
Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186

180

ABSTRACT

The artificial bee colony (ABC) algorithm has attracted
interest among many researchers in optimization studies. This
fact is also true in the field of production planning and
scheduling. This paper presents a detail step-by-step
methodology to understand the effect of different onlooker
bee’s (OB) behaviour or strategies towards their optimization
capability in solving permutation flowshop scheduling
problems. This paper investigated three OB exploiting
behaviours or strategies, namely total greedy, semi greedy,
and non-greedy while executing the ABC algorithm in solving
PFSP. Based on the simulation experiment, the authors can
conclude that the exploiting behaviour of OB influences the
overall ABC scheduling performance. The total greedy
behaviour is the best behaviour amongst all because it
generated the least error. The study also considered the total
greedy behaviour as the fastest in generating 0% error data
compared to other OB behaviours.

Key words:Artificial Bee Colony Algorithm, Flowshop
Scheduling, Scheduling Optimization

1. INTRODUCTION

One of the most studied problems in scheduling literature is
the permutation flowshop scheduling problem (PFSP) [1].
This specific scheduling problem involves searching for the
best solution in scheduling n jobs that have to m machines will
process the job with the restriction of the same job order on
every machine. In solving the PSFP, researchers have used
many different performance measures such as makespan, flow
time, and tardiness [2], [3]. The total tardiness approach
considers the due dates as the most critical factors in
satisfying the customers and therefore is very much suitable
for make-to-order manufacturing industries [4]. This
approach minimized the effect of delays since delays may
cause a lousy reputation, loss of customers, and cost of the
penalty, as stipulated in some sales agreement. On the other
hand, makespan, which measures the completion time of a
group of products, is very much related to the fast processing
of the products and balanced use of resources. These
processing performances and resources utilization is a critical

strategic criterion in managing make-to-stock manufacturing
industries [5].

The PFSP is classified to be NP-hard. Therefore,
instead of searching for an exact solution, many researchers
focused on developing heuristics that are capable of providing
a good solution. However, these heuristics do not guarantee
the achievement of the optimum solution. Nevertheless, the
excellent solution, which is usually close to the optimum, can
be obtained within a reasonable time interval. One of the most
popular and successful heuristic to solve the permutation
flowshop problem is the NEH heuristic [6]. Many researchers
have introduced some modifications to the NEH [7] and even
used it as the initial solution for newly developed heuristics.

In the last few years, the trend has changed into using
swarm intelligence concept or a specific type of genetic
algorithm [8], [9] to solve the flowshop scheduling problem.
One of the methods that used the swarm intelligence concept
is the Artificial Bee Colony (ABC). Karaboga et al.
introduced the ABC algorithm in 2005, and it was used as a
medium to optimize multivariable and multimodal continuous
functions [10]. Three types of artificial bees known as
employed bees (EB), onlooker bees (OB), the method sent
scout bees (SB) to find food sources under the definition of
the task of exploitation and exploration [11]. The ABC
algorithm has now received very significant attention among
researchers, and the community utilizes it in solving many
optimization problems. Previous researchers reported the
application of the ABC algorithm in searching the optimum
solution for numerical function problems [12] and also for
solving the lot-streaming flowshop scheduling problem [13].
Other reports introduced a Pareto-based ABC algorithm to
investigate multi-objective flexible job-shop scheduling
problems, ABC clustering model in protein-protein
interaction networks based on a propagating mechanism, a
feature selection technique based on ABC for image
steganalysis problems and the utilization of ABC to design the
intelligent PID/PIλDμ speed controller for chopper fed DC
motor drive [14]–[18]. A paper also reported a straightforward
application of the ABC algorithm to solve PFSP, and it also
compares the ABC performance against the conventional
dispatch rules [19]. The ABC was also used for optimizing
total tardiness in the no-idle permutation flowshop scheduling
problem [20] and applied in constrained optimization
problems [21]. Currently, researchers studied ABC by
introducing a hybrid approach in the intention to obtain better
performance solutions. This study includes the proposed

