
K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

867

ABSTRACT

Distributed embedded systems frequently employed for
implementing many of the applications such as home
automation, Automobile systems, Air surveillance, and
quite recently as subnets forming an IoT (Internet of
things).

Distributed Embedded systems are quite complex due to the
existence of heterogeneity among hardware and software
and due to the existence of variance between the message
flows that should happen from the protocol uses and flow
requirements of the application concerned. The distributed
embedded systems must be tested considering hardware,
software, and the system used for networking the individual
embedded systems. For undertaking testing the distributed
embedded systems, many gadgets, tools, methods, and
mechanisms required. Testing communication that happens
among the individual embedded systems is complex.
Continuous availability of the entire distributed embedded
system along with the testing system is a critical
requirement for undertaking comprehensive testing, which
as such cannot be guaranteed. In this paper, a framework
proposed for undertaking the testing of the distributed
embedded system.

Key words: Distributed Embedded System, Testing
embedded systems, scaffolding, Heterogeneous embedded
systems, Instruction set simulator, in-circuit emulator, logic
Analyzer, assert macros, Comprehensive testing

1. INTRODUCTION

Testing Distributed embedded systems comprehensively is
required for developing fail free software. An embedded
system is developed using specific purpose hardware and
software. Both hardware and software need to be tested,
individually, and also in conjunction with each other. Testing
the proper functioning of the embedded systems that are
networked is also required. Testing an embedded system
involves testing hardware-dependent code, independent
hardware code, and testing environment required for a
specific code segment.

In a distributed embedded system, several embedded systems
are developed using different microcontroller-based systems
which are generally heterogeneously requiring the use of
middleware for doing data marshalling. Different kinds of
interfaces such as RS232C, RS485, CAN, I2C, etc. are
provided on the Microcontroller board, for effecting
communication between the Microcontroller based systems.
In a distributed embedded system network, individual
embedded systems must communicate with others for
implementing an application.

Each of the Microcontroller based systems is a location and
as many such locations exist within a distributed embedded
system. Testing must be carried at each of the locations to test
the proper functioning of the local functionality and also
concerning the functions running at other locations. Different
kinds of methods which include scaffolding, assert macros.
Instruction set simulator, logic analyzers, in-circuit
emulation, etc. required for undertaking different kinds of
testing such as testing for device functioning, response time,
throughput, etc.,

The proper Testing environment required for undertaking
testing of an embedded system. Establishing the required test
environment is complex. The test environments set at each of
the locations must be in working condition in conjunction
with each other. Testing of embedded systems requires that
the communication interfaces be working properly. Testing of
embedded systems is also complex due to the existence of
heterogeneity among the microcontroller- based systems used
for building the individual embedded systems that act as
nodes within the distributed embedded system

Scaffolding method used for testing hardware-independent
code, assert macros used for testing the existence of the
required environment for proper processing within the
embedded system, instruction set simulator for testing the
hardware in simulation mode. Logic analysers used for
testing hardware, and in-circuit emulators, are used for
testing the Target in communication with the HOST.

Different types of testing methods required for undertaking
the testing of the embedded systems. Logic Analysers used
for testing the hardware. Hardware independent code tested

A Formal and Enriched Framework for Testing Distributed Embedded Systems

K Chaitanya1, Dr. K Rajasekhra Rao2, Dr. JKR Sastry3
 1Scholar, Department of CSE, JNTU Hyderabad, kilaru.chaitanya84@gmail.com

2Director, Usha Rama College of Engineering, Vijayawada,
3Professor, ,Koneru Lakshmaiah Education foundation University, Vaddeswaram, AP, India

 ISSN 2347 - 3983
Volume 7, No. 12 December 2019

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter247122019.pdf

https://doi.org/10.30534/ijeter/2019/247122019

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

868

using scaffolding; assert macros used for testing hardware-
independent code. Instructions set simulators are used for
testing hardware-independent code and testing the devices in
a simulated manner and testing the hardware-dependent code
undertaken through the use of in-circuit emulators. Test
cases initiated from PC transmitted to target board or the
Logic Analyzer for undertaking the testing and the test
results are transmitted back by the Target or the Logic
Analyzer back to the PC for storing and analysing the test
results.

