
M.H. Hussain et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020,  170- 178 
 

170 
 

 

 
ABSTRACT 
 
This paper presents an integrated optimal predictor 
optimization technique termed as Modified Firefly 
Algorithm-Artificial Neural Network (MFA-ANN) for 
accurate prediction of Relay Operating Time (ROT). 
Directional Overcurrent Relays (DOCRs) coordination 
problem is formulated as Mixed Integer Linear Programming 
(MILP) problem. The developed techniques have been 
validated on the IEEE 8-bus systems using MATLAB. The 
simulation results obtained revealed that the proposed 
MFA-ANN model has shown the reduction in Root Mean 
Square Error (RMSE) values as compared with Particle 
Swarm Optimization-Artificial Neural Network (PSO-ANN) 
which improved the correlation coefficient of the relay 
operating time. The proposed MFA-ANN model managed to 
achieve 0% RMSE value.  
 
Key words : directional overcurrent relay coordination, 
modified firefly algorithm-artificial neural network, mixed 
integer linear programming, relay operating time, root mean 
square error.  
 
1. INTRODUCTION 
 
Nowadays, modern power systems are interconnected and 
protected by Directional Overcurrent Relay (DOCRs). 
Therefore, protection schemes pose great challenge especially 
in multi-source networks due to network topology and 
microprocessor relay. Thus, it becomes very difficult to set the 
sequence of the relay operations for various faults in power 
system. Sometimes, it leads to miscoordination between the 
primary and backup relay pairs with the occurrence of 
multi-directional fault current in the network. 
 
Abnormal conditions such as fault analysis can be divided 
into two steps that are determination of the maximum 

currents that switching devices must interrupt and 
coordination of protection. Therefore, the overcurrent 
protection is the most widely used in distribution and 
transmission system [1], [2]. The setting and coordination of 
protective relays have become a very tedious operation 
especially in ring network as compared with radial network 
system. It can be noted that from the standard relay operating 
time equation, relay operating time are directly proportional 
to the Time Multiplier Setting (TMS) and inversely 
proportional to the pickup current (Ip) setting respectively. 
Hence, the solution by using this equation requires iterative 
process with high complexity [3]. 
 
The optimization technique is applied to determine each relay 
best optimal settings corresponding to the fault accordingly 
since the conventional mathematical based optimization is 
found to be inaccurate and stuck at local minimum 
phenomenon [4], [5]. Moreover, the ordinary mathematical 
based optimization technique may lead to false tripping of 
healthy section to power outages due to miscoordination [6]. 
Thus, a reliable optimization technique such as Nature 
Inspired Metaheuristic Algorithm (NIMA) has been proposed 
to overcome directional overcurrent relay problems. 
 
Intelligent NIMA swarm families such as Particle Swarm 
Optimization (PSO), Artificial Bees Colony (ABC), Honey 
Bee Algorithm (HBA) and Firefly Algorithm (FA) had been 
used in [7]-[10] to calculate relay settings; TMS and Ip in 
order to minimize relay operating time. However, PSO has a 
low convergence rate in the iterative process, ABC and HBA 
suffers to look for better solution [11]. FA also can be trapped 
in local optima due to local search algorithms. Thus, 
Modified Firefly Algorithm (MFA) is proposed to improve 
the performance and efficiency of FA to ensure the particles 
explore into global best region and escape easily from local 
optima. 
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Inappropriate prediction of the time-current characteristics of 
the DOCR with other non-linear curve fitting within its 
primary zone has been reviewed [12]. Therefore, an 
integrated optimal predictor termed as MFA-ANN will 
predict individual relay operating time at different short 
circuit current with minimum error using 
Levenberg-Marquardt algorithm function fitting. 
 
This paper presents the Modified Firefly Algorithm-Artificial 
Neural Network (MFA-ANN) Based Technique for the 
Prediction of Time-Current Characteristic in Directional 
Overcurrent Relay. A comparative study was conducted with 
respect to Particle Swarm Optimization-Artificial Neural 
Network (PSO-ANN) performed on the IEEE 8-Bus system. 
The results revealed that the proposed model has shown the 
reduction in Root Mean Square Error (RMSE) values. 
 