Manipulating the Onlooker Bee’s Behaviour in Artificial Bee

Colony Algorithm for Permutation Flowshop Scheduling

Salleh Ahmad Bareduan1, Nur Fazlinda M. Pauzi1, Noor Azizah Sidek1, Azli Nawawi1
1Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 84600 Batu Pahat,

Johor, Malaysia, saleh@uthm.edu.my, hd110165@siswa.uthm.edu.my, noorazizah@uthm.edu.my,
azle@uthm.edu.my

 ISSN 2347 - 3983
Volume 8. No. 1.2, 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter2581.22020.pdf

https://doi.org/10.30534/ijeter/2020/2581.22020

Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186

181

hybrid algorithm artificial bee colony algorithm with some
steps of genetic algorithm to achieve Pareto solutions for
multi-objective single machine group scheduling problem
with sequence-dependent setup times and learning effects [14].
A paper also reported the hybrid ABC combining bees
approach and a deep level local search mechanism for solving
the multi-objective flexible task scheduling problem in the
Cloud computing system [22]. In another study, a research
team experimented on a combination of genetic programming
and artificial bee colony algorithm to get a better balance
between exploration and exploitation leading to a mechanism
proposed to attract individuals towards a promising solution
region [23]. The hybrid effort was extended further in the area
of unrelated parallel machine scheduling problem with
deteriorating maintenance activities, parallel-batching
processing, and deteriorating jobs (a combination of the
artificial bee colony and Tabu Search) to solve the problem in
a reasonable time [24].

However, from the literature, previous works gave not
much attention in conducting detail investigation to
understand the effect of different bee’s behaviours or
strategies towards their optimization capability. Therefore, in
this work, several manipulations on the onlooker bee’s
behaviour were proposed, and our team also investigated its
effect in solving permutation flow-shop scheduling problems
with unlimited buffers.

The permutation flowshop scheduling finds the best
permutation to minimize the maximum completion time or
makespan. The permutation of n jobs represents the solution
to the permutation flowshop scheduling problem, and the
system has a set of n jobs, π = π1, π2,…, πn. The system
processes each job on m operations. Different machines will
perform every operation and the processing time pji for job j
using machine i is given. This method will find the best
permutation for jobs π* = {π1*, π2*,…,πn*} to be processed
on each machine using the permutation flowshop scheduling.
Let, C (πj,m) denotes the completion time for the job πj using
machine m. Given the job permutation π, the completion time
for the n job, m machine problem is calculated as follows:

C(π1, 1) = Pπ1, 1 (1)
C(πj, 1) = C(πj – 1, 1) + Pπj,1 j = 2, …, n (2)
C(π1, i) = C(π1 ,i – 1) + Pπ1,i i = 2, …, m (3)
C(πj, i) = max[C(πj – 1, i), C(πj ,i – 1)] + Pπj,i ;
 j=2, …, n; i = 2, …, m (4)

 The makespan for a permutation π is equal to the
completion time for the last job πn using the last machine m.
The completion time for the permutation π is Cmax(π)=C(πn,
m). Other characteristics of the permutation flowshop are as
the following:

i. Each job visits each stage according to the same

production flow.
ii. In every stage i, there is only one machine with

specified processing abilities.
iii. Between the stages i and i + 1, there are unlimited

buffer capacities.

iv. Every machine will process only one job at a time,
and each job can be executed by only one machine
at a time.

v. All jobs and machines are available at the initial of
the process (t=0).

vi. Preemption is not allowed; that is, a job cannot be
interrupted before the completion of its current
operation.

vii. The method will include the setup times in the
processing time, and the problem data are
deterministic and known in advance.

 The paper aims to generate the schedule sequence to
minimize the makespan.

2. MATERIALS AND METHODS

The artificial bee colony algorithm system starts with the
movement of an SB to find the food source randomly. Food
source found by SB is known as the initial solution. In the
flowshop scheduling situation, the SB will select any
scheduling sequence randomly. The quality of this initial
solution is measured using the makespan value. Using the
initial solution as a guide, a few EB start searching for new
alternative solutions around the initial solution. The method
evaluated the quality of these alternative solutions by
calculating their respective makespan value.

