue. User
Management keeps track of user’s necessary data, such as
what roles the user has, which project the user belongs to, etc.
Service Catalogue keeps track of what services are available
and provides the location of the services’ endpoints.

Keystone provides identity, token, catalog, and policy
services, a public key-based mechanism used in the
keystone’s authentication system. Public key cryptography

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

217

allows users to communicate securely over public networks
and verify the identity of a user using a digital signature. A
digital signature is an electronic signature that can
authenticate the user. In a digital signature, a sender typically
uses her private key to sign the data, and the receiver uses the
sender’s public to the key to verify the signature. A Certificate
Authority (CA) plays the trusted role to vouch for the identity
of the user with a specific public key.

In Open Stack, the keystone can play the role of a CA using
the keystone-manage utility or done by a third party. A
Keystone PKI token used for authentication. A PKI token is
nothing but a token signed by the keystone using its private
key. Keystone uses cryptographic message syntax (CMS)
within PKI. For this reason, the token referred to as CMS
token.

Whenever the user authenticates with his/her user name and
password, keystone gathers credential data (e.g., user’s roles)
of the user and creates a token and places them in a file called
user metadata. The metadata contains all information of the
user like token, service catalog, user role, etc. It also includes
an issue and expiration date and the id of the token.

The project information follows next, after which the service
catalog information placed. The service catalog has the
information on the service(s) and related endpoints the
authenticating user can avail. The endpoints are where the
services should connect to obtain a specific service (e.g.,
compute vs. network service). After the endpoints, the
information about the user listed. It shows the roles of the
user, username, and id of the user. Again, this data called
CMS data because the ID of the services here written in CMS
format, and the signed CMS data is called CMS token.
When a user logs-in with username and password, the
keystone gathers all of the information mentioned above and
generates a CMS token and sends it to the user’s workstation.
The user’s Open Stack client program in her workstation
caches the token locally and uses it for later requests. When
the user later requests a service, the client sends the token
along with the service request to the Keystone endpoint. The
Open Stack service verifies the user’s signature and responds
with the token.

When the client needs any of the services like nova, glance,
cinder, etc., it sends a request along with the CMS token. The
target service receives the CMS token and verifies the
signature with keystone, and provides the requested service if
the token is valid and the user is authorized.

Once a service receives the PKI token, it verifies the
correctness of the same. The verification of the taken includes
verification of the digital signature, token expiry date and
time, and then proceed to handle revoked tokens — a
keystone digital certificate required for confirmation of the
digital certificate. The digital certificate can be obtained from
KEYSTONE or through a third-party certificate authority.
The CMS taken is verified using the certificate. If the
signature is found valid, then the metadata is decrypted and
then proceed to check the expiry of the token. An error is

flagged if the digital certificate does not tally or the token
expired.

Token verification carried using the token revocation list. The
open stack services update the revocation list when the service
requested is provided or when the token is either expired. The
id of the token is the md5 hashed token, which is revoked by
the service. Once a token is revoked, no more the token is
valid. The Id, if present in the withdrawn list, then the token is
found to be invalid, and if not, the token considered as
accurate. Once the token found to be correct, the service is
allowed, and a response provided to the end-user. If the
request is for a VM, then the VM is created and the IP address
of the VM along with the valid port number provided to the
user, who in turn uses the IP address for further processing
required by the user, such as executing a program.

The whole process of authentication based on the digital
certificate, and the method has significant drawbacks.

1. A considerable amount of time taken for processing
the token through digital certificate affecting the
response time

2. Digital signature help securing the data integrity but
not the data confidentiality as the token its self has
essential information about the open stack system
such as the details of the services, endpoints, etc.

3. Tokens once used are revoked, and are not re-used,
leading to the signification token processing for
revoking, removing, invalidating, etc.

TLS (transmission layer security) enabled within the Identify
service for supporting the authentication system so that the
tokens are secured while transmitted through the network.
TLS provides an additional layer of security, leading to a
higher level of protection. There was additional
administrative overhead when TLS used. Issuing certificates
to the end-user is a costly proposition.

Configuration files contain secret information, especially
relating to the endpoints, and the locations access related data
is stored. At any cost, the configuration files secured against
any attack. It is worthwhile to uses access control frameworks
such an SELinux so that the configuration files protected at
any cost.

Implementation of TLS requires issues of digital certificates
to the services and the users. A certificate authority required
which issue certificates. The certificate authority can be
situated either internally or externally. The Open Stack
services check the validity of the certificates by referring the
same to Certificate Authorities. However, Cloud computing
Systems provided with an internal certificate server used for
dealing with the certificate.

In OpenStack, Fernet tokens used as default tokens. Fernet
uses a secure messaging system. The tokens designed to such
that same used as Tokens accessed through specific API.
There is no need to store Fernet tokens as the tokens are
non-persistent. The tokens are lightweight as the size of the

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

218

token is between 80 to 240 bytes, which leads to reducing the
operational overheads. The authentication data contained
within a packet (payload) is of the maximum size of 250
bytes. The data in the payload is encrypted and signed. There
is no need to implement a token revoking system as the fernet
token is non-persistence.

The fernet tokens are universal across the services leading to a
reduction in overhead when services have to communicate
with each other. The fernet tokens, as such, need not
replicated as they transmitted across the network. The number
of calls required for accessing the fernet token is few, which
leads to the high proficient processing of the tokens.

However, the fernet format has problems that make it
non-ideal. The fernet specification abandoned, making it hard
to get changes into it and thereby into the cryptography
implementation of it. Moreover, the fernet specification not
recognized by any standards body and therefore not as
carefully audited as an IETF standard, making it more
susceptible to zero-day vulnerabilities. Addressing these
vulnerabilities falls solely on the cloud computing service
providers.

Some of the requirements of the users that are not supported
by the fernet tokens

1. Need for a non-persistent token that does not depend on
symmetric encryption or signing implementation. An
implementation built on asymmetric signing or
encryption allows the distribution of public keys from
one node to another instead of synchronizing a
repository of symmetric keys, which makes it easier for
the cloud components with read-only capabilities strictly
used for token validation. The asymmetric encryption
method helps to deploy keys in read-only regions where
the token validation undertook, while the tokens issued
from a central identity management system in a separate
area.

2. Need for a fall-back mechanism in the event of noticing
a security vulnerability in the fernet-spec or the
implementation of the cryptography.

3. As an operator, I want to be having a token provider to
fall back on in the event there is a security vulnerability
in the fernet spec or the cryptography implementation
consumed by keystone.

4. The need for a token used not be used within a cloud
computing system but also with other prices of the
software, which is outside the scope of cloud computing
systems.

Thus there is a need for implementing proper authentication
system within cloud computing systems to make it more
secured from the point of Authenticating the users

1.5 Security issues relating to Keystone Module

The critical study of the keystone module carried to find
security lapses contained within the keystone module. A

detailed presentation on the vulnerabilities existing in the
keystone module presented in the following sections

1.5.1 Invalid Login Attempts

The keystone component implements the identity service. The
user has to login using the user ID and password to begin. A
user can keep on trying several times to get the user name, and
the password entered is accepted. There is no check or the
limit on the number of times the user can try. This kind of
attack counter-attacked by restricting the number of times a
user can try by setting proper firewall rules. The access log
periodically checked to find the amount of time that the user
has logged-in and the resources that the user is continuously
accessing. The user account can be barred when any of the
attacking features sensed.

1.5.2 User authentication Issue

Two functions are used by the “Keystone” Module (tempAuth
() or “swath ()) for authenticating the users based on the user
name and password. An authentication token is sent to the
user when the user name and password found to be correct. It
is the essay to attack the username and password as the same
is either stored in plain text or in an encrypted mode, which
can be brutal attacked. The keystone module does not use any
delegation system. Use of a standard delegation system or
making the password and username based authentication
system much more complex such that it is complicated to
attack such a system.

1.5.3 Password strength issue

User IDs and Passwords must be made secure and
complicated by using NIST rules that include checking
dictionary, uses of combinations of alphabets, special
characters, and digits, minimum length enforcement, use of
lower and uppercase letters, so that login information is
secured.

There should be protection from phishing when the web
interface used. The dashboard component of Open Stack
allows user access through the use of the WEB interface.
Neither the dashboard nor the Keystone components of Open
Stack use NIST standards to protect at the time of login.

1.5.4 Password storage Issue

Keystone Module stores the user IDs and passwords in a file,
either in plain text or encrypted text. The data stored in a
configuration file. There is no access limit to this file. Even
the superuser ID and password also saved in the same folder
— the read access to the file assigned to Every user. There
should be limited access to this file and mainly limited to the
processes contained in the keystone module.

An insider attack can access this file and get hold of the
Admin ID and password or superuser ID and password. The
password stored configuration file protected from the insider
attack. Saving the user IDs and passwords either in an

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

219

encrypted manner or in hashed mode would lessen the risk of
attacking the passwords.

Both “tempAuth” and “swAuth” lack the appropriate
protection of passwords. A recommendation for both
authentication systems taken from NIST’s "Electronic
Authentication Guideline" would be to store passwords
"concatenated and hashed with an approved algorithm, so that
the computations used to conduct a dictionary or exhaustion
attack on a stolen password file would not be useful to attack
other similar password files."

1.5.5 Tokens of authentication

The Keystone Module sends back an authentication string
over an open a channel once the user ID and passwords found
to be correct. The string travel over the network before the
user receives it. The token contains the information that
includes user roles, service catalog, token number, entry
points, which are tenants in plain text. The text, as such,
attacked while traveling over the network. The authentication
text secured by making it move over TLS (Transport Layer
Security) channel. If the channel is not secured, a
Man-in-the-Middle attack enforced.