2. PROBLEM FORMULATION 
 

The objective is to determine an appropriate setting of 
DOCRs during fault occurrence and to predict new relay 
operating time using Modified Firefly Algorithm- Artificial 
Neural Network (MFA-ANN) model. These requirements 
should fulfill according to the relay type, relay characteristics, 
coordination constraints and objective function. 

 
2.1 Relay Type 
  
All the relay types such as electromechanical relay, static 
relay, digital relay and microprocessor (numerical) relay had 
been reviewed in terms of speed of response, accuracy time, 
maintenance and fault disturbance recording. Thus, it can be 
noted that microprocessor based numerical are often used 
today as it performs very well and the costing is very low [13].  
 
2.2 Relay Characteristic 
 
There are two types of relay characteristics that are linear and 
non-linear relay characteristic. In this study, the non-linear 
relay characteristic function based on the standard 
ANSI/IEEE C37.112-1996 has been used [11]. The relay is 
extremely inverse type and the relay operating time can be 
represented as in (1).  
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where ti is the relay operating time for near-end fault of the ith 
relay, Isci is the short circuit and Ipi is the pickup current 
setting of the ith relay. The TMSi of the ith relay values range 
continuously from 0.05 to 1 and Ipi of the ith relay values range 
discretely between 100 and 1000 with a step size of 1. The 

constant factor is based on extremely inverse type, K = 28.2, L 
= 0.1217 and α = 2 [11]. 

2.3 Coordination Constraints 
 
Every primary protection must have backup protection for 
coordination purposes. Thus, primary relay and backup relay 
are associated each other with coordination constraints. The 
time interval between primary and backup relay is commonly 
known as Time Grading Margin (TGM). Basically, TGM 
depends on relay types, the speed of Circuit Breaker (CB) and 
relay overshoot time. The TGM can be simplified in terms of 
equation as in (2). 
 

   
where tb is the operating time of the backup relay, tp is the 
operating time of the primary relay and TGM varies from 0.1s 
– 0.5s depends on different circumstances. 

 
With faster modern CBs and lower relay overshoot time, 0.2s 
is used in this study.  

 
2.4 Objective Function 
 
The objective is to minimize the total operating time of 
primary relays with optimized values of TMS’s and Ip’s. To 
achieve this, the objective function is formulated as in (3). 
 

            
       
where OF is the objective function 

 3. MODIFIED FIREFLY ALGORITHM-ARTIFICIAL 
NEURAL NETWORK  
 
FA was proposed by Xin She Yang in 2007 [14] for solving 
optimization problems. However, there are certain 
parameters need to be considered as FA can get easily trapped 
in local optima. The MFA is developed based on FA 
properties. In this MFA, the alpha parameter is introduced 
into FA original pseudo-code to increase convergence. The 
alpha parameter is determined using (4) and (5). 
 


 

    

  

(3) 
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where alpha and delta are parameters to increase 
convergence [15]. 

The MFA flowchart can be referred in [11] for the 
formulation of DOCRs coordination and MFA execution 
process. Then, the developed MFA is incorporated with ANN, 
termed as MFA-ANN for prediction of time-current 
characteristic for all relay operating time in power system 
network. It is utilized to determine relay operating time in 
IEEE 8-Bus Transmission system. This study considers the 
fitness function of MFA and PSO optimization techniques for 
comparison purposes. Assessment of Root Mean Square Error 
(RMSE) was conducted to tune the correlation coefficient, R 
value of the proposed ANN model. 

ANN is an adaptive nonlinear information processing system 
which combined processing units such as real time learning 
and self-organizing [16]. ANN normally consists of a set of 
processing units termed as neurons and each neuron is a 
transfer function. Proper selection of the control variables is a 
factor for the success of the ANN implementation. Figure 1 
illustrates the general configurations of the ANN model. The 
control variables X1, X2, … Xn are the variables to represent 
the ANN input data. In this research, the control variable 
Xmin, … Xmax represents DOCRs TMS while the Ip is 
predetermined value [17]. 

