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ABSTRACT 
 
The artificial bee colony (ABC) algorithm has attracted 
interest among many researchers in optimization studies. This 
fact is also true in the field of production planning and 
scheduling. This paper presents a detail step-by-step 
methodology to understand the effect of different onlooker 
bee’s (OB) behaviour or strategies towards their optimization 
capability in solving permutation flowshop scheduling 
problems. This paper investigated three OB exploiting 
behaviours or strategies, namely total greedy, semi greedy, 
and non-greedy while executing the ABC algorithm in solving 
PFSP. Based on the simulation experiment, the authors can 
conclude that the exploiting behaviour of OB influences the 
overall ABC scheduling performance. The total greedy 
behaviour is the best behaviour amongst all because it 
generated the least error. The study also considered the total 
greedy behaviour as the fastest in generating 0% error data 
compared to other OB behaviours. 
 
Key words:Artificial Bee Colony Algorithm, Flowshop 
Scheduling, Scheduling Optimization 
 
1. INTRODUCTION 
 
One of the most studied problems in scheduling literature is 
the permutation flowshop scheduling problem (PFSP) [1]. 
This specific scheduling problem involves searching for the 
best solution in scheduling n jobs that have to m machines will 
process the job with the restriction of the same job order on 
every machine. In solving the PSFP, researchers have used 
many different performance measures such as makespan, flow 
time, and tardiness [2], [3]. The total tardiness approach 
considers the due dates as the most critical factors in 
satisfying the customers and therefore is very much suitable 
for make-to-order manufacturing industries [4]. This 
approach minimized the effect of delays since delays may 
cause a lousy reputation, loss of customers, and cost of the 
penalty, as stipulated in some sales agreement. On the other 
hand, makespan, which measures the completion time of a 
group of products, is very much related to the fast processing 
of the products and balanced use of resources. These 
processing performances and resources utilization is a critical 
 

 

strategic criterion in managing make-to-stock manufacturing 
industries [5]. 

The PFSP is classified to be NP-hard. Therefore, 
instead of searching for an exact solution, many researchers 
focused on developing heuristics that are capable of providing 
a good solution. However, these heuristics do not guarantee 
the achievement of the optimum solution. Nevertheless, the 
excellent solution, which is usually close to the optimum, can 
be obtained within a reasonable time interval. One of the most 
popular and successful heuristic to solve the permutation 
flowshop problem is the NEH heuristic [6]. Many researchers 
have introduced some modifications to the NEH [7] and even 
used it as the initial solution for newly developed heuristics.  

In the last few years, the trend has changed into using 
swarm intelligence concept or a specific type of genetic 
algorithm [8], [9] to solve the flowshop scheduling problem. 
One of the methods that used the swarm intelligence concept 
is the Artificial Bee Colony (ABC). Karaboga et al. 
introduced the ABC algorithm in 2005, and it was used as a 
medium to optimize multivariable and multimodal continuous 
functions [10]. Three types of artificial bees known as 
employed bees (EB), onlooker bees (OB), the method sent 
scout bees (SB) to find food sources under the definition of 
the task of exploitation and exploration [11]. The ABC 
algorithm has now received very significant attention among 
researchers, and the community utilizes it in solving many 
optimization problems. Previous researchers reported the 
application of the ABC algorithm in searching the optimum 
solution for numerical function problems [12] and also for 
solving the lot-streaming flowshop scheduling problem [13]. 
Other reports introduced a Pareto-based ABC algorithm to 
investigate multi-objective flexible job-shop scheduling 
problems, ABC clustering model in protein-protein 
interaction networks based on a propagating mechanism, a 
feature selection technique based on ABC for image 
steganalysis problems and the utilization of ABC to design the 
intelligent PID/PIλDμ speed controller for chopper fed DC 
motor drive [14]–[18]. A paper also reported a straightforward 
application of the ABC algorithm to solve PFSP, and it also 
compares the ABC performance against the conventional 
dispatch rules [19]. The ABC was also used for optimizing 
total tardiness in the no-idle permutation flowshop scheduling 
problem [20] and applied in constrained optimization 
problems [21]. Currently, researchers studied ABC by 
introducing a hybrid approach in the intention to obtain better 
performance solutions. This study includes the proposed 
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hybrid algorithm artificial bee colony algorithm with some 
steps of genetic algorithm to achieve Pareto solutions for 
multi-objective single machine group scheduling problem 
with sequence-dependent setup times and learning effects [14]. 
A paper also reported the hybrid ABC combining bees 
approach and a deep level local search mechanism for solving 
the multi-objective flexible task scheduling problem in the 
Cloud computing system [22]. In another study, a research 
team experimented on a  combination of genetic programming 
and artificial bee colony algorithm to get a better balance 
between exploration and exploitation leading to a mechanism 
proposed to attract individuals towards a promising solution 
region [23]. The hybrid effort was extended further in the area 
of unrelated parallel machine scheduling problem with 
deteriorating maintenance activities, parallel-batching 
processing, and deteriorating jobs (a combination of the 
artificial bee colony and Tabu Search) to solve the problem in 
a reasonable time [24]. 