1.5.6 DDOS Attack

The users of Open Stack can send repeated requests to access
for availing the services. There is no frequency limit of the
demands made by the user. The user can initiate a DDOS
attack. Such an attack sensed, and the requests initiated by the
users rejected when the frequency of the requests reaches
beyond the limit.

2. PROBLEM DEFINITION

The Identity service provided within the keystone module
leaves several vulnerabilities making any cloud computing
system vulnerable for attacks. A sound security mechanism is
needed to be built within the open stack cloud computing
system so that the Open Stack system can be used effectively
for creating either public or private clouds. A secure
authentication system implemented for establishing the user
credentials so that the desired access to the services provided
— the authentication system secured in addition to making the
authentication system faster. The authentication system must
be implemented in an open platform so that the operation
easily integrated with other internationally proven and
available authentication systems.

3. RELATED WORKS

Platform Specific digital signatures and tokens used for
authentication within Open Stack. An independent,
decentralized, and flexible Mechanism that serve the purpose
of authentication presented by Razib Hassan Khan et al., [1].
They have used OpenID, which is an open-source for the
development and implementation of authentication within
Open Stack. They have developed and offered the
authentication system as a service. The platforms proposed by

then are built web services and have implemented a
single-sign-on for accessing multiple services. The users
signing into an operating system is also used as login into
Open Stack. They have shown how the users who registered
into OpenID can log into Dashboard/Django GUI.

Jamie Bodley-Scott [2] presented that identity management is
now being made user-centric from organization-centric
approaches. Access to multiple service points implemented
through user-centric approaches that are scalable and flexible.
The user-centric methods based on single sign-on for making
available different kinds of services. Through a single
sign-on, a federation of login systems used, which improves
the usability of service-oriented systems extensively.

API generally used within Open Stack EC2API [6] or OSAPI
[3]) for implementing front-end GUI services. Through API,
the processes that are related to Access control, authentication
and cryptographic algorithms, and generation systems
handled within Open Stack. Many weaknesses found when
the authentication systems implemented using API calls. The
user names and passwords when used within a different
framework on which the service provider has no control for
authenticating the user. Once the user verified, administrator
credentials used for retrieving the credentials of the user. The
server that provides the service in the open stack does not
participate in the authentication process but rather depends on
the credentials provided by the administrator.

Administering the policies and taking policy-related decisions
are situated at specific policy decision points (PDP), and there
can be many policy enforcement points that communicate
with PDP for effecting the authentication and access control to
the resources. Policy enforcement points situated within a
cloud computing system that delivers with PDP for providing
access to resources [4][5]. In Open Stack, the front-end GUI
server within the client is a separate area within Open Stack.
The user credentials have to be stored within the GUI server
as Open Stack has no support for federation with the different
authentication servers. The implementation of Multiple PAPs
and PDPs is not possible when a centralized authentication
server was not in place. There should be trust between the
Client (Front-end GUI) and the cloud computing system,
which is possible when a tightly coupled GUI and Cloud
computing system implemented. The WEB server tightly
coupled to the Back-end cloud computing servers which
provide the services required by the users.

Open Stack is a cloud computing software that is available as
open-source. Open Stack initially designed to of
Infrastructure as a service (IaaS). Users can ask for the kind of
machine in terms of CPU power, extent memory and storage
required, and the nature of the operating system that must run
on the Machine. Users install an IDE and develop their
application. Users can also connect their System software like
database management software etc. Users can deploy their
claims on the machines and also run the application.

Open Stack has not used any standard for implementing
security enforcement within the cloud. The security

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

220

implemented within the OpenStack system is nonstandard.
Kerberos is an authentication standard. SazzadMasudet al. [6]
have studied the Kerberos system and have shown what the
system implemented within the open stack as an independent
component that federates with a keystone.

C. Kaufman et al. [7] have presented the way the
authentication protocol system used by Open Stack
implemented within the Kerberos protocol. They have also
introduced a prototype authentication system based on
Kerberos standard.

The Keystone service developed using many interlinked and
structured internal services [8]. The services offered by
keystone can be services provided by keystone include policy
services, catalog services, token services, and Identity
services. The authentication system implemented within the
keystone based on critical public infrastructure that helps the
users to communicate securely over public networks — the
identity of the users established through a digital signature. A
user uses a private key to sign the message digitally, and the
receiver uses the public key of the user to decrypt the message
and find the identity of the user who sent the message. A
certificate authority, either internal or external, will verify the
trustworthiness of the public key used by the user.

Marek Denis et al., [9] have explored the implementation of
identity federation within the Open Stack system through the
use of local identity called “Domain Accounts.”

Most of the organizations around the world are shifting to
cloud computing infrastructure for supporting their IT
requirements due to cost, reliability, and availability of the
required resources as and when needed. Many cloud service
providers have already come into the market, playing a
significant role. Some of the service providers that have come
into play include SalesForce, Amazon, Google, Microsoft,
Rackspace, Oracle, Verizon, etc. [10].
Several frameworks developed in the past related to cloud
computing systems. Some of the frameworks are open source
based. The customers use the frameworks for building private
clouds that offer different types of services. Some of the
notable frameworks include Cloud Stack, Eucalyptus, and
Open Nebula. Off late Open stack has become the most
sought out Open sources based framework for developing
users their private networks [11].

A study conducted and an analysis of security issues relating
to open stack carried especially considering object storage
service. Security requirements, as stated in two different
standards released by NIST(National institute of standards
and technology) and ENISA (European Network and
Information security agency) and came out with a set of
security requirements implemented within Open Stack [12].

A new Enhanced authentication system that works in
conjunction with the original authentication system
implemented within the keystone presented by B. Cui and T.
Xi in [13]. They have shown details and the way the new
model performed. They have compared the features of the

new model with the features supported by Keystone and also
have introduced the way the new model provides a high level
of security by subjecting the open stack system with the
attacks that cannot be mitigated by the keystone system.

Series of versions of the Open Stack released, leading to the
improvement of security enforcement that mitigates many of
the vulnerabilities existing in the open stack. The openstack
being open source exposes many threats and vulnerabilities.
Open source-based Testbeds used for testing cloud computing
systems, and these testbeds used to test new methods included
in the Open Stack system for testing resource provisioning
and management of services deployed under Multi-data
centers [14].

Authenticating the users for providing secured storage and
access to the information is required, when it comes to
service-oriented information exchanges — identity
management systems needed for ensuring confidentiality and
security considering both sides of the client and provider.
Many drawbacks exist within many of the cloud computing
systems, including open stack, which causes data violations,
unauthorized access. A single point of failure happens due to
the use of centralized access. Security of cloud computing
systems enhanced through Federated Identity management,
which leads to the structured, adaptable, and systematic
implementation of the security systems within cloud
computing systems [15].

A cloud computing adaption framework is proposed by Vicor
Chang et al., [16], which can be customized by the user for
implementing the organization-specific security
requirements. They have presented that security enforcements
applied in real-time through a Multi-Layer approach. They
have used three layers for implementing security through a
firewall, intrusion, and access control, implemented in three
layers.

Benjamin Ertl [17] presented that Authentication for every
kind of service has to be rendered based on cross-domain
identification. They have introduced a protocol that considers
the issue of linking different accounts associated with a client.
The protocol proposed by them supports verification of
authentication for each of the services requested by the
clients. They have put their recommendation in terms of the
existing federated infrastructures.

Security and privacy are the two major concerns of the users
who store their data in the clouds. Several security concerns
arise, which include access control, Data integrity control,
access logging, access auditing, and managing the identity of
the users when data transmitted between the user and the
cloud. Many complex issues lead to multiple open problems
requiring in-depth research carried Bhale Pradeep Kumar
[18].

Policy-based methods and mechanisms used for effecting
access control have been used by Georgios Katsikogiannis
[19] for implementing multilevel identity integration,
authentication, and authorization for providing secured access

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

221

to cloud computing resources. They have used SOA for
implementing a policy-based security system. They have
analyzed Identity integration, user roles, authentication,
authorized access control, and used for validating the rules.
A cryptographic primitive, which is key-homomorphic
embedded into RDIC (identity-based remote data integrity
checking) protocol, which considers the user identity for
reducing the complexity of a system. The modified RDIC
helps in minimizing the cost of implementing PKI within
RDIC, Yong Yu [20].

A cloud computing platform suffers from both external and
internal attacks. Nit many Mechanisms/methods proposed to
deal with internal attacks. Carlos Eduardo et al. [21] described
self-adoption schemes to handle insider threats. The authors
have presented the way the self-adaption systems introduced
into the Open Stack cloud computing platform

The self-adaption mechanism found to deal with the
uncertainty that exists in a wide range of applications. The
component “Keystone” contained in open stack can be
included with self-adaption mechanisms so that internal
threats counter-attacked

Carlos Eduardo et al., have presented that adds self-adaption
components to Open Stack architecture to handle insider
threats. They have analyzed several threats occurrences that
can happen within the open stack and have evaluated the
impact of the treats that occur in several scenarios. The
self-adaption system explained considering several threat
scenarios.

Various models presented in the literature relating to
authentication, authorization, and access control helps to
implement different security measures that help to ensure
integrity, confidentiality, and availability of the data as per the
user requirements. Many models presented in the literature
include RBAC (Role-based Access control) [22], ABAC
(Attribute-Based Access Control)[23]. These models, based
on the assignment of attributes to roles either through
relationships or rules, assign permissions to access the
resources, find Rules that express relationships between the
users and roles. An identity federation management system
includes identity providers, assigned attributes to the users,
and uses the Authentication related infrastructure provided by
the service providers for effecting the security enforcement
[24].