 
Figure 1: General Configuration of ANN 

 
Table 1: Case Study and Input Variable of ANN Data 

 
Case 

Study/Test 
System 

8-Bus ANN 
Variable 

Technique 
No of 

DOCRs 

MILP 
formulation 14 X1,X2,…Xn 

 
 

MFA-ANN 

 
Normally, number of hidden layers are chosen from low 
values. As suggested by Ismail et al. [18], the number of 
hidden layer to be ten neurons in the first hidden layer, eight 
neurons in the second hidden layer and single output. 
Vishwakawarma et al. [19] mentioned that one hidden layer 
is sufficient in most applications. Other reference such as in 
[20] constituted that one hidden layer and four nodes in the 

hidden layer is chosen. In this study, the initial number of 
hidden layer is 1. This value can be increased accordingly to 
produce better result.  
 
The number of neurons in the hidden layer is also determined 
heuristically as suggested by [21]. Learning rate also is 
another factor that controls the performance of the developed 
ANN which has a value range between 0 and 1. High learning 
rate implies high learning capability. However, it can possibly 
lead to overshoot even the response is fast. This value is also 
chosen heuristically and typical value of learning rate 
suggested by Ismail et al. is 0.85 [18]. 
  
Learning technique is the technique that controls the learning 
capabilities of the developed network. For this study 
Levenberg-Marquardt learning technique is chosen due to its 
capability in giving fast and accurate responses as suggested 
by [18]. 
 
In order to prepare the data for pattern generation, the two 
settings of DOCR; TMS and Ip are identified as the control 
variables for the input of ANN. The minimization of relay 
operating time is determined with an optimal TMS and 
predetermined values of Ip. In this study, relay operating time 
values are used as the targeted output of the proposed model. 
Data for the MFA depend on the category of targeted output. 
In this study, the data were generated using the optimal 
results of MFA. Since MFA only generates one pattern for 
each process, thus repetitive MFA is conducted to generate 
the adequate number of patterns required for this study. The 
proposed MFA-ANN is compared with ABC-ANN for 
comparison purposes. 
  
The performance of the developed network can be seen from 
the Root Mean Square Error (RMSE) calculated using the 
following (6). 
 

 (6) 

 
where p represents the pattern number and NP denotes the 
total number of patterns in the corresponding set which 
contains training or testing. Actual relay operating time 
(ROT) values are the ANN output, while the estimated ROT 
values are the targeted output set as the input data of the 
ANN. 
 
In this study a new optimal predictor model is developed 
which integrates the MFA-ANN. MFA determines the 
optimal value of the ANN parameters which is run 
concurrently. MFA also was utilized to minimize the primary 
relay operating time while satisfying the time constraint in the 
system. In this study, MFA-ANN was proposed to minimise 
the RMSE. The implementation of successful MFA-ANN is 
expected to reduce the computational time in power system 
protection especially in overcurrent relay protection and 
coordination protection.  
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The proposed method started by generating control random 
number generation. Then, α parameter is set in original FA 
properties to increase convergence. This function is proposed 
to reduce randomness of the movement factor between 
fireflies. All the generated individuals which mentioned 
earlier will be tested on violation. For selection process, the 
best population was selected which is based on ranking data 
as initial location of numbers of fireflies. The distance and 
attractiveness of the fireflies are calculated. The new solutions 
is evaluated and light intensity is updated. The firefly 
attractiveness, the distance between any two fireflies are 
calculated using the Cartesian distance and the movement of 
firefly is attracted to another more attractive (brighter) firefly 
were determined. Then, the evaluation of the fitness value, is 
calculated. The fitness value meant for total minimization 
primary relay operating time as the objective function.  
 

 
Figure 2: Flowchart DOCR Optimization using MFA-ANN method 
 
 
Figure 2 presents the algorithm for proposed MFA-ANN 
method. The proposed method involves two stages. The first 
stage is the optimisation of DOCR operating time in the 
system. At this stage, MFA determine the optimal DOCR 
settings, TMS and Ip which lead to minimization of ROT. 
This will allow adequate information for the ANN in the 
prediction process as in Stage II. The input data for the ANN 

are the DOCR settings which are TMS and Ip  and the output 
is the relay operating time. The network will be trained with 
Levenberg-Marquardt backpropagation algorithm. The 
detailed procedure for the DOCR coordination problem 
considering relay operating time as the targeted output, are 
given by the following step-by-step algorithm: - 
 
Steps 1 to 7 follow exactly all the processes of MFA in [11] 
and the next step is as below. 
 