Upon comparing the makespan from the EB solutions,
the OBs have to decide on which solution to choose as a guide
for further solution exploitation. In this paper, our team
proposed that the OB have three different selecting
behaviours as the following:

i. Total greedy behaviour: All OB select only the

best EB solution as a searching guide.
ii. Semi greedy behaviour: 67%OB select the best

EB solution as a searching guide. The remaining
33% OB select the second best EB solution as the
alternative searching guide.

iii. Non-greedy behaviour: Each OB selects one EB
solution as a searching guide.

The makespan from all EB and OB are compared to

identify the best solution. If the best solution is better than the
initial solution, then the solution is kept as the optimized
result and is used as a guide for the next EB activity. If not, an
SB is released to find a new initial solution randomly. The
best solution among all bees is considered as the optimized
solution. The simulation will repeat the process until it
achieves the termination limit. The developed artificial bee
colony algorithm had been set to solve the permutation
flowshop scheduling problem for six jobs and three machines.
Table 1 shows a randomly generated process time data for a
three machine flowshop problem.

Table 1: The example of process time data for flowshop (hours)

Job M1 M2 M3

Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186

182

A 22 11 16

B 2 6 7

C 36 10 29

D 8 28 17

E 27 1 14

F 10 7 40

The ABC starts with the movement of an SB to find the

initial solution randomly. The selected initial solution is
DCFAEB with makespan equals 160, and the next steps are
the movement of EB, followed by OB. All movements of both
types of bees are counted as iterations. In this example
problem, three EB and three OB are utilized in each cycle to
make a total count of six repetitions per period. After
receiving the information about the initial solution, three EB
search the new alternative solutions nearby the area of the
initial solution using the select and insert method. The EB
sequence solutions are shown in Table 2.

The OB uses the information from EB in Table 2 to
decide which EB solution to be selected as the guide for the
next movement. The guide selection is based on the three OB
behaviours as the following:

i. Total greedy behaviour: All three OB select the

best EB solution, which is DFCAEB from EB3 as
the searching guide.

ii. Semi greedy behaviour: Two OB select the best
EB solution, which is DFCAEB from EB3 as the
searching guide. The remaining one OB selects
the second-best EB solution, which is DACFEB
from EB2 as the alternative searching guide.

iii. Non-greedy behaviour: Each OB selects one EB
solution as the searching guide.

Table 2: The sequence of solutions of EB from the first cycle

EB Sequence Solutions Makespan

EB1 DECFAB 173

EB2 DACFEB 166

EB3 DFCAEB 159

Semi greedy behaviour is chosen in solving the

example problem, and this resulted in the OB solutions shown
in Table 3.

Table 3: The sequence solutions of OB from the first cycle

Selected EB

Guide
OB Sequence

Solutions
Makespan

EB3
(DFCAEB)

OB1 DFCBAE 159

EB3
(DFCAEB)

OB2 DFCBEA 159

EB2
(DACFEB)

OB3 DACBFE 166

The best makespan from all EB and OB solutions in

the first cycle is 159, and this is better than the initial solution
makespan of 160. Therefore, the best solution among EB and
OB is kept as the current optimized solution and selected as
the guide or sub-initial for the next EB searching activity. In
this example, DFCBEA is chosen as the current optimized
solution and the sub-initial for the following cycle.

Using the new sub-initial solution as the guide, three
EB search the new alternative solutions nearby the sub-initial
solution area using select and insert method. The EB sequence
solutions are shown in Table 4.

Table 4: The sequence solutions of EB from the second cycle

EB Sequence Solutions Makespan
EB1 DEFCBA 159
EB2 DBFCEA 159
EB3 DCFBEA 160

Applying the semi greedy behaviour, two OB select

the best EB solution, which is DEFCBA from EB1 as the
searching guide. The remaining one OB selects the
second-best EB solution, which is DBFCEA from EB2 as the
alternative searching guide. This situation resulted in the OB
solutions shown in Table 5.