The system that implements ABAC/RBAC relies on the
software components that protect access to several resources.
The self-adaptive systems use the inputs provided by the
elements meant for controlling the access for changing their
behavior [25]. MAPE-K framework implements the
self-adaptive model combined with the components that
protect access to the resources [26].

The authentication systems implemented within the cloud
computing systems must be flexible such that the
authentication system implemented varies based on the kind
of resource requested by the user. Many existing cloud

computing systems implement proprietary authentication
systems through uses of signatures and tokens. Khan [27] has
designed and implemented a model based on the OpenID
framework so that limitations existing in proprietary protocols
removed.

A new authentication framework is proposed by Anisetti [28],
which is deployed on a single open stack node and proved the
effectiveness of the framework in implementing security
within Open Stack. Cui [29] et al. have analyzed the security
implementation within an Open Stack, considering each
component separately. They have proposed a new model
based on symmetric and asymmetric encryption the feasibility
verified by deploying the same within Open Stack.

R. T. Fielding [30], in his thesis, has presented REST
architecture for designing web applications. REST is stateless
and works on the principle of cloud computing. The API uses
a secured https protocol for proving communication between
the users and a server. The users through API call logs into the
server and get connected

EC2API client [31] and the python-nova OSAPI client [32],
which are API tools used for authentication of the users into
cloud computing systems. A GUI hides the use of API and
makes accessing a service much simpler for the users.
WEB-GUI became the widely acceptable front end for
making available the cloud services to the end-user and also
the administrators. The Horizon component of Open Stack
provides the GUI through which the user can access the
services without the need for accessing the system through the
use of API. There are, however, many shortcomings in the
way the dashboard provides authentication of the end-user.

Open Stack does not support federated identity management.
Many federation based authentication systems such as
OpenID [33][34[, SAML [35] [36], Shibboleth[37] used
within the open Stack for implementing the authentication
system

OpenID is an authentication system available as open sources
extended to implement user preferences. The system provides
a centralized Identity system that is user-centric, which means
the users can opt for the kind of system that needs performing
for enforcing the authentication to access the cloud computing
resources.

In Open Stack, Security is built through the process of
authentication and access control and also providing security
infrastructure that can be used by the users to enforce security
on their own. The Keystone Module within open stack takes
care of security enforcement through primarily utilizing a
process based on Tokenization. The Keystone module
provides tokens to the users, and the users access the services
offered by Open Stack with the help of tokens

Open Stack [38] is an open-source system that offers
Infrastructure as a Service (IaaS)[39]. Open stack allows the
users to provision the virtual machine with storage, computing
resources, which are provisioned by the Open Stack

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

222

components such as SWIFT, NOVA, etc. RACKSPACE and
NASA together have developed Open Stack in python
language [40].

Keystone uses Digital signatures for implementing the
authentication system. Authenticating a massive amount of
text would be cumbersome [41] when massive traffic between
the clients and the cloud computing system expected. The
authors have proposed to hash the data so that the size of the
text reduced and then they have applied a digital signature

Darshan et al. [42] have presented that keystone plays a
significant role in binding all cloud computing projects
together, each project implementing a service. There is a need
to protect the resources used by the keystone such token
repository, the identity of the users and resources, the
endpoints, etc. The security of the open stack system is
enormous as all the possible attackers have the source code of
the Open Stack in their hands. The authors have analyzed the
security requirements openstack and formed a threat model.
A Restful API based authentication system that offers various
security services needs implementation within the Open Stack
system.

Security concerns are many when one wants to use cloud
computing systems. Security is a real barrier to using cloud
computing systems [43]. A survey conducted in 2016 revealed
that security risks are the primary concerns/obstacles in using
cloud computing systems.

Open Stack is vulnerable to attack. Experimentation using a
prototype specification revealed that the dashboard
component of Open Stack is sensitive for attacking. Most of
the researchers have offered different kinds of solutions used
for making the Open Stack framework secured. The keystone
module of the OpenStack provides another type of identity
services that include identification, cataloging, management
of policies, and dealing with tokens for authentication. The
identity services offered by the keystone module provided as a
set of services situated at more than one endpoint. The
services initiated through frontend calls. An authenticate call
initiated from the user frontend will validate either project or
user credentials, and on finding the eligibility, an
authentication token issued using which the users access the
service [44].

GidwaniIshan et al. made another study that focuses on the
security issues and threats existing in Open Stack system.,
[45]. The authors argued that Open Stack did not implement
any complexity within the password system and also that the
passwords stored in plain text. They have conducted a
penetration test using some of the existing tools and have
come out that Open Stack is prone to future attacks as many
vulnerabilities still existing in the system

A study of the features supported in the keystone module [46]
has found many weaknesses and a lack of support for access
control, authentication based on attributed provisioning, audit
mechanisms, and policy-based security enforcement. They
have carried a threat and identified threats that exist

concerning interfaces, components, internal processes of the
elements within Open Stack.

The architecture of most of the open sources is similar [47].
Most of the cloud computing architectures consider including
a cloud controller and a set of nodes on which several services
implemented. The controller controls the instances, network,
administrative interfaces, and schedules the interfaces. The
nodes run instances of VMs through the use of available
resources.

Performance analysis of a two factor authenticated system
carried by J. M. Alve, T. G. Rodrigues [48] using the different
hypervisors, which include VMware, Xen, KVM, etc. They
have used the user name password in the first instance and
then followed by OTP based authorization. They have used
OpenID protocol, so that single sign-on access to the services
provided. They have shown that KVM hypervisor
performance extensively well using a two-factor approach
[48].

KrysztBenedyczak et al. have presented the use of
middleware for implementing federated computing [49]. They
have proposed a method that does not require either
certificates or delegation mechanisms. They have used a
component called “Unity” for serving the identity
management services. The method proposed by them allows
many federation integration approaches that include
integrating with OpenID and SAML.

Controlling access to different resources considering
Fine-grained access control, Scalability, data utilization,
privacy preservation, and revocation of privilege is most
complicated. A scheme covering these aspects was proposed
by Rohit Ahuja [50] based on encryption carried using a set of
attributes. Encryption of data undertaken through
consideration of a set of attributes. They have considered that
the users hierarchically organized, with each user carrying
specific attributes. The characteristics are selected based on
the path to be used for moving data from one user location to
another, keeping because of the scalability. The authors have
presented the method of hybridization of re-encryption and
attribute-based encryption to realize the flexible revocation of
system privileges.

A single sign-on is sufficient to access the services proposed
by multiple service providers recommended by
JaweherZouari [51]. They have proposed identity as a service
framework in which an Identity Finder system incorporated.
The identity finder system, associates service providers with
identity providers systems after taking the consent of the
users. They have proposed additional functionality that helps
to transform between different standards and mapping
semantics relating to varying attributes so that the same
identity context preserved over the entire system

X Darth protocol has been used by QuratulainAlam [52] for
implementing identity management that spread across several
domains. The follow of information that takes place when
XDAuth used is modeled using Petri nets at a high level. The

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

223

authors have used the Z language for analyzing the rules of
information flow. The model verified by using a Z3 solver.

A scheme that helps to implement RIBS (Revocable
Identity-based signature) proposed by Xiaoping Jia [53] uses
an external cloud revocation server used for carrying all
critical updates. Xiaoping has proved that a new framework
that incorporates RIBS is highly resistant to foraged messages
and different identity attacks. They have convinced that RIBS
is highly efficient when compared IBS scheme.

Mell PM et al. [54] explained that the distribution of data
among different servers is primarily dependent on the type of
cloud (private, public, and Hybrid). The data distribution is
also dependent on the users who are either internal, external,
or both. The data distribution aspects considered while
making available infrastructure as service through an open
stack cloud computing system.

The self-adoption techniques did not lead to complete
protection considering security and privacy, especially when
insider threats are involved. Many contributions made to deal
with securing the cloud computing systems [55, 56, 57], but
none of these methods could solve the issues of insider
attacks.
Cappelli DM et al. [58] have explained that an insider threat is
either a user or process that has authorized access to the
internal resources and can attack the integrity, availability,
and confidentiality of the data.

Cole DE et al. [59] have explained that insider threats are not
the same as those connected with the cloud computing
components, which are either hypervisors or brokers. Insider
threats can be at catastrophic resulting in considerable losses
to the organizations as explained by Duncan A et al., [60]

Self-adaption systems proved to be effective in dealing with
insider threats as the mechanism deal with un-certainty
considering a wide range of application and especially with
the apps that are related to effecting access control
mechanisms [61, 62, 63, 64]. De Lemos R et al. [65] have
explained that the self-adaption systems could modify/update
their behavior or data structure at run-time, thus dealing with
the dynamic management of insider attacks.

An insider threat generally caused by authorized users of the
system [66]. The internal user regarded as the inside attacker.
Cert et al. [67] defined an employee, business partner, and
contractor who has access to the internal information
resources as the inside attackers. The users have intensions to
take advantage of the company’s data for unlawful activity
affecting availability, integrity, and confidentiality regarded
as inside attackers [68] [69]. Cappelli DM et al. [70] have
considered the issue of security from the point of likely abuse
of the data by the users, which can lead to some threat 71].
Insider risks classified as unintentional and intentional. Only
intentional threats are classified into insider attacks [72]

An enhanced scheme presented by Yapping Chi et al. [73]
strengthen the authentication system implemented within the

keystone module of the Open Stack System. The project uses
FreeIPA for including a sentinel that performs authentication,
service management, and access control. The effectiveness of
the sentinel tested by exposing the open stack to the external
users.