Step 8 Implement ANN toolbox using neural fitting 
Step 9 Determine the suitable ANN structure for the 

input–target pairs. 
Step 10 Train the ANN until the mean squared error (mse) 

is low enough 
Step 11 Test ANN by using the test data set. 

 
4. RESULTS AND DISCUSSION 
 
An optimization engine was developed to implement the 
MFA-ANN technique. The technique was executed on Intel 
Core i5 2.53 GHz with 4 GB RAM and simulated in 
MATLAB. The proposed method was compared with 
PSO-ANN algorithm and has been tested on IEEE 8-Bus 
system. The test system comprises of 8 buses, 7 lines, 2 
transformers, 2 generators and 14 DOCRs. The control 
parameters of MFA technique in Stage 1 are listed in [11]. 
The single line diagram of the test system and system 
parameters can be found in [11]. It can be noted that the faults 
occurred in a transmission line is symmetrical balanced three 
phase fault and there are 20 primary/backup relay pairs. 
 
MFA-ANN was developed to minimise the RMSE for 
accurate prediction of time-current characteristics. The 
proposed technique was tested on the IEEE 8-Bus 
Transmission System. The targeted output, ROT is analyzed. 
The analysis is conducted by looking at the optimal settings of 
DOCR for each relay operating time. The study was 
conducted in order to determine the total relay operating time 
(y) with optimal TMS (X) and predetermined Ip (η) which also 
known as MILP formulation. This mono-objective 
optimization is chosen based on the 5 best performances from 
exhaustive 30 trial simulations. Appendix displayed the 
obtained values for the training with least mean square error 
between actual output and target output for the best 5 trials 
from the applied MFA-ANN model and PSO-ANN model 
respectively. 
 

Table 2: Case Study for prediction of ROT 
 

Case Study Targeted Output Control 
Variables Input 

MILP y x1, x2, … ,xn 
 
The idea is to minimise the percentage of RMSE using the 
proposed MFA-ANN. For validation purposes, the results 
obtained were compared with PSO-ANN respectively. Table 3 
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tabulates the number of samples for training, validation and 
testing process for the IEEE 8-Bus system study. 
 
Table 3: Number of Samples for Training, Validation and Testing 

for IEEE 8-Bus System 
 

 IEEE 8-Bus 
Samples 

No of Training Pattern 48 
No of Validation Pattern 11 

No of Testing Pattern 11 
 
The analysis is conducted by taking 5 set of best trials 
obtained [11]. Figure 3 illustrates the variations of mean 
squared error (mse) of the incremental epochs. The results 
show the best validation performance of 1.0815e-14 optimized 
within 84 epochs. The calculated RMSE error is 0%.  

 
Figure 3: Performance for ROT using MFA-ANN  

 
As comparison with MFA-ANN, PSO-ANN is also modeled 
and the results is shown in Figure 4. The results show the 
performance is 0.00011484 at both epoch within iteration is 
50 epochs. The calculated RMSE error is 1.5019% which 
implies the deviation between the overall PSO-ANN outputs 
and targeted output. 
 

 
Figure 4: Performance for ROT using PSO-ANN  

 
Figure 5 illustrates the regression analysis of ROT using 
MFA-ANN. The results for regression analysis are presented 
for the training, validation, testing and overall process. As 
can be seen, the correlation coefficient value during training 

is, R=1. On the other hand, the R=1.0 during validation, 
testing and all data. This implies high accuracy has been 
achieved when MFA-ANN was implemented to in the IEEE 
8-bus system. 
 

 
Figure 5: Regression Analysis for ROT using MFA-ANN 

Similar study was also performed using PSO-ANN. As can be 
seen in Figure 6, the correlation coefficient value during 
training is R=1 but the corresponding R value is 0.91371 
during validation for PSO-ANN. During testing the value of 
R is 0.91346 for testing and 0.97102 for all data. Although the 
value for training, validation, testing and all data is different, 
high accuracy has been achieved. 
 