However, from the literature, previous works gave not 
much attention in conducting detail investigation to 
understand the effect of different bee’s behaviours or 
strategies towards their optimization capability. Therefore, in 
this work, several manipulations on the onlooker bee’s 
behaviour were proposed, and our team also investigated its 
effect in solving permutation flow-shop scheduling problems 
with unlimited buffers. 

The permutation flowshop scheduling finds the best 
permutation to minimize the maximum completion time or 
makespan. The permutation of n jobs represents the solution 
to the permutation flowshop scheduling problem, and the 
system has a set of n jobs, π = π1, π2,…, πn. The system 
processes each job on m operations. Different machines will 
perform every operation and the processing time pji for job j 
using machine i is given. This method will find the best 
permutation for jobs π* = {π1*, π2*,…,πn*} to be processed 
on each machine using the permutation flowshop scheduling. 
Let, C (πj,m) denotes the completion time for the job πj using 
machine m. Given the job permutation π, the completion time 
for the n job, m machine problem is calculated as follows:  

 
C(π1, 1) = Pπ1, 1                                                           (1)                                                                                 
C(πj, 1) = C(πj – 1, 1) + Pπj,1 j = 2, …, n         (2)                                               
C(π1, i) = C(π1 ,i – 1) + Pπ1,i      i = 2, …, m           (3)                                           
C(πj, i) = max[C(πj – 1, i), C(πj ,i – 1)] + Pπj,i ;    
 j=2, …, n; i = 2, …, m                                                (4)                                                             

 
   The makespan for a permutation π is equal to the 
completion time for the last job πn using the last machine m. 
The completion time for the permutation π is Cmax(π)=C(πn, 
m). Other characteristics of the permutation flowshop are as 
the following: 

 
i.  Each job visits each stage according to the same 

production flow.  
ii. In every stage i, there is only one machine with 

specified processing abilities. 
iii. Between the stages i and i + 1, there are unlimited 

buffer capacities. 

iv. Every machine will process only one job at a time, 
and each job can be executed by only one machine 
at a time. 

v. All jobs and machines are available at the initial of 
the process (t=0). 

vi. Preemption is not allowed; that is, a job cannot be 
interrupted before the completion of its current 
operation. 

vii. The method will include the setup times in the 
processing time, and the problem data are 
deterministic and known in advance. 

 
   The paper aims to generate the schedule sequence to 
minimize the makespan. 
 
2. MATERIALS AND METHODS 
 
The artificial bee colony algorithm system starts with the 
movement of an SB to find the food source randomly. Food 
source found by SB is known as the initial solution. In the 
flowshop scheduling situation, the SB will select any 
scheduling sequence randomly. The quality of this initial 
solution is measured using the makespan value. Using the 
initial solution as a guide, a few EB start searching for new 
alternative solutions around the initial solution. The method 
evaluated the quality of these alternative solutions by 
calculating their respective makespan value. 

Upon comparing the makespan from the EB solutions, 
the OBs have to decide on which solution to choose as a guide 
for further solution exploitation. In this paper, our team 
proposed that the OB have three different selecting 
behaviours as the following: 

 
i. Total greedy behaviour: All OB select only the 

best EB solution as a searching guide. 
ii. Semi greedy behaviour: 67%OB select the best 

EB solution as a searching guide. The remaining 
33% OB select the second best EB solution as the 
alternative searching guide. 

iii. Non-greedy behaviour: Each OB selects one EB 
solution as a searching guide. 