Clouds provide resources that are shared by several
users/tenants through availing of different services that are
made available by cloud computing providers — the
accessibility to the resources controlled so that one user does
not get into another user jurisdiction. Several security
mechanisms must put in place, which includes authentication
and access control to provide non-conflicting access to the
resources [74][75].

Chi Yaping et al. [76] have used the FreeIPA framework and
developed a sentinel who has been introduced into an open
stack and proved the effectiveness of the same. Several papers
published relating to securing various aspects within cloud
computing systems some of which have not been included in
Open Stack [77][78][79][80][81][82][83][84] [85][86][87].

4. THE GAP

None of the authentication systems proposed for
implementation in Open Stack considered the use of a
well-proven authentication system already in existence and
used so that a single sign-on is sufficient to access multiple
applications, including the Open Stack System. A multi-factor
authentications system is required to implement a full proof
security system within the Open Stack.

5.0 INVESTIGATIONS AND FINDINGS

The Vulnerabilities were existing in the Keystone module
investigated from different perspectives, especially the issue
of tokenization and the use of multi-factor authentication.
Several mechanisms can be introduced into the Open Stack so
that the identity of the users can be made more secure. The
measures added into Open Stack include the introduction of
more secured Tokens, implementation of multi-factor
authentication through federation approaches, etc. Every path
leads to some complexity. The more security built into the
cloud computing system, the more will be the cost, especially
in terms of loss of response time, which also requirement of
sophisticated security models to be added into the system. The
security models chosen must match the risk involved in
providing a specific service required by the customers. The
risk mitigation based security model is the most ideal.

Microsoft introduced Active Directory (AD) in which
information about the domains and its related IP addresses,
valid users and their passwords, details of the devices such as
printers, disks, files, telephone numbers, etc. The directory
queried using a standard API. The directory can be moved
into different clients so that checks/decoding required carried
in client location. The directory, as such moves over a
network. AD is a shared infrastructure for managing and
administering various network resources. Sometimes the
directory is stored in a server, and the server queried for want

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

224

of information especially the domain names and decoding of
which to the IP addresses. AD considers every resource as an
object and maintains different attributes of those objects.

A set of rules used to name the resources the details stored in
AD. The user names used by AD are unique, and there will not
be a name collision. The ADDS (Active Directory Domain
system) implements the access control mechanisms so that
only eligible users and the processes could access/Query the
AD. ADDS is called the domain controller as it provides
unique resource IDs given the name of the resources. ADDS
system controls access to the information related to the
resources - the details of which stored in AD. It implements
the authentication and authorization system that regulates
access by the users .to the resources contained in AD based on
access policies. ADDS system provides that include directory
services, federation services, certificate service, rights
management services, and Lightweight Directory Services
using LDAP (Lightweight directory access protocol). Users
can access the services through a standard API supported
ADDS

ADDS server can be stand-alone or installed as a cluster. AD
is distributed among several servers when clustered
architecture used primarily when high availability is required.
To implement a fault-free environment, ADDS performed as a
Primary domain (PD), and a secondary domain (SD) with SD
replicated using PD from time to time. In the case failure of
PD, SD accessed until the time PD repaired and replicated
again.

Each time a user makes a request for a resource, ADDS logs in
the request, accesses a network resource, or runs an
application, and the AD domain controller either authenticates
the request are rejects the request if permissions for the
resource access does not exist. Corruption in the ADDS
database or the failure of the domain controller server can
devastate an enterprise, so administrators often set up ADDS
on a server cluster for automatic replication and
synchronization for resiliency and added performance.
Smaller organizations can use Active Directory Lightweight
Directory Services, which functions almost identically to
ADDS but does not need domains or separate domain
controllers.

Active Directory Certificate Services creates, validates, and
revokes public key certificates used to encrypt files, emails,
virtual private network traffic, and Transport Layer
Security/IPsec network traffic. Active Directory Federation
Services provides a single sign-on service to give users access
to resources or services -- typically outside of the enterprise --
using one set of credentials. Active Directory Rights
Management Services controls encryption and access control
for email, documents, and web content.

ADDS system used for authenticating and authorizing the
users to have access to different resources contained in the
computer system. Every user needs to be authenticated by the
operating system before the user is allowed to have access to
the application. The Application intern depended on the

access provided by the operating system or enforces an
additional security system built within the application. The
app uses the ADDS services for verifying the access rights of
the user. The access mechanism as supported by the ADDS
systems, shown in Figure 5.

WIndows
Operating System

Active Directory
Domain services

Application

List of
Accesses

permitted

Active
Diretcory

List

Figure 5: Authentication and authorizations ADDS
system

As explained earlier, Keystone uses fernet services for
authenticating and authorizing to have access to different
resources, and the bottlenecks of using such a tokenization
system need consideration. Active services proved to be a
versatile system of enforcing security, and ADDS system
provides extensive services used to enforce security.
Federation of ADDS system with fernet gives high-security
provisions, and also existing users need not have any
additional registrations with Open Stack. The way the ADDS
system federated with Fernet shown in Figure 6.

Dash Board

Key Stone

ADDS System

Fernet Provider

ADDS Active
Diretcory

Figure 6: ADDS federation with Fernet Tokenisation system

It is necessary to complete prior tasks that include installation,
configuration, and operationalization of ADDS, Open Stack,
and DNS Systems and also that ADDS configured to use
LADAP using port number 636, so that ADDS properly
integrated with Keystone services All components of Open
Stack that include NOVA, COMPUTE, KEYSTONE,
HORIZON restarted for effecting the ADDS system for
authentication purposes. Users account created in the ADDS
system for making the users interact through DASHBOARD.

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

225

If a firewall installed to filter the communication between
Open Stack and other services, then a configuration of the
firewall is needed to allow the traffic between Keystone and
ADDS systems. An Open Stack controller node should be
able to communicate with ADDS using LDAP and port
number TCP636.ADDS configured after the installation is
complete. The List of configuration tasks carried shown in
Table 1 and the configuration steps with its related commands
shown in Table 2.

Table 1: ADDS Configuration Tasks

TASK
Serial Task Details

1 Create a service
account.

This can be named according to
your naming convention for service
accounts, for example, svc-LDAP.
This can be a regular domain user
account or Administrator privileges
attached accounts

2 Create a user
group.

Every user given access to the
Open Stack must be a member of a
Group. A group name selected such
that the name conveys the meaning
and follows the naming
convention. Access to the projects
included in the dashboard granted
to the Group, provided the users
also configured members of the
Project Groups.

3 Create Project
groups.

There must be an AD group for
every Open Stack project. An
ADDS group created for every
Open Stack Project.

4 Configure the
service account.

There must be a service account
such as “svc-LDAP” configured as
a member of an Open Stack Group

5 Export the LDAPS
public key.

The public key converted to a
certificate file in the x509 format
file DER-encoded x509 .cer file.

6
Send the key to
the Open Stack
administrators.

The certificate file must be stored
at a location as required by the
Open Stack — the certificate used
for encrypting the communication
that happens between the ADDS
and Keystone.

7

Retrieve the
NetBIOS name
of your ADDS
domain.

The ADDS domain name must be
retrieved to set the Open Stack
domain name for adapting the
consistency between the
environments

Table 2: ADDS Configuration Steps and Commands
Confi
g.
Serial

Configuration step Configuration
Command Strings

1

An LDAP lookup
account needs to be
created. The keystone
will use this account for
querying the ADDS
through LDAP

PS C:\> New-ADUser
-SamAccountName
svc-ldap -Name
"svc-ldap" -
GivenName LDAP
-Surname Lookups

-UserPrincipalName
svc- ldap@lab.local
-Enabled $false
-PasswordNeverExpir
es $true -Path
'OU=labUsers,DC=la
b,DC=local'

2

A password set for the
LDAP lookup account.
The password must be
enabled. The password
entered which must
comply with AD naming
convention

PS C:\>
Set-ADAccountPassword
svc-LDAP -PassThru |
Enable-ADAccount

3

A group must be created
for all the OpemStack
users such as
grp-openstack

PS C:\> NEW-ADGroup
-name "grp-openstack"
-groupscope Global -path
"OU=labUsers,DC=lab,D
C=local"

4 Create Project Groups

PS C:\> NEW-ADGroup
-name
"grp-openstack-demo"
-groupscope Global - path
"OU=labUsers,DC=lab,D
C=local"PS C:\>
NEW-ADGroup -name
"grp-openstack-admin"
-groupscope Global - path
"OU=labUsers,DC=lab,D
C=local"

5

The svc-LDAP user added
to the grp-OpenStack

PS C:\>
ADD-ADGroupMember
"grp-openstack"
-members "svc-ldap

6

The public key of LDAP encoded into
DER-encodedx509.cer file and copy the same into an
administrator-defined location, The must be done from a
Server where AD is stored

7
The NetBIOS name of the
ADDS system should be
retrieved

PS C:\> Get-ADDomain |
select NetBIOS Name
NetBIOSName

The commands along with arguments can be programmed
into Batch File or through execution of either Python program
or a C++ program through system calls can be initiated.

For the keystone to access the ADDS services for
authentication and access control purposes, the Multi-factor
authentications systems parameter set, and the system used to
set as ADDS. Keystone from then calls the ADDS system
using API for implementing different security processes. If
ADDS and Keystone are resident on different servers, then
there is network flow which must be secured requiring the use
of a digital certificate. The location of the Digital certificate
stored in the Keystone configuration file. Keystone makes an
inquiry to ADDS for a public key converted in a certificate
stored at the location indicated in the keystone configuration
file. The certificate file configured to copy into it the Private
and other certificate details shown in Table 4.