 
Figure 6: Regression Analysis for ROT using PSO-ANN 

 
Comparative studies was conducted between the developed 
MFA-ANN and PSO-ANN for each pattern number. In this 
section, the comparative study was done by analysing the 
RMSE values and the best relay operating time and the 
proposed MFA-ANN with PSO-ANN. The comparisons on 
the system performance of RMSE between the MFA-ANN 
and PSO-ANN in 8-Bus system is presented in Figure 7. It 
shows that the proposed MFA-ANN for relay operating time 
gives minimum RMSE error as compared to PSO-ANN. The 
output ROT using MFA-ANN also shows at minimum value 
compared to PSO-ANN. The calculated RMSE error for 
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MFA-ANN and PSO-ANN are 0% and 1.50194% 
respectively. It shows the RMSE value for MFA-ANN is 
better than PSO-ANN. 
 

 
Figure 7: Difference between Targeted Output and Output Of 

the Proposed MFA-ANN and PSO-ANN for ROT  

The implementation of the proposed MFA-ANN in the 
prediction of ROT managed to achieve significant results as 
compared to PSO-ANN. It is found that the proposed 
MFA-ANN has achieved better RMSE and improved 
correlation coefficient value, R, value as a measure of the 
correlation between output and target in IEEE 8-Bus system. 
Closeness of R value to 1.0 indicates the perfection of the 
developed MFA-ANN model to perform the prediction 
process. It also can be highlighted that the proposed technique 
is feasible to solve coordination time in a protection system.  
 

5. CONCLUSION 
Modified Firefly Algorithm-Artificial Neural Network model 
has been presented in this paper to predict relay operating 
time. From the results, the proposed technique outperformed 
Particle Swarm Optimization-Artificial Neural Network with 
the best R value equal to 1 and the best RMSE is 0%. It also 
revealed that the Levenberg-Marquardt non-linear function 
fitting algorithm application on solving the proposed 
technique predicted relay operating time effectively with 
minimum mean square error between the target output and 
the actual output. Thus, it could be utilized by the protection 
engineer for minimizing the relay operating time that 
includes preventing the miscoordination occurs on the 
primary and backup relay pairs in the transmission systems. 
 
 
 
 
 
 

APPENDIX 
 

Table 4: Levenberg-Marquardt algorithm training results for 
MFA-ANN for 5 best trials 

 
Trial
s No 

DOCR ROT Targe
t Time 

MFA-ANN 
Time 

Mean 
Square 
Error 
(MSE) 

1st 
Trial 

R1 0.056
5 0.0565 0.0565 -2.46E-0

8 
R2 0.032

4 0.0324 0.0324 -1.52E-0
7 

R3 0.034
6 0.0346 0.0346 8.91E-11 

R4 0.072
2 0.0722 0.0722 -5.90E-0

8 
R5 0.100

1 0.1001 0.1001 8.33E-08 

R6 0.015
6 0.0156 0.0156 4.93E-08 

R7 0.025
0 0.0250 0.0250 1.50E-07 

R8 0.015
7 0.0157 0.0157 -3.92E-0

8 
R9 0.093

7 0.0937 0.0937 1.34E-07 

R10 0.029
9 0.0299 0.0299 2.09E-07 

R11 0.044
2 0.0442 0.0442 -1.87E-0

8 
R12 0.016

3 0.0163 0.0163 6.46E-07 

R13 0.065
7 0.0657 0.0657 -7.47E-0

9 
R14 0.040

4 0.0404 0.0404 -3.37E-1
0 

2nd 
Trial 

R1 0.056
5 0.0565 0.0565 -2.46E-0

8 
R2 0.032

4 0.0324 0.0324 -1.52E-0
7 

R3 0.034
6 0.0346 0.0346 8.91E-11 

R4 0.072
2 0.0722 0.0722 -5.90E-0

8 
R5 0.100

1 0.1001 0.1001 8.33E-08 

R6 0.015
6 0.0156 0.0156 4.93E-08 

R7 0.025
0 0.0250 0.0250 1.50E-07 

R8 0.015
7 0.0157 0.0157 -3.92E-0

8 
R9 0.093

7 0.0937 0.0937 1.34E-07 

R10 0.029 0.0299 0.0299 2.09E-07 
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9 
R11 0.044