In a distributed embedded system, both hardware and
software distributed into different processing nodes
connected through a network. The information communicated
among the processing nodes using the network to which the
nodes are connected. The kind of networking system used is
the key to affect communication among the individual
embedded systems. The individual embedded systems are
heterogeneous that they differ in many ways, which include
coding systems, parity, endian, number systems, and the
interfaces. The heterogeneity among the computing nodes is
also due to the existence of different interfaces requiring
conversion to a specific communication standard. The issues
of heterogeneity are primarily due to variances existing
among different networking standards that include CAN,
USB, I2C, RS485, etc. Most of the times serial, bus-based
communication systems used for networking distributed
embedded systems.

Use of a specific networking standard dictates the kind of
testing done. The kind of testing to be done largely varies as
the communication protocol changes. The interfaces available
on each of the microcontroller-based system may not be
suitable for communicating using a specific standard. Most of
the times, there is a need to convert the native interface to the
required interface so that a Microcontroller- based system
participates in the network as a computing node.

Many methods presented in the literature for testing
standalone embedded systems which can be investigated
further to see how best these methods can be used for
undertaking testing of the distributed embedded systems.
The issue of setting the environment required for undertaking
the testing of the distributed system needs investigation since
it is one the most complex issue. Availability of the entire
distributed system in working condition is another important
issue that needs consideration. It is not possible to test any
system unless the entire system is in working condition.
Simultaneous testing at different locations in an isolated
manner and an integrated manner is complex and challenging

Many processes, methods, techniques used for undertaking
testing of the distributed tems in a most standard manner. A
framework which encompasses all elements of testing will
help to undertake to test a distributed embedded system
formally. The existing methods used for a testing stand-alone
embedded system must be modified, extended and included
into the framework so that the framework used for
undertaking the testing of distributed embedded system,

The test cases defined at system level must be broken into
elementary test cases so that the elementary test cases used
for undertaking testing at the individual location and the
results obtained at each location are merged to arrive at over
test results. One can customize the framework for suiting to
the requirements of specific distributed embedded systems.

The entire distributed embedded system must be in working
condition for testing a system-level test case. It is not possible
to meet this kind of requirement due to the existence of many
subnets within a distributed embedded network. A strategy
thus is required for carrying testing without the need for an
entire distributed embedded system in working condition.
The strategy leads to a model which help testing carried at
individual locations and the test results merged to get the
overall status of the entire distributed embedded system

The system-level test cases are decomposed to elementary
test cases to arrive at test cases tested at a specific location.
The elementary test cases are such that they can be tested
using a specific method at a specific location. The test results
obtained at each location when merged will project the
overall test status of the entire system. System-level test cases
derived from the requirement specification of the distributed
embedded system.

Many aspects considered when a distributed, embedded
system tested. The aspects include interfaces, process flow,
heterogeneity protocols, response time, throughput, device
status, the existence of proper environment, etc. the methods
required for undertaking the testing must be identified
considering every element of testing carried.

A testing framework useful for testing any distributed
embedded system presented in this paper. The framework, as
such is extendable. To meet the testing requirements of
individual distributed embedded systems.

2, PROBLEM DEFINITION

Thus the problem is to create a framework that is useful for
undertaking the testing of distributed embedded systems
without the need to have the entire system in working
condition along with the test environment system. The
setting should be undertaken considering different segments
of the system and the method used for testing the system.

3. RELATED WORK

In literature, many authors have presented the use of standard
methods of testing either stand-alone systems or distributed
embedded systems. The analysis of the methods proposed in
the literature survey reveals that no specific standard methods
have been in existence for testing a distributed embedded
system using different methods. No comprehensive
framework presented in the literature that helps in