Table 5: The sequence solutions of OB from the second cycle

Selected EB Guide OB Sequence
Solutions Makespan

EB1 (DEFCBA) OB1 DEFACB 159

EB1 (DEFCBA) OB2 DEFABC 159

EB2 (DBFCEA) OB3 DBFACE 159

The best makespan from all EB and OB solutions in
the second cycle is 159, and this is not better than the currently
optimized solution makespan of 159 obtained from the first
cycle. Therefore, an SB is released to find a new initial
solution randomly. The latest initial solution selected is
BDCEAF with makespan of 162. Using this new initial, the
EB and OB repeat their searching activity following the semi
greedy behaviour resulting in the sequence solution shown in
Table 6.

Table 6: EB and OB sequence solutions from the third cycle

EB Sequence

Solutions
Makespan OB Sequence

Solutions
Makespan

EB1 (BADCEF) 163 OB1 (BADFCE) 163
EB2 (BEDCAF) 168 OB2(BADFEC) 163
EB3 (BCDEAF) 164 OB3 (BCDFEA) 164

Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186

183

The best makespan from all EB and OB solutions in
the third cycle is 163, and this is not better than the currently
optimized solution makespan of 159 obtained from the first
cycle. Therefore, an SB is rereleased to find a new initial
solution randomly. Since these three machines flowshop
examples problem uses three EB and three OB in its cycle,
therefore every period adds six alternative solutions or
number of iterations to its EB and OB exploitation activities
counter. The overall searching process stops only when a
predetermined stopping criterion is met. In this example
problem, the stopping criterion is set at 102 iterations. The
result upon executing the 102 iterations is shown in Table 7.

Table 7 depicted that there are several occasions in
which the cycle solutions are better than the current optimized
solution. This scenario happened at EB and OB makespan
values of 159, 144, 140 and 135. Finally, after 102 iterations,
the best solutions among all EB, OB and SB are BFDACE
with makespan value of 135.

This study evaluated the quality of the ABC solution
by comparing the makespan resulted from the ABC solution
with the actual optimum solution of the example flowshop
problem. The exact optimum solution is obtained by
computing the makespan values for all possible sequence
arrangements. Since the example problem involves six jobs
(n=6), therefore a total of n! or 720 different sequence
arrangements have to be investigated to search for the
minimum makespan. This situation has resulted in an
optimum solution makespan of 135. Therefore, for the
example problem discussed in this section, the ABC managed
to obtain a solution makespan equals to the optimum solution.
This situation resulted in a zero per cent makespan error by
using Equation (5).

(%)	ݎݎݎܧ	݊ܽݏ݁݇ܽܯ = ቀெ௦			ି	ை௧௨	ெ௦

ை௧௨	ெ௦
ቁ × 100(5)

3. RESULTS AND DISCUSSIONS

As a way to have a better understanding of the performances
of the ABC algorithm with different OB behaviours, in

solving flowshop scheduling problems, computational
simulations resembling a three ma-chine flowshop scheduling
were conducted. One hundred sets of randomly generated
process time data for the flowshop were used in the analysis.
For each data set, the quality of the ABC result was measured
using the makespan error percentage as in Equation (5). Upon
completion of all one hundred sets of simulation, the overall
average makespan error was computed to determine the
overall performance of the OB behaviours. Since the ABC
process involves selecting a random initial solution, the whole
simulation was repeated with ten replications. The average
makespan error from all replications was used as the
performance of the ABC algorithm in solving the flowshop
scheduling problems. The simulation process was executed in
Microsoft Excel with Visual Basic Application using the
termination criterion of 54, 102, 204, 300 and 402 iterations.
The result is shown in Table 8.