 
The makespan from all EB and OB are compared to 

identify the best solution. If the best solution is better than the 
initial solution, then the solution is kept as the optimized 
result and is used as a guide for the next EB activity. If not, an 
SB is released to find a new initial solution randomly. The 
best solution among all bees is considered as the optimized 
solution. The simulation will repeat the process until it 
achieves the termination limit. The developed artificial bee 
colony algorithm had been set to solve the permutation 
flowshop scheduling problem for six jobs and three machines. 
Table 1 shows a randomly generated process time data for a 
three machine flowshop problem. 
 

Table 1: The example of process time data for flowshop (hours) 
 

Job M1 M2 M3 
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A 22 11 16 

B 2 6 7 

C 36 10 29 

D 8 28 17 

E 27 1 14 

F 10 7 40 

 
The ABC starts with the movement of an SB to find the 

initial solution randomly. The selected initial solution is 
DCFAEB with makespan equals 160, and the next steps are 
the movement of EB, followed by OB. All movements of both 
types of bees are counted as iterations. In this example 
problem, three EB and three OB are utilized in each cycle to 
make a total count of six repetitions per period. After 
receiving the information about the initial solution, three EB 
search the new alternative solutions nearby the area of the 
initial solution using the select and insert method. The EB 
sequence solutions are shown in Table 2. 

The OB uses the information from EB in Table 2 to 
decide which EB solution to be selected as the guide for the 
next movement. The guide selection is based on the three OB 
behaviours as the following: 

 
i.  Total greedy behaviour: All three OB select the 

best EB solution, which is DFCAEB from EB3 as 
the searching guide. 

ii. Semi greedy behaviour: Two OB select the best 
EB solution, which is DFCAEB from EB3 as the 
searching guide. The remaining one OB selects 
the second-best EB solution, which is DACFEB 
from EB2 as the alternative searching guide. 

iii. Non-greedy behaviour: Each OB selects one EB 
solution as the searching guide. 

 
Table 2: The sequence of solutions of EB from the first cycle 

 

EB Sequence Solutions Makespan 

EB1 DECFAB 173 

EB2 DACFEB 166 

EB3 DFCAEB 159 

 
Semi greedy behaviour is chosen in solving the 

example problem, and this resulted in the OB solutions shown 
in Table 3. 

 
Table 3: The sequence solutions of OB from the first cycle 

 
Selected EB 

Guide 
OB Sequence 

Solutions 
Makespan 

EB3 
(DFCAEB) 

OB1 DFCBAE 159 

EB3 
(DFCAEB) 

OB2 DFCBEA 159 

EB2 
(DACFEB) 

OB3 DACBFE 166 

 
The best makespan from all EB and OB solutions in 

the first cycle is 159, and this is better than the initial solution 
makespan of 160. Therefore, the best solution among EB and 
OB is kept as the current optimized solution and selected as 
the guide or sub-initial for the next EB searching activity. In 
this example, DFCBEA is chosen as the current optimized 
solution and the sub-initial for the following cycle.   

Using the new sub-initial solution as the guide, three 
EB search the new alternative solutions nearby the sub-initial 
solution area using select and insert method. The EB sequence 
solutions are shown in Table 4. 

 
Table 4: The sequence solutions of EB from the second cycle 

 
EB Sequence Solutions Makespan 
EB1 DEFCBA 159 
EB2 DBFCEA 159 
EB3 DCFBEA 160 

 
Applying the semi greedy behaviour, two OB select 

the best EB solution, which is DEFCBA from EB1 as the 
searching guide. The remaining one OB selects the 
second-best EB solution, which is DBFCEA from EB2 as the 
alternative searching guide. This situation resulted in the OB 
solutions shown in Table 5. 
 

Table 5: The sequence solutions of OB from the second cycle 
 

Selected EB Guide OB Sequence 
Solutions Makespan 

EB1 (DEFCBA) OB1 DEFACB 159 

EB1 (DEFCBA) OB2 DEFABC 159 

EB2 (DBFCEA) OB3 DBFACE 159 

The best makespan from all EB and OB solutions in 
the second cycle is 159, and this is not better than the currently 
optimized solution makespan of 159 obtained from the first 
cycle. Therefore, an SB is released to find a new initial 
solution randomly. The latest initial solution selected is 
BDCEAF with makespan of 162. Using this new initial, the 
EB and OB repeat their searching activity following the semi 
greedy behaviour resulting in the sequence solution shown in 
Table 6.  