A standard protocol required for communication with the
ADDS system to avail of the directory services. LDAP
(Lightweight Directory Access Protocol) is one of the

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

226

protocols used as it proved to be extensive and stable. The
protocol used for locating any user, resource files, and devices
situated on a network. LDAP provides the integration required
in-between Keystone and ADDS system. Keystone
implements the authentication and authorization through the
following steps indicated in the LDAP protocol.

Requests for authentication from the user received by
Keystone delegated to the ADDS system through the use of
LDAP protocol. On receiving the authentication confirmation
from ADDS, the Keystone then creates a token and forwards
the same to be stored in AD and then passes on the token to
the user

The LDAP deals with a set of attributes for proper functioning
as required by the user. One of the characteristics related to
identifying the user as admin, superuser, or user groups such
as “Finance,” “HR,” etc. The roles played defined in the
keystone configuration file mapped to the users which are
then used by various services to determine whether a
requested service extended to the end-user, LDAP requires
some attributes, and Keystone requires some characteristics
and the mapping between these attributes are needed. The
mapping between the keystone attributes and LDAP attributes
stored in the keystone configuration file.

No other program should be allowed to call LDAP for
authentication outside the Open Stack for ensuring that no
changes to the configuration files carried outside the Scope of
Open Stack.

Having configured the ADDS system and the digital
certificate that it has to communicate with an identity server,
the next step is to set the KEYSTONE identity service itself to
integrate with the ADDS system. Several actions to be
undertaken for enabling keystone command line access which
includes, configuring controller and compute function,
configure block storage, for using Keystone 3 component, set
to allow ADDP group users to get access to Open Stack
Projects, and configure to provide ADMIN TAB access to the
administrator. Once these steps completed, the ADDS system
gets fully integrated with the Keystone service. Table 3 shows
the steps involved in configuring the Keystone module to
incorporate with ADDS system.

Table 3: steps for setting the LDAP certificate

Config
Serial Configuration step Configuration

Command Strings

1
The LDAOS public key
is copied to the server
running keystone and
converted to a
certificate
file.addc.lab.local.cer:
is the certificate file

openssl x509
-outform der -in
addc.lab.local.pem
-out
addc.lab.local.crt

cp
addc.lab.local.crt
/etc/ssl/certs/

The RHEL Certificate store if it is needed to run the
Diagnostic commands such as LDAP search

2 The certificate file
ddc.lab.local.cer is
converted ot .pem file

openssl x509 -inform
der -in addc.lab.local.cer
-out addc.lab.local.pem

3 The .PEM program is
installed on the server
when Open Stack
controller is installed

cpaddc.lab.local.pem
/etc/pki/ca-trust/source/a
nchors/ # update-ca-trust

6. CONCLUSION

Open Stack is a prominent open-source software for providing
the infrastructure as a service to the users. It is necessary to
investigate the sufficiency of the security built into the Open
stack as OPEN STACK contemplated to be used by many
users.

Management of tokens issues to the users is the most crucial
issue. The system must be such that it is difficult to attack the
initial logins or the tokens exchanged for providing
authentication to the user.

The fernet tokens used within the keystone is weak as it
exposes much vulnerability that can be exploited by the
attackers. Fernet token formatting is also nonstandard.

ADDS system is versatile and well-proven and used for many
applications for implementing security enforcement. Many
users created into this system for accessing applications
implemented within windows operating systems. The use of
the ADDS system not only will help system integration across
the applications but also help to achieve the accesses using a
single sign-on.

Multifactor authentication using ADDS and LDAP within the
OpenStack system helps in securing the Open Stack in a
secure manner, which will satisfy the end-user enormously.

REFERENCES

1. Razib Hassan Khan, JukkaYlitalot and Abu Shohel
Ahmed, OpenID Authentication As A Service in
OpenStack, 7th International Conference on
Information Assurance and Security (IAS), PP.
372-377, 2017

2. Jamie Bodley-Scott, "IDM09, Access or Identity,
http: //www. open group. org/Jericho/idm2009_jbs
.pdf."

3. "Amazon AWS EC2 API Reference,
https://docs.amazonwebservices. Com /awsec2
/latest/ apireference/, 2011."

4. Rackspace US, Inc., "Openstack compute developer
guide api 1.0, 2011."

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

227

5. S. Almulla and C. Y. Yeun, "Cloud computing
security management," in Engineering Systems
Management and Its Applications (ICESMA), 2010
Second International Conference on, 30 2010-April
1 2010, pp. 1-7.

6. D. Gollmann, "Computer security," Wiley
Interdisciplinary Reviews: Computational Statistics,
vol. 2, no. 5, pp. 544-554, 2010. [Online]. Available:
http://dx.d0i.0rg/l 0.1002/wics. 106

7. SazzadMasud and Ram Krishnan, Kerberos-Based
Authentication for OpenStack Cloud Infrastructure
as a Service, IT CoNvergencePRActice (INPRA),
volume: 3, number: 2 (June), pp. 1-24.

8. C. Kaufman, R. Perlman, and M. Speciner. Network
Security: Private Communication in a Public World.
Prentice-Hall,2002.

9. R. Xu. Keystone authentication. http://
OpenStackoz.blogspot.com/2014/08/keystone-authe
ntication.

10. Marek Denis, Jose Castro Leon, Emmanuel
Ormancey, Paolo Tedesco, Identity federation in
OpenStack - an introduction to hybrid clouds, 21st
International Conference on Computing in High
Energy and Nuclear Physics,
DOI:10.1088/1742-6596/664/2/022015

11. Ristov S, Gusev M, Kostoska M. Security
assessment of OpenStack open-source cloud
solution, Proceedings of the 7th southeast European
Doctoral Student Conference (DSC2012). 2012:
577-587.

12. S. Ristov, M. Gusev and A. Donevski, "Security
Vulnerability Assessment of OpenStack Cloud,"
2014 Sixth International Conference on
Computational Intelligence, Communication
Systems and Networks, Tetova, 2014, pp. 95-100

13. Slipetskyy R, Security issues in OpenStack, Master's
thesis, Norwegian University of Science and
Technology, 2011.

14. B. Cui and T. Xi, "Security Analysis of OpenStack
Keystone," 2015 9th International Conference on
Innovative Mobile and Internet Services in
Ubiquitous Computing, Blumenau, 2015, pp.
283-288. DOI: 10.1109/IMIS.2015.44

15. Cirrus, O.: Open cirrus - open cloud computing
research-tested (Apr 2012), https://opencirrus.org/

16. RohitShere, Sonika Srivastava and R.K. Pateriya,
A Review of Federated Identity Management of
Open Stack Cloud, International Conference on
Recent Innovations in Signal Processing and
Embedded Systems (RISE), 2017

17. Vicor Chang and Muthu Ramacharandra, "Towards
Achieving Data Security with the Cloud Computing
adoption framework," IEEE Transactions on
services computing, Vol.9, No.1, pp. 138-151, Feb.
2016

18. Benjamin E, Identity Harmonization for Federated
HPC Grid and Cloud Services, IEEE proceedings,
Pp. 621-627, 2016.

19. Bhale Pradeep Kumar, "Achieving Cloud Security
using Third-Party Auditor, MD5 and Identity based

Encryption", International Conference on
Computing, Communication, and Automation, pp.
1304-1309, 2016.

20. Georgios Katsikogiannis, "An Identity and Access
Management approach for SOA," IEEE International
Symposium on Signal Processing and Information
Technology, pp. 1-6,2016.

21. Yong Yu, "Identity-based Remote Data Integrity is
hacking with perfect data privacy-preserving for
cloud storage," IEEE, pp. 1-11, 2016.

22. Carlos Eduardo Da Silva, ThomásDiniz,
NelioCacho, and Rogério de Lemos, Self-adaptive
authorization in OpenStack cloud platform,
JournalofInternetServices and applications, Journal
of Internet Services and Applications (2018) 9:19,
https://doi.org/10.1186/s13174-018-0090-7

23. De Lemos R, Giese H, Müller H, Shaw M, J.
Software engineering for self-adaptive systems: A
second research roadmap.

24. De Lemos R, Giese H, Müller H, Shaw M, editors.
Software Engineering for Self-Adaptive Systems II,
Lecture Notes in Computer Science, vol 7475.
Berlin: Springer; 2013. p. 1–32. https://doi.
org/10.1007/978-3-642-35813-5_1.

25. Clercq JD. Single Sign-On Architectures. London:

Springer-Verlag; 2002. p. 40–58.
http://dl.acm.org/citation.cfm?id=647333.722879

26. Chadwick DW, et al. PERMIS: A Modular
Authorization Infrastructure. ConcurrComput:
PractExper. 2008;20(11):1341–57.
https://doi.org/10. 1002/cpe.v20:11.
http://dx.doi.org/10.1002/cpe.v20:11

27. Sandhu RS, et al. Role-Based Access Control
Models. Computer. 1996; 29(2):38–47.
https://doi.org/10.1109/2.485845.
http://dx.doi.org/10. 1109/2.485845.

28. Hu VC, et al. SP 800-162. Guide to Attribute-Based
Access Control (ABAC) Definitions and
Considerations. Tech. Rep., National Institute of
Standards and Technology. VA: McLean and
Clifton; 2014.

29. Chadwick DW. Federated Identity Management. In:
Foundations of Security Analysis and Design V,
Lecture Notes in Computer Science, vol 5705.
Berlin: Springer; 2009. p. 96–120.
https://doi.org/10.1007/978-3- 642-03829-7_3.