Table 8: Average makespan error of the ABC algorithm (%)

OB Behavior Number of Iterations

54 102 204 300 402

Total Greedy 1.511 0.569 0.269 0.199 0.119

Semi Greedy 2.096 0.708 0.362 0.249 0.136

Non-Greedy 2.190 0.743 0.409 0.262 0.234

The result in Table 8 shows that as the number of

iterations increased, the performances of the ABC algorithm
also increased. This scenario is indicated by the lower
makespan error value as the number of iterations increases. A
higher number of iterations means more alternative solutions
are explored and exploited by SB, EB and OB. Therefore,
there is a higher chance that a better solution is found. In order
to have a more precise observation, the data in Table 8 is
tabulated into the interaction plot, as illustrated in Figure 1.

Table 7: ABC results at 102 iterations

Initial Solution Initial
Makespan MinEBOB Makespan Iteration Counter

D C F A E B 160 D F C B E A 159 6
 D B F A C E 159 12

B D C E A F 162 B A D F E C 163 18
F A D E C B 149 F D A B E C 144 24
 F B D C A E 140 30
 F D B C A E 140 36

F D C B E A 140 F C D A B E 140 42
C F D B A E 169 C B F E D A 169 48
E D A F C B 172 E F D B C A 153 54
E F A D B C 153 E B F C D A 151 60
F E D A B C 144 F D E C A B 143 66
D F B A E C 159 D A F C B E 159 72
A F D B E C 156 A B F C E D 156 78
D F C E A B 159 D E F B C A 159 84
C E B D F A 174 C D E A B F 169 90

Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186

184

F D B E C A 140 F C D A E B 140 96
B D F E C A 154 B F D A C E 135 102

Figure 1: Interaction plot for average makespan error (%)

Table 8 and Figure 1 also show that at all iterations, the

total greedy behaviour produces the lowest error percentage
followed by semi greedy behaviour. Additionally, it can also
be noticed that at 300 iterations, all OB behaviours seems to
generate almost equal error percentage values. This pattern is
also supported by Figure 2.

Figure 2: Surface plot shows the pattern generated by all OB
behaviours

In the total greedy behaviour, the OB focused all their

efforts toward looking for alternative solutions near one
dedicated area, which is the best EB solution. In the semi
greedy behaviour, the OB searching efforts are focused at the
best and second-best EB solutions, whereas in non-greedy
behaviour, no extra focus is given to reasonable EB solutions.
As a result, the non-greedy behaviour recorded the worst
performance at all five iteration clusters, as shown in Table 8,
Figure 1 and Figure 2. This situation means that failure to
provide sufficient attention in exploiting good EB solutions
will not offer good overall results.

Figure 2 shows that the total greedy behaviour has the
lowest curve, and this shows that this behaviour managed to

generate the lowest percentage of average error, which is the
desired result. In other words, the lowest curve means less
error generated. Moreover, it can also be concluded that all
OB behaviours demonstrated a similar pattern. As the number
of iterations increased, the values of the average error will
decrease.

Figure 3 provides more detailed results based on the
simulation experiment. The figure shows the number of data
generated based on the error ranges, iterations and OB
behaviour. The error ranges are divided into five categories:

i. 0% error.
ii. 0.1% to 5.0% error range.
iii. 5.1% to 10.0% error range.
iv. 10.1% to 15.0% error range.
v. 15.1% to 20.0% error range.

The OB behaviours are represented by different

colours. The non-greedy, semi greedy and total greedy
behaviours are represented by the red, blue and green colours
respectively. From Figure 3, the first category of the error
range (0% error) is the best because the generated results have
the same value as the optimum makespan.

Figure 3: No. of data based on error ranges, iterations and OB
behaviour

Besides, it can also be seen that all OB behaviours

produced the same trend. All behaviours tend to generate
more data that fall in the 0% error category as the number of
iterations increased. However, it was also observed that the
total greedy behaviour has the highest rate in generating 0%
error data because the amount of data that fall into this
category is the highest for all iterations (54, 102, 204, 300 and
402). From here, it can be concluded that the best OB
behaviour is the total greedy because it managed to generate
the least error.

4. CONCLUSION
This study successfully presented a detail step-by-step
methodology to investigate three OB exploiting behaviour or
strategies while executing the ABC algorithm in solving the

40230020410254

2.5

2.0

1.5

1.0

0.5

0.0

Iterations

A
v

er
ag

e
 E

rr
or

Non-Greedy
Semi Greedy
Total Greedy

ABC Rep.