 
Table 6: EB and OB sequence solutions from the third cycle 

 
EB Sequence 

Solutions 
Makespan OB Sequence 

Solutions 
Makespan 

EB1 (BADCEF) 163 OB1 (BADFCE) 163 
EB2 (BEDCAF) 168 OB2(BADFEC) 163 
EB3 (BCDEAF) 164 OB3 (BCDFEA) 164 

 



Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186 

183 
 

 

The best makespan from all EB and OB solutions in 
the third cycle is 163, and this is not better than the currently 
optimized solution makespan of 159 obtained from the first 
cycle. Therefore, an SB is rereleased to find a new initial 
solution randomly. Since these three machines flowshop 
examples problem uses three EB and three OB in its cycle, 
therefore every period adds six alternative solutions or 
number of iterations to its EB and OB exploitation activities 
counter. The overall searching process stops only when a 
predetermined stopping criterion is met. In this example 
problem, the stopping criterion is set at 102 iterations. The 
result upon executing the 102 iterations is shown in Table 7. 

Table 7 depicted that there are several occasions in 
which the cycle solutions are better than the current optimized 
solution. This scenario happened at EB and OB makespan 
values of 159, 144, 140 and 135. Finally, after 102 iterations, 
the best solutions among all EB, OB and SB are BFDACE 
with makespan value of 135. 

This study evaluated the quality of the ABC solution 
by comparing the makespan resulted from the ABC solution 
with the actual optimum solution of the example flowshop 
problem. The exact optimum solution is obtained by 
computing the makespan values for all possible sequence 
arrangements. Since the example problem involves six jobs 
(n=6), therefore a total of n! or 720 different sequence 
arrangements have to be investigated to search for the 
minimum makespan. This situation has resulted in an 
optimum solution makespan of 135. Therefore, for the 
example problem discussed in this section, the ABC managed 
to obtain a solution makespan equals to the optimum solution. 
This situation resulted in a zero per cent makespan error by 
using Equation (5).  

 
(%)	ݎݎݎܧ	݊ܽݏ݁݇ܽܯ = ቀெ௦			ି	ை௧௨	ெ௦

ை௧௨	ெ௦
ቁ × 100(5) 

 

3.  RESULTS AND DISCUSSIONS 
 
As a way to have a better understanding of the performances 
of the ABC algorithm with different OB behaviours, in 

solving flowshop scheduling problems, computational 
simulations resembling a three ma-chine flowshop scheduling 
were conducted. One hundred sets of randomly generated 
process time data for the flowshop were used in the analysis. 
For each data set, the quality of the ABC result was measured 
using the makespan error percentage as in Equation (5). Upon 
completion of all one hundred sets of simulation, the overall 
average makespan error was computed to determine the 
overall performance of the OB behaviours. Since the ABC 
process involves selecting a random initial solution, the whole 
simulation was repeated with ten replications. The average 
makespan error from all replications was used as the 
performance of the ABC algorithm in solving the flowshop 
scheduling problems. The simulation process was executed in 
Microsoft Excel with Visual Basic Application using the 
termination criterion of 54, 102, 204, 300 and 402 iterations. 
The result is shown in Table 8. 

 
Table 8: Average makespan error of the ABC algorithm (%) 

 
OB Behavior Number of Iterations 

54 102 204 300 402 

Total Greedy 1.511 0.569 0.269 0.199 0.119 

Semi Greedy 2.096 0.708 0.362 0.249 0.136 

Non-Greedy 2.190 0.743 0.409 0.262 0.234 

 
The result in Table 8 shows that as the number of 

iterations increased, the performances of the ABC algorithm 
also increased. This scenario is indicated by the lower 
makespan error value as the number of iterations increases. A 
higher number of iterations means more alternative solutions 
are explored and exploited by SB, EB and OB. Therefore, 
there is a higher chance that a better solution is found. In order 
to have a more precise observation, the data in Table 8 is 
tabulated into the interaction plot, as illustrated in Figure 1. 