30. Hu VC, et al. SP 800-162. Guide to Attribute-Based
Access Control (ABAC) Definitions and
Considerations. Tech. Rep., National Institute of
Standards and Technology. VA: McLean and
Clifton; 2014.

31. De Lemos R, Giese H, Müller H, Software
Engineering for Self-Adaptive Systems II, Lecture
Notes in Computer Science, vol 7475. Berlin:
Springer; 2013. p. 1–32. https://doi.
org/10.1007/978-3-642-35813-5_1.

32. Kephart JO, Chess DM. The Vision of Autonomic
Computing. IEEE Comput. 2003;

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

228

36(1):41–50.http://dx.doi.org/10.1109/MC.2003.11
60055.

33. KHAN R H, YLITALO J, AHMED A S. OpenID
Authentication as a Service in OpenStack[C]//IEEE.
7th International Conference on Information
Assurance and Security, December 5-8, 2011,
Malacca, Malaysia. New Jersey: IEEE, 2011:
372-377.

34. ANISETTI M, ARDAGNA C A, DAMIANI E, et al.
Toward Security and Performance Certification of
Open Stack[C]//IEEE. 2015 IEEE International
Conference on Cloud Computing, June 27-July 2,
2015, New York, USA. New Jersey: IEEE, 2015:
564-571.

35. CUI Baojiang, XI Tao. Security Analysis of
OpenStack Keystone[C]//IEEE. 9th International
Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing, July 8-10, 2015,
Santa Catarina, Brazil. New Jersey: IEEE, 2015:
283-288.

36. R. T. Fielding, "Architectural Styles and the design

of network-based software architectures," Ph.D.
dissertation, University of California, Irvine, 2000

37. "Euca-Tools, Eucalyptus Community,
http://open.eucalyprus.com/wiki-/toolsecosystem,
last accessed 10th May 2011."

38. "Python-OpenID 2.2.5, http:// pypi.python.org/
pypi/python-openid, last accessed 5th May 2011

39. OpenID Foundation, http://openid.net, last accessed
14th June 2011."

40. D. Recordon and D. Reed, "OpenID 2.0: a platform
for user-centric identity management," in
Proceedings of the second ACM workshop on
Digital identity management, ser. DIM '06. New
York, NY, USA: ACM, 2006, pp. 11-16. [Online].
Available: http://doi.acm.Org/10.l
145/1179529.1179532

41. M. Erdos and S. Cantor, "Shibboleth architecture
protocols and profiles, Http://shibboleth. internet2.
edu/shibboleth-documents .html."

42. R. Philpott, E. Maler, N. Ragouzis, J. Hughes, P.

Madsen, and T. Scavo, "OASIS Open 2008, Security
Assertion Markup Language (SAML) V2.0
Technical Overview, Committee Draft 02,
http://docs.oasisopen. org/security/saml/ post2.0/
sstc-saml-tech-overview-2.0 .html," March 2008.

43. J. Rosenberg and D. Remy, Securing Web Services
with WS-Security: Demystifying WS-Security,
WS-Policy, SAML, XML Signature, and XML
Encryption. Pearson Higher Education, 2004.

44. S. Mandy. Drawbacks of the digital signature.
http://computerfun4u.blogspot.com/2009/02/
drawbacks-of-using-digital-signature.html.

45. P. Mell and T. Grance. The NIST Definition of
Cloud Computing. Technical Report 800-145,
National Institute of Standards and Technology,
2011.

46. Rackspace. OpenStack: The Open Source Cloud
Operating System. http://www.openstack.org/
software/

47. Darshan Tank, Akshai Aggarwal, and
NirbhayChaubey, Security Analysis of OpenStack
Keystone, International Journal of Latest
Technology in Engineering, Management & Applied
Science (IJLTEMAS) Volume VI, Issue VI, June
2017 | ISSN 2278-2540

48. http://www.hytrust.com/cloud-sddc-study/
49. https://docs.openstack.org/security-guide/identity.ht

ml
50. Ishan GidwaniIshan, Dasrath Mane. Security Issues

In OpenStack, International Journal of Computer
Science and Information Technology Research, Vol.
3, Issue 2, pp: (1147-1158), Month: April - June
2015

51. Ericsson, Keystone Security GAP and Threat

Identification (Quick Study), OpenStack Folsom
Release, 2014

52. Ng, C.H., Ma, M., Wong, T.Y., Lee, P.P.C., Lui,
J.C.S.: Live deduplication storage of virtual machine
images in an open-source cloud. Proceedings of
2011, 12th ACM/IFIP/USENIX International
Conference on Middleware. Pp. 81–100.

53. J.M. Alve, T.G. Rodrigues, "Multi-Factor
Authentication with OpenID in Virtualized
Environments," IEEE Latin America Transactions,
Vol. 15, No. 3, pp. 528-533, March 2017

54. Rohit Ahuja, An identity is preserving access control
scheme with flexible system privilege revocation in
cloud computing, IEEE- 11th Asia Joint Conference
on Information Security, pp. 39-47, 2016.

55. JaweherZouari, An Identity as a service framework
for the cloud, IEEE Proceedings, Pp. 1-5, 2016.

56. QuratulainAlam, "Formal Verification of the X
Darth Protocol," IEEE, pp.1-14, 2016

57. XiaoingJia, Efficient Revocable ID-based signature
with cloud revocation server, IEEE Proceedings, Pp.
1-9, 2017

58. Mell PM, Grance T. SP 800-145. The NIST
Definition of Cloud Computing. Tech. Rep.,
National Institute of Standards and Technology.
MD: Gaithersburg; 2011.

59. Duncan A, et al. Cloud Computing: Insider Attacks
on Virtual Machines during Migration. In: Trust,
Security, and Privacy in Computing and
Communications (TrustCom), 2013 12th IEEE
International Conference

60. Garkoti G, Peddoju S, Balasubramanian R.
Detection of Insider Attacks in Cloud-Based
e-Healthcare Environment. In: Information
Technology (ICIT), 2014 International Conference
on; 2014. p. 195–200. https://doi.org/10.
1109/ICIT.2014.43.

61. Stolfo S, Salem M, Keromytis A. Fog Computing:
Mitigating Insider Data Theft Attacks in the Cloud.
In: Security and Privacy Workshops (SPW), 2012

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

229

IEEE Symposium on; 2012. p. 125–128.
https://doi.org/10.1109/SPW.2012.19.

62. Cappelli DM, Moore AP, Trzeciak RF. The CERT
Guide to Insider Threats: How to Prevent, Detect,
and Respond to Information Technology Crime, 1st
ed. Addison-Wesley Professional; 2012.

63. Duncan A, Creese S, Goldsmith M. Insider Attacks
in Cloud Computing. In: Trust, Security and Privacy
in Computing and Communications (TrustCom),
2012 IEEE 11th International Conference on;
2012.p. 857–862. https://doi.org/ 10.1109/
TrustCom.2012.188.

64. Cole DE. Insider threats and the need for fast and

directed responded. Tech. Rep.: SANS Institute
InfoSec Reading Room; 2015.

65. Bailey C, Chadwick DW, de Lemos R. Self-adaptive
federated authorization infrastructures. J Compute
System Sci. 2014; 80(5):935–52. https://
dx.doi.org/10.1016/j.jcss.2014.02.003.
http://www.sciencedirect.com/ science/article/PII
/S0022000014000154

66. Pasquale L, et al. Securitas: A Tool for Engineering
Adaptive Security. In: Proceedings of the ACM
SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. FSE ’12. New
York: ACM; 2012. p. 19:1–19:4.
https://doi.org/10.1145/2393596.2393618. https://
doi.acm.org/ 10.1145/2393596.2393618

67. Schmerl B, et al. Architecture-based Self-protection:
Composing and Reasoning About Denial-of-service
Mitigations. In: Proceedings of the 2014 Symposium
and Bootcamp on the Science of Security. HotSoS
’14.

68. Yuan E, Esfahani N, Malek S. A systematic survey
of self-protecting software systems. ACM Trans
Auton Adapt Syst. 2014;
8(4):17:1–https://doi.org/10.1145/2555611.
http://doi.acm.org/10.1145/2555611.

69. Schultz E, A framework for understanding and
predicting insider attacks. Computer Security.
2002;21(6):526–31. https://doi.org/10.1016/S0167-
4048(02)01009-X.

70. Cappelli DM, Moore AP, Trzeciak RF. The CERT
Guide to Insider Threats: How to Prevent, Detect,
and Respond to Information Technology Crime, 1st
ed. Addison-Wesley Professional; 2012.

71. George SilowashAM, Cappelli D, et al. Common
sense guide to mitigating insider threats. Tech. Rep.
CERT Carnegie Mellon; 2012.

72. Colwill C. Human factors in information security:
The insider threat - who can you trust these
days?.InfSecur Tech Rep. 2009;14(4):186–96.
https:// doi.org/10.1016/j.istr.2010.04.004

73. Yaping Chi; Gefei Li; Ying Chen, Xiaohong Fan,
Design and Implementation of OpenStack Cloud
Platform Identity Management Scheme, Published in
2018 International Conference on Computer,
Information and Telecommunication Systems
(CITS)

74. Feng Dengguo, Zhang Min, Zhang Yan, et al.
Research on cloud computing security [J].Journal of
Software, 2011,22 (1): 71-83.

75. Yu Nenghai, HaoZhuo, Xu Jiajia, et al. Review of
the progress of cloud security research [J].Journal of
Electronics, 2013,41 (2): 371-381.

76. The Chi Yaping, Wang Huili, Yuan Ze Bo, and
another authentication mechanism OpenStack
Research and Improvement [J] Jilin University
(Information Science), 2015 (11): 700-706.