Interaction Plot for Average Error
Data Means

Total_Greedy

0 Semi-Greedy

1

54

2

102
204

300 Non-Greedy
402

Average Error

OB Behavior

Iterations

Surface Plot of Average Error vs OB Behavior & Iterations

OB Beha vior

Iterations

Error Ra nge

yyy

4
0

2

3
0

0

2
0

4

1
0

2

5
4

4
0

2

3
0

0

2
0

4

1
0

2

5
4

4
0

2

3
0

0

2
0

4

1
0

2

5
4

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

1
5

.1
-2

0
.0

1
0

.1
-1

5
.0

5
.1

-1
0

.0
0

.1
-5

.00

90

80

70

60

50

40

30

20

10

0

N
o.

 o
f

D
at

a

Non-G reedy
Semi G reedy
Total G reedy

OB Behav ior

000
7

93

000
12

88

001
12

8
7

00
3

20
77

0
55

31
59

000
7

93

000
12

88

000
16

8
4

001
25

74

1
5

8
35

51

000
1

1
89

000
1

4
86

000
20

80

001
28

71

23
1

1
35

49

No. of Data based on Error Range, Iterations & OB Behavior

Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186

185

flowshop scheduling problem. Based on the simulation
experiment, it is concluded that OB-exploiting behaviour
influences the overall ABC scheduling performance. Based
on this study, the total greedy behaviour is the best behaviour
amongst all because it generated the least error. The full
greedy behaviour is also considered as the fastest in
generating 0% error data compared to other OB behaviours.
The findings from this study can trigger many different
alternative methods to manipulate the bees’ behaviour as a
means of intelligent element for optimization mechanisms.

ACKNOWLEDGEMENT

The authors would like to thank the Ministry of Education
Malaysia for supporting this research under the Fundamental
Research Grant Scheme VotNo.FRGS/1/2018/TK03/
UTHM/02/9 and partially sponsored by Universiti Tun
Hussein Onn Malaysia.

REFERENCES
1. R. Ruiz and C. Maroto, A comprehensive review and

evaluation of permutation flowshop heuristics, in
European Journal of Operational Research, vol. 165, no.
2, pp. 479–494, Sep. 2005.

2. J. M. Framinan, J. N. D. Gupta, and R. Leisten, A Review
and Classification of Heuristics for Permutation
Flow-Shop Scheduling with Makespan Objective, The
Journal of the Operational Research Society, vol. 55, no.
12, pp. 1243–1255, 2004.

3. J. Schaller, Scheduling a permutation flow shop with
family setups to minimise total tardiness, International
Journal of Production Research, vol. 50, no. 8, pp.
2204–2217, Apr. 2012.

4. Y.-D. Kim, J.-G. Kim, B. Choi, and H.-U. Kim,
Production scheduling in a semiconductor wafer
fabrication facility producing multiple product types
with distinct due dates, IEEE Transactions on Robotics
and Automation, vol. 17, no. 5. pp. 589–598, 2001.

5. V. Fernandez-Viagas and J. M. Framinan, NEH-based
heuristics for the permutation flowshop scheduling
problem to minimise total tardiness, Computers and
Operations Research, vol. 60, pp. 27–36, 2015.

6. M. Nawaz, E. E. Enscore, and I. Ham, A heuristic
algorithm for the m-machine, n-job flow-shop
sequencing problem, Omega, vol. 11, no. 1, pp. 91–95,
1983.

7. V. Fernandez-Viagas and J. M. Framinan, On insertion
tie-breaking rules in heuristics for the permutation
flowshop scheduling problem, Computers and
Operations Research, vol. 45, pp. 60–67, 2014.

8. X. Liu and T. P. Chung, A modified
immunoglobulin-based artificial immune system
algorithm for solving the permutation flow shop
scheduling problem, Journal of Industrial and

Production Engineering, vol. 34, no. 7, pp. 542–550, Oct.
2017.