 

 
 

Table 7: ABC results at 102 iterations 
 

Initial Solution Initial 
Makespan MinEBOB Makespan Iteration Counter 

D C F A E B 160 D F C B E A 159 6 
       D B F A C E 159 12 

B D C E A F 162 B A D F E C 163 18 
F A D E C B 149 F D A B E C 144 24 
       F B D C A E 140 30 
       F D B C A E 140 36 

F D C B E A 140 F C D A B E 140 42 
C F D B A E 169 C B F E D A 169 48 
E D A F C B 172 E F D B C A 153 54 
E F A D B C 153 E B F C D A 151 60 
F E D A B C 144 F D E C A B 143 66 
D F B A E C 159 D A F C B E 159 72 
A F D B E C 156 A B F C E D 156 78 
D F C E A B 159 D E F B C A 159 84 
C E B D F A 174 C D E A B F 169 90 



Salleh Ahmad Bareduan et al., International Journal of Emerging Trends in Engineering Research, 8(1.2), 2020, 180 - 186 

184 
 

 

F D B E C A 140 F C D A E B 140 96 
B D F E C A 154 B F D A C E 135 102 

 
 

 
 

Figure 1: Interaction plot for average makespan error (%) 
 

 
Table 8 and Figure 1 also show that at all iterations, the 

total greedy behaviour produces the lowest error percentage 
followed by semi greedy behaviour. Additionally, it can also 
be noticed that at 300 iterations, all OB behaviours seems to 
generate almost equal error percentage values. This pattern is 
also supported by Figure 2. 

 

 
 

Figure 2: Surface plot shows the pattern generated by all OB 
behaviours 

 
In the total greedy behaviour, the OB focused all their 

efforts toward looking for alternative solutions near one 
dedicated area, which is the best EB solution. In the semi 
greedy behaviour, the OB searching efforts are focused at the 
best and second-best EB solutions, whereas in non-greedy 
behaviour, no extra focus is given to reasonable EB solutions. 
As a result, the non-greedy behaviour recorded the worst 
performance at all five iteration clusters, as shown in Table 8, 
Figure 1 and Figure 2. This situation means that failure to 
provide sufficient attention in exploiting good EB solutions 
will not offer good overall results. 

Figure 2 shows that the total greedy behaviour has the 
lowest curve, and this shows that this behaviour managed to 

generate the lowest percentage of average error, which is the 
desired result. In other words, the lowest curve means less 
error generated. Moreover, it can also be concluded that all 
OB behaviours demonstrated a similar pattern. As the number 
of iterations increased, the values of the average error will 
decrease. 

Figure 3 provides more detailed results based on the 
simulation experiment. The figure shows the number of data 
generated based on the error ranges, iterations and OB 
behaviour. The error ranges are divided into five categories: 

 
i. 0% error. 
ii. 0.1% to 5.0% error range. 
iii. 5.1% to 10.0% error range. 
iv. 10.1% to 15.0% error range. 
v. 15.1% to 20.0% error range. 
 
The OB behaviours are represented by different 

colours. The non-greedy, semi greedy and total greedy 
behaviours are represented by the red, blue and green colours 
respectively. From Figure 3, the first category of the error 
range (0% error) is the best because the generated results have 
the same value as the optimum makespan. 

 

 
 

Figure 3: No. of data based on error ranges, iterations and OB 
behaviour 

 
Besides, it can also be seen that all OB behaviours 

produced the same trend. All behaviours tend to generate 
more data that fall in the 0% error category as the number of 
iterations increased. However, it was also observed that the 
total greedy behaviour has the highest rate in generating 0% 
error data because the amount of data that fall into this 
category is the highest for all iterations (54, 102, 204, 300 and 
402). From here, it can be concluded that the best OB 
behaviour is the total greedy because it managed to generate 
the least error.  

4. CONCLUSION 
This study successfully presented a detail step-by-step 
methodology to investigate three OB exploiting behaviour or 
strategies while executing the ABC algorithm in solving the 
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flowshop scheduling problem. Based on the simulation 
experiment, it is concluded that OB-exploiting behaviour 
influences the overall ABC scheduling performance. Based 
on this study, the total greedy behaviour is the best behaviour 
amongst all because it generated the least error. The full 
greedy behaviour is also considered as the fastest in 
generating 0% error data compared to other OB behaviours. 
The findings from this study can trigger many different 
alternative methods to manipulate the bees’ behaviour as a 
means of intelligent element for optimization mechanisms. 
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