77. JKRSastry, M TrinathBasu, Securing SAAS service
under cloud computing-based multi-tenancy
systems, Indonesian Journal of Electrical
Engineering and Computer Science, Volume 13,
Issue 1, Page 65-71, 2019

78. JKRSastry, M TrinathBasu, Securing Multi-tenancy
systems through multi DB instances and multiple
databases on different physical servers, International
Journal of Electrical and Computer Engineering
(IJECE), Volume 9, Issue 2, Pages 1385-1392, 2019

79. M.Trinath Basu1, Dr.JKRSastry, A full security
included Cloud Computing Architecture,
International Journal of Engineering & Technology,
Volume 7, Issue 2.7, Page 807-812, 2018

80. JKRSastry, M TrinathBasu, Securing Multi-tenancy
systems through user spaces defined within the
database level, Jour of Adv Research in Dynamical
& Control Systems, Volume 10, issue 7, Page
405-412, 2018

81. J. K. R. Sastry, K. Sai Abhigna, R. Samuel and D. B.
K. Kamesh, Architectural models for fault tolerance
within clouds at the infrastructure level, ARPN
Journal of Engineering and Applied Sciences, VOL.
12, NO. 11, 2017, Pages 3463-3469

82. DBK Kamesh, JKRSastry, Ch. Devi Anusha, P.

Padmini, G. Siva Anjaneyulu, Building Fault
Tolerance within Clouds at Network Level,
International Journal of Electrical and Computer
Engineering (IJECE), Vol. 6, No. 4, pp. 1560~1569,
2016

83. S. L. SUSHMITHA, Dr. D. B. K. J.K. R. SASTRY,
V. V. N. SRI RAVALI, Y.SAI KRISHNA REDDY,
building fault tolerance within clouds for providing
uninterrupted software as service, Journal of
Theoretical and Applied Information Technology,
Vol.88. No.1, Pages 65-76, 2016

84. NVSPavan Kumar, Dr.JKRSastry, Dr. K Raja
Sekhara Rao, Mining Distributed Databases for
Negative Associations from Regular and Frequent
Patterns, International Journal of Advanced Trends,
Volume 8, Issue 4, Pages 1440-1463, 2019

85. NVSPavan Kumar, Dr.JKRSastry, Dr. K Raja
Sekhara Rao, On Incremental mining Databases for
Regular and Frequent Patterns, International Journal
of Emerging Trends and engineering research,
Volume 7, Issue 9, Pages 291-305, 2019
https://doi.org/10.30534/ijeter/2019/12792019

86. NVSPavan Kumar, Dr.JKRSastry, Dr. K Raja
Sekhara Rao, Mining Negative Frequent regular

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

230

Itemsets from Data Streams, International Journal of
Emerging Trends and engineering research, Volume
7, Issue 8, Pages 85-98, 2019
https://doi.org/10.30534/ijeter/2019/02782019

87. M. TrinathBasu, JKRSastry, Improving the Open
Stack Authentication system through federation with

JASON Tokens, International Journal of Advanced
Trends in Computer Science and Engineering,
Volume 8, Issue 6, Pages 3596-3614,2019.
https://doi.org/10.30534/ijatcse/2019/143862019

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

231

Table 4: Steps to configure Keystone steps
Config.
Serial Configuration step Configuration Command Strings

Enable command line access to keystone v3
1 Create an environment variable called

“overcloudrc-v3.”
$ cp overclouds overclouds-v3

2 Change the authentication URL to refer to
Version 3 of the authentication system

Change OS_AUTH_URLfrom v2.0 to v3.
For example:
export OS_AUTH_URL=https://controllerIP:5000/v3/

3 Export the Environment variables related to
OS-Identity-API-Version, Project-domain-name,
and OS-user-domain-name

export OS_IDENTITY_API_VERSION=3
export PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default

4 The overcloudrc-v3 is enabled to contain the
command lines entered in the session. $ source overcloudrc-v3

Configure the controller

Most of the services of the open stack are now available as containers
which include keystone, cinder, nova etc.No changes to the configuration
files be done which are situated on physical servers as the container
services do not access these files

No changes to the configuration files contained within the containers as the
changes made ignored every time a restart takes place

Any changes to the configuration files retained when changes made to
configuration files used to generate the containers

If keystone is running on the controller node then

5 Configure SELinux: # setsebool -P authlogin_nsswitch_use_ldap=on

6 Create the domainsdirectory

mkdir
/var/lib/config-data/puppet-generated/keystone/etc/keystone/domains/
chown 42425:42425 /var/lib/config-data/puppet- generated /keystone /etc
/keystone/ domains/

7

Configure keystone to use multiple back ends:

crudini --set /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf identity
domain_specific_drivers_enabled true
crudini --set /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf identity
domain_config_dir /etc/keystone/domains
crudini --set /var/lib/config-data/puppet-
generated/keystone/etc/keystone/keystone.conf assignment driver sql

8
To add commands to /etc/openstack-
dashboard/local_settings: to enable multiple
domains in the dashboard

OPENSTACK_API_VERSIONS =
{
"identity": 3
}
OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True
OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = 'Default'
Restart httpdto apply the settings:-
systemctl restart httpd

Configure an additional back-end: called LAB, which is the NetBIOS name to use as the Identity Service domain.

9

The ADDS system must recognize the domain
name of the Keystone. To create A domain name
called LAB within OpenStack which will be the
NetBIOS name for OpenStack

OpenStack domain create LAB

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

232

Config.
Serial Configuration step Configuration Command Strings

10

Add LDAP settings to Keystone.LAB
configuration file. This setting will create an
ADDS backend.

/var/lib/config-data/puppet-
generated/keystone/etc/keystone/domains/keyst
one.LAB.conf

The settings shown on the right needs to be
changed to meet the customer local ADDS
environment

url = ldaps://addc.lab.local:636
user = CN=svc-ldap,OU=labUsers,DC=lab,DC=local password =
RedactedComplexPassword
suffix = DC=lab,DC=local
user_tree_dn = OU=labUsers,DC=lab,DC=local
user_objectclass = person
user_filter = (|(memberOf=cn=grp-
openstack,OU=labUsers,DC=lab,DC=local)(memberOf=cn=grp-openstac
k-
admin,OU=labUsers,DC=lab,DC=local)(memberOf=memberOf=cn=grp-
openstack-demo,OU=labUsers,DC=lab,DC=local))
user_id_attribute = sAMAccountNameuser_name_attribute =
sAMAccountNameuser_mail_attribute = mail user_pass_attribute =
user_enabled_attribute = userAccountControluser_enabled_mask = 2
user_enabled_default = 512
user_attribute_ignore = password,tenant_id,tenantsuser_allow_create =
False
user_allow_update =False
user_allow_delete =False
group_objectclass =group
group_tree_dn = OU=labUsers,DC=lab,DC=local
group_filter = (CN=grp-openstack*)
group_id_attribute = cngroup_name_attribute = name group_allow_create
= False
group_allow_update =False
group_allow_delete =False
use_tls =False
tls_cacertfile =
/etc/ssl/certs/addc.lab.local.crt query_scope = sub
chase_referrals = false
[identity] driver = idap

11
To make the keystone user the owner of the
configuration file

chown 42425:42425 /var/lib/config-data/puppet-
generated/keystone/etc/keystone/domains/keystone.LAB.conf

12
To rerun the keystone component to effect the
changes

sudodocker exec -it keystone pkill -HUP -f keystone

To allocate the domain access to the admin user.
13 To get the ID of LABdomain # OpenStack domain show LAB

14 To get ID of admin user: # openstack user list --domain default | grep admin
| 3d75388d351846c6a880e53b2508172a | admin |

15 To get the ID of admin role # OpenStack role list

16
To assign admin role of keystone “LABdomain”
to the admin user using the Domain names and
admin IDs returned in the earlier steps

openstack role add --domain 6800b0496429431ab1c4efbb3fe810d4 --
user 3d75388d351846c6a880e53b2508172a
785c70b150ee4c778fe4de088070b4cf

17 To view the list of users contained in domain
LAB and default domains

OpenStack user list --domain LAB

18 To view the account names contained in the
database related to identity services

OpenStack user list --domain default

Configure Compute to use keystone v3

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

233

Config.
Serial Configuration step Configuration Command Strings

19
Adjust the keystone_authtokenvalue on the controller and compute node

20
Set the keystone_authtokenvalue on Compute
nodes

crudini --set /var/lib/config-data/puppet-
generated/nova_libvirt/etc/nova/nova.conf keystone_authtoken
auth_version v3

21
Set the keystone_authtokenvalue on the
controller:

crudini --set /var/lib/config-data/puppet-
generated/nova/etc/nova/nova.conf keystone_authtoken auth_version v3

22 Re-run the controller component to effect the
changes

systemctl restart openstack-nova-api.service openstack-nova-
cert.service openstack-nova-conductor.service openstack-nova-
consoleauth.service openstack-nova-novncproxy.service openstack-
nova-scheduler.service
sudodocker exec -it keystone pkill -HUP -f keystone

23 Re-run the compute component to effect the
changes

systemctl restart OpenStacknova-compute.service

Configure Block Storage to use keystone v3

24

In /etc/cinder/cinder.conf:

[keystone_authtoken]
auth_uri = https://controllerIP:5000/v3 auth_version = v3
auth_uri - replace controllerIPwith the IP address of the controller. If your
deployment has more than one controller, you should use the keystone
endpoint VIP instead of the controller IP.