9. C. Ou-Yang and R. Ansari, Applying a hybrid particle
swarm optimization_Tabu search algorithm to a
facility location case in Jakarta, Journal of Industrial
and Production Engineering, vol. 34, no. 3, pp. 199–212,
Apr. 2017.

10. D. Karaboga, An idea based on Honey Bee Swarm for
Numerical Optimization, Technical Report TR06,
Erciyes University, no. TR06, p. 10, 2005.

11. D. Karaboga and B. Basturk, On the performance of
artificial bee colony (ABC) algorithm, Applied Soft
Computing Journal, vol. 8, no. 1, pp. 687–697, 2008.

12. D. Karaboga and B. Basturk, A powerful and efficient
algorithm for numerical function optimization:
Artificial bee colony (ABC) algorithm, Journal of
Global Optimization, vol. 39, no. 3, pp. 459–471, Nov.
2007.

13. M. F. Tasgetiren, Q. K. Pan, P. N. Suganthan, and A. H.
L. Chen, A discrete artificial bee colony algorithm for
the permutation flow shop scheduling problem with
total flowtime criterion, 2010.

14. L. Yue, Z. Guan, U. Saif, F. Zhang, and H. Wang,
Hybrid Pareto artificial bee colony algorithm for
multi-objective single machine group scheduling
problem with sequence-dependent setup times and
learning effects, SpringerPlus, vol. 5, no. 1, Dec. 2016.

15. J. Q. Li, Q. K. Pan, and K. Z. Gao, Pareto-based discrete
artificial bee colony algorithm for multi-objective
flexible job shop scheduling problems, International
Journal of Advanced Manufacturing Technology, vol. 55,
no. 9–12, pp. 1159–1169, Aug. 2011.

16. X. Lei, J. Tian, L. Ge, and A. Zhang, The clustering
model and algorithm of PPI network based on
propagating mechanism of artificial bee colony,
Information Sciences, vol. 247, pp. 21–39, 2013.

17. F. G. Mohammadi and M. S. Abadeh, Image
steganalysis using a bee colony based feature selection
algorithm, Engineering Applications of Artificial
Intelligence, vol. 31, pp. 35–43, 2014.

18. A. Rajasekhar, R. Kumar Jatoth, and A. Abraham,
Design of intelligent PID/PIλDμ speed controller for
chopper fed DC motor drive using opposition based
artificial bee colony algorithm, Engineering
Applications of Artificial Intelligence, vol. 29, pp. 13–32,
2014.

19. H. Y. Chow, S. Hasan, and S. A. Bareduan, Basic
concept of implementing artificial bee colony (ABC)
system in flow shop scheduling, in Applied Mechanics
and Materials, vol. 315, pp. 385–388, 2013.

20. M. Fatih Tasgetiren, Q. K. Pan, P. N. Suganthan, and A.
Oner, A discrete artificial bee colony algorithm for the

Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186

186

no-idle permutation flowshop scheduling problem
with the total tardiness criterion, Applied
Mathematical Modelling, vol. 37, no. 10–11, pp.
6758–6779, 2013.

21. H. C. Tsai, Integrating the artificial bee colony and
bees algorithm to face constrained optimization
problems, Information Sciences, vol. 258, pp. 80–93,
2014.

22. J. Q. Li, Y. Y. Han, and C. G. Wang, A Hybrid Artificial
Bee Colony Algorithm to Solve Multi-objective
Hybrid Flowshop in Cloud Computing Systems, in
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 10602, pp. 201–213, 2017.

23. D. Li, R. Guo, R. Zhan, and Y. Yin, An innovative
artificial bee colony algorithm and its application to a
practical intercell scheduling problem, Engineering
Optimization, vol. 50, no. 6, pp. 933–948, Jun. 2018.

24. S. Lu, X. Liu, J. Pei, M. T. Thai, and P. M. Pardalos, A
hybrid ABC-TS algorithm for the unrelated
parallel-batching machines scheduling problem with
deteriorating jobs and maintenance activity, Applied
Soft Computing Journal, vol. 66, pp. 168–182, 2018.