2 0.0442 0.0442 -1.87E-0
8 

R12 0.016
3 0.0163 0.0163 6.46E-07 

R13 0.065
7 0.0657 0.0657 -7.47E-0

9 
R14 0.040

4 0.0404 0.0404 -3.37E-1
0 

14th 
Trial 

R1 0.056
5 0.0565 0.0565 -2.46E-0

8 
R2 0.032

4 0.0324 0.0324 -1.52E-0
7 

R3 0.034
6 0.0346 0.0346 8.91E-11 

R4 0.072
2 0.0722 0.0722 -5.90E-0

8 
R5 0.100

1 0.1001 0.1001 8.33E-08 

R6 0.015
6 0.0156 0.0156 4.93E-08 

R7 0.025
0 0.0250 0.0250 1.50E-07 

R8 0.015
7 0.0157 0.0157 -3.92E-0

8 
R9 0.093

7 0.0937 0.0937 1.34E-07 

R10 0.029
9 0.0299 0.0299 2.09E-07 

R11 0.044
2 0.0442 0.0442 -1.87E-0

8 
R12 0.016

3 0.0163 0.0163 6.46E-07 

R13 0.065
7 0.0657 0.0657 -7.47E-0

9 
R14 0.040

4 0.0404 0.0404 -3.37E-1
0 

29th 
Trial 

R1 0.056
5 0.0565 0.0565 -2.46E-0

8 
R2 0.032

4 0.0324 0.0324 -1.52E-0
7 

R3 0.034
6 0.0346 0.0346 8.91E-11 

R4 0.072
2 0.0722 0.0722 -5.90E-0

8 
R5 0.100

1 0.1001 0.1001 8.33E-08 

R6 0.015
6 0.0156 0.0156 4.93E-08 

R7 0.025
0 0.0250 0.0250 1.50E-07 

R8 0.015
7 0.0157 0.0157 -3.92E-0

8 
R9 0.093

7 0.0937 0.0937 1.34E-07 

R10 0.029 0.0299 0.0299 2.09E-07 

9 
R11 0.044

2 0.0442 0.0442 -1.87E-0
8 

R12 0.016
3 0.0163 0.0163 6.46E-07 

R13 0.065
7 0.0657 0.0657 -7.47E-0

9 
R14 0.040

4 0.0404 0.0404 -3.37E-1
0 

30th 
Trial 

R1 0.056
5 0.0565 0.0565 -2.46E-0

8 
R2 0.032

4 0.0324 0.0324 -1.52E-0
7 

R3 0.034
6 0.0346 0.0346 8.91E-11 

R4 0.072
2 0.0722 0.0722 -5.90E-0

8 
R5 0.100

1 0.1001 0.1001 8.33E-08 

R6 0.015
6 0.0156 0.0156 4.93E-08 

R7 0.025
0 0.0250 0.0250 1.50E-07 

R8 0.015
7 0.0157 0.0157 -3.92E-0

8 
R9 0.093

7 0.0937 0.0937 1.34E-07 

R10 0.029
9 0.0299 0.0299 2.09E-07 

R11 0.044
2 0.0442 0.0442 -1.87E-0

8 
R12 0.016

3 0.0163 0.0163 6.46E-07 

R13 0.065
7 0.0657 0.0657 -7.47E-0

9 
R14 0.040

4 0.0404 0.0404 -3.37E-1
0 

 
 
 

Table 5: Levenberg-Marquardt algorithm training results for 
PSO-ANN for 5 best trials 

 
Trials 

No 
DOCR ROT Targe

t Time 
MFA-ANN 

Time 
Mean 

Square 
Error 
(MSE) 

1st 
Trial 

R1 0.0565 0.0565 0.0565 1.81E-09 
R2 0.0648

1 0.0324 0.057532 -0.02513 

R3 0.0346 0.0346 0.0346 2.42E-09 
R4 0.0722 0.0722 0.0722 8.10E-10 
R5 0.1001 0.1001 0.1001 1.64E-08 
R6 0.0156 0.0156 0.0156 7.79E-08 
R7 0.0250 0.0250 0.0250 -9.63E-0

8 
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R8 0.0157 0.0157 0.0157 1.88E-08 
R9 0.0937 0.0937 0.0937 1.19E-07 
R10 0.0299 0.0299 0.0299 -2.01E-0