25 Re-run the cinder-API-on on all the nodes # systemctl restart OpenStack-cinder-API

26 Re-run cinder-scheduleron all nodes # systemctl restart openstack-cinder-scheduler

27 Re-run cinder-volumeon the main controller # pcs resource restart openstack-cinder-volume

28 To authorize the active director groups to have access to projects to eliminate the requirement of adding a role to each user to
have access to the projects

29

Administrator to Complete the steps in the right
cell

Create the groups named grp-OpenStack-admin Active Directory,
grp-OpenStack-demo

Add Active Directory users to the above groups,

Add Active Directory users to the grp-OpenStack group.

30

The following steps assign roles to ADDS groups so that the users will have access to OpenStack resources.
1. Get the list od ADDS groups # OpenStack group list --domain LAB

2. Get the list of ADDS roles # OpenStack role list

3. Assign the access to the projects to the
Active Directory groups

openstack role add --project demo --group
d971bb3bd5e64a454cbd0cc7af4c0773e78d61b5f81321809f8323216938c
ae8
member

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

234

Allow Active Directory users to access Projects
Config.
Serial Configuration step Configuration Command Strings

31

To grant permissions to the grp-OpenStack group so that the Gropumemebers can log into a project through a dashboard.
Find the list of AD users: # OpenStack user list --domain LAB
Find the list of roles: # OpenStack role list
To assign access to the projects to the users by
adding one more role to the users

openstack role add --project demo --user
1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac41809
1e_member_
Or, if you want user1to be an administrative user of the demoproject, you
add them to the adminrole:

openstack role add --project demo --user
1f24ec1f11aeb90520079c29f70afa060d22e2ce92b2eba7784c841ac41809
1e admin

32

To assign access rights to the Domain Tab so that administrator can use the same by adding an admin role
1. Find the adminuser’s UUID:

$ openstack user list | grep admin
| a6a8adb6356f4a879f079485dad1321b | admin |

2.Add the adminrole in the defaultdomain to the
adminuser:

$ openstack role add --domain default --user
a6a8adb6356f4a879f079485dad1321b admin

33 The user projects created with either the default domain name or the keystone domain name. The default domain name is an
internal domain name used to manage the service accounts

34 A domain field is created within the dashboard when multiple domains configured in the Identity service. User must enter
an area that belongs to them using their login credentials

35

Changes to the command line
For specific commands, you might need to specify the applicable domain. For example, appending -- domain Labin this
command returns users in the LAB domain (that are members of the grp-OpenStack group):
OpenStack user list --domain LAB.
Appending --domain Defaultreturns the built-in keystone accounts:
OpenStack user list --domain Default

36

The ADDS system integration with the keystone tested by using the dashboard features. The testing carried using the
following steps

Create a User in Active Directory
Add the user to grp-OpenStack adds group
Add user _member_role related to demotenant
Login to Dashboard using new user credentials
Click on the TABS
Create a test instance through Dashboard.

All the TABS shall have the details related to the users, their roles and the projects that they can access

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

235

Config.
Serial Configuration step Configuration Command Strings

37

Activate keystone v3 for achieving high availability through configuring the same to allow configuring multiple domain
controllers. Version v1 and V2 are good enough with a single domain controller.
Add a second server to the urlentry. url = ldaps://addc.lab.local,ldaps://addc2.lab.local

Keystone will send all queries to the domain controller by changing the URL set in the
keystone — Lbconfig file.

Set the network timeout in
/etc/OpenLDAP/ldap.conf

NETWORK_TIMEOUT 2

Create an RC file for a non-admin
user

$ cat overcloudrc-v3-user1
Clear any old environment that may conflict.
for key in $(set | awk '{FS="="} /^OS_/ {print $1}'); do unset $key ; done
export OS_USERNAME=user1
export NOVA_VERSION=1.1 export OS_PROJECT_NAME=demo

Create an RC file for a non-admin
user

export OS_PASSWORD=RedactedComplexPassword export OS_NO_CACHE=True
export COMPUTE_API_VERSION=1.1
export no_proxy=,10.0.0.5,192.168.2.11 export OS_CLOUDNAME=overcloud
export OS_AUTH_URL=https://10.0.0.5:5000/v3 export OS_AUTH_TYPE=password
export PYTHONWARNINGS="ignore:Certificate has no, ignore:A true SSLContext
object is not available"
export OS_IDENTITY_API_VERSION=3
export OS_PROJECT_DOMAIN_NAME=Default export
OS_USER_DOMAIN_NAME=LAB

The keystone components installed in the controller nodes also need to be configured. The description of the parameters and the values to
set within the configuration described in Table 5

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

236

Table 5 :Description of the parameters expressed in the configuration related to KEYSTONE installed on the Controller node
Parameter
Serial

Parameter Description

1 URL The AD Domain Controller to use for authentication. Uses LDAPS port 636.

2
user The Distinguished Name of an AD accounts to use for LDAP queries. For example, you can locate the

DistinguishedName value of the svc-LDAP account in AD using Get-AD user svc-LDAP | select
Distinguished Name

3 password The plaintext password of the AD account used above.

4
suffix The Distinguished Name of your AD domain. You can locate this value using Get- ADDomain | select

Distinguished Name

5 user_tree_dn The Organizational Unit (OU) that contains the OpenStack accounts.

6 user_objectclass DefinesthetypeofLDAPuser.ForAD,use the persontype.

7
user_filter Filters the users presented to Identity Service. As a result, only members of the grp- OpenStack group can

have permissions defined in Identity Service. This value requires the full Distinguished Name of the group:
Get-ADGroup grp-OpenStack | select DistinguishedName

8 user_id_attribute Maps the AD value to use for user IDs.

9 user_name_attribute Maps the AD value to use for names.

10 user_mail_attribute MapstheADvaluetouseforuseremail addresses.

11 user_pass_attribute Leave this value blank.

12 user_enabled_attribute The AD setting that validates whether the account is enabled.

13
user_enabled_mask Defines the value to check to determine whether an account is enabled. Used when Booleans returned.

14 user_enabled_default TheADvaluethatindicatesthatanaccountis enabled.

15 user_attribute_ignore Defines user attributes that Identity Service should disregard.

16 user_allow_create SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

17 user_allow_update SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

18 user_allow_delete SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

19 group_objectclass Maps the AD value to use for groups.

20 group_tree_dn The Organizational Unit (OU) that contains the user groups.

21 group_filter Filters the groups presented to Identity Service.

22 group_id_attribute Maps the AD value to use for group IDs.

23 group_name_attribute Maps the AD value to use for group names.

24 group_allow_create SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

25 group_allow_update SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

26 group_allow_delete SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

27 use_tls Defines whether TLS used. TLS needs to be disabled if you are encrypting with LDAPS rather
thanSTARTTLS.

28 tls_cacertfile Specifies the path to the .crtcertificate file.

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

237

Parameter
Serial

Parameter Description

29 query_scope
Configures Identity Service to also search within nested child OUs when locating users that are members of
the grp-OpenStack group.

30 chase_referrals Set to false, this setting prevents python- LDAP from chasing all referrals with anonymous access.

31 URL The AD Domain Controller to use for authentication using LDAPS port 636.

32
user TheDistinguishedNameofanADaccountsto useforLDAPqueries.Forexample,youcan

locatetheDistinguishedNamevalueofthe svc-ldapaccountinADusingGet-ADuser svc-ldap |
select DistinguishedName

33 password The plaintext password of the AD account used above.

34
suffix The Distinguished Name of your AD domain. You can locate this value using Get- ADDomain |

select DistinguishedName

35 user_tree_dn The Organizational Unit (OU) that contains the OpenStack accounts.

36 user_objectclass DefinesthetypeofLDAPuser.ForAD,use the persontype.

37

user_filter Filters the users presented to Identity Service. As a result, only members of the grp- OpenStack
group can have permissions defined in Identity Service. This value requires the full Distinguished
Name of the group:
Get-ADGroup grp-OpenStack | select DistinguishedName

38 user_id_attribute Maps the AD value to use for user IDs.

39 user_name_attribute Maps the AD value to use for names.

40 user_mail_attribute MapstheADvaluetouseforuseremail addresses.

41 user_pass_attribute Leave this value blank.

42 user_enabled_attribute The AD setting that validates whether the account is enabled.

43
user_enabled_mask Defines the value to check to determine whether an account is enabled. Used when Booleans not

returned.

44 user_enabled_default TheADvaluethatindicatesthatanaccountis enabled.

45 user_attribute_ignore Defines user attributes that Identity Service should disregard.

46 user_allow_create SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

47 user_allow_update SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

48 user_allow_delete SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

49 group_objectclass Maps the AD value to use for groups.

50 group_tree_dn The Organizational Unit (OU) that contains the user groups.

51 group_filter Filters the groups presented to Identity Service.

52 group_id_attribute Maps the AD value to use for group IDs.

53 group_name_attribute Maps the AD value to use for group names.

54 group_allow_create SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

55 group_allow_update SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

M Trinath Basu et al., International Journal of Emerging Trends in Engineering Research, 8(1), January 2020, 213 - 238

238

Parameter
Serial

Parameter Description

56 group_allow_delete SetthisvaluetoFalse,askeystoneonly requires read-onlyaccess.

57 use_tls Defines whether TLS used. TLS needs to be disabled if you are encrypting with LDAPS rather
thanSTARTTLS.

58 tls_cacertfile Specifies the path to the .crtcertificate file.

59 query_scope
Configures Identity Service to also search within nested child OUs when locating users that are members of
the grp-OpenStack group.

60 chase_referrals Set to false, this setting prevents python- LDAP from chasing all referrals with anonymous access.