8 
R11 0.0442 0.0442 0.0442 7.88E-08 
R12 0.0163 0.0163 0.0163 -1.16E-0

8 
R13 0.0657 0.0657 0.0657 7.43E-09 
R14 0.0404 0.0404 0.0404 -3.26E-0

8 

2nd 
Trial 

R1 0.0565 0.0565 0.0565 1.81E-09 
R2 0.0324 0.0324 0.057532 -0.02513 
R3 0.0346 0.0346 0.0346 2.42E-09 
R4 0.0722 0.0722 0.0722 8.10E-10 
R5 0.1001 0.1001 0.1001 1.64E-08 
R6 0.0156 0.0156 0.0156 7.79E-08 
R7 0.0250 0.0250 0.0250 -9.63E-0

8 
R8 0.0157 0.0157 0.0157 1.88E-08 
R9 0.0937 0.0937 0.0937 1.19E-07 
R10 0.0299 0.0299 0.0299 -2.01E-0

8 
R11 0.0442 0.0442 0.0442 7.88E-08 
R12 0.0163 0.0163 0.0163 -1.16E-0

8 
R13 0.0657 0.0657 0.0657 7.43E-09 
R14 0.0404 0.0404 0.0404 -3.26E-0

8 

14th 
Trial 

R1 0.0565 0.0565 0.0565 1.81E-09 
R2 0.0324 0.0324 0.057532 -0.02513 
R3 0.0346 0.0346 0.0346 2.42E-09 
R4 0.0722 0.0722 0.0722 8.10E-10 
R5 0.1001 0.1001 0.1001 1.64E-08 
R6 0.0156 0.0156 0.0156 7.79E-08 
R7 0.0250 0.0250 0.0250 -9.63E-0

8 
R8 0.0157 0.0157 0.0157 1.88E-08 
R9 0.0937 0.0937 0.0937 1.19E-07 
R10 0.0299 0.0299 0.0299 -2.01E-0

8 
R11 0.0442 0.0442 0.0442 7.88E-08 
R12 0.0163 0.0163 0.0163 -1.16E-0

8 
R13 0.0657 0.0657 0.0657 7.43E-09 
R14 0.0404 0.0404 0.0404 -3.26E-0

8 

29th 
Trial 

R1 0.0565 0.0565 0.0565 1.81E-09 
R2 0.0324 0.0324 0.057532 -0.02513 
R3 0.0346 0.0346 0.0346 2.42E-09 
R4 0.0722 0.0722 0.0722 8.10E-10 
R5 0.1001 0.1001 0.1001 1.64E-08 
R6 0.0156 0.0156 0.0156 7.79E-08 
R7 0.0250 0.0250 0.0250 -9.63E-0

8 
R8 0.0157 0.0157 0.0157 1.88E-08 

R9 0.0937 0.0937 0.0937 1.19E-07 
R10 0.0299 0.0299 0.0299 -2.01E-0

8 
R11 0.0442 0.0442 0.0442 7.88E-08 
R12 0.0163 0.0163 0.0163 -1.16E-0

8 
R13 0.0657 0.0657 0.0657 7.43E-09 
R14 0.0404 0.0404 0.0404 -3.26E-0

8 

30th 
Trial 

R1 0.0565 0.0565 0.0565 1.81E-09 
R2 0.0324 0.0324 0.057532 -0.02513 
R3 0.0346 0.0346 0.0346 2.42E-09 
R4 0.0722 0.0722 0.0722 8.10E-10 
R5 0.1001 0.1001 0.1001 1.64E-08 
R6 0.0156 0.0156 0.0156 7.79E-08 
R7 0.0250 0.0250 0.0250 -9.63E-0

8 
R8 0.0157 0.0157 0.0157 1.88E-08 
R9 0.0937 0.0937 0.0937 1.19E-07 
R10 0.0299 0.0299 0.0299 -2.01E-0

8 
R11 0.0442 0.0442 0.0442 7.88E-08 
R12 0.0163 0.0163 0.0163 -1.16E-0

8 
R13 0.0657 0.0657 0.0657 7.43E-09 
R14 0.0404 0.0404 0.0404 -3.26E-0

8 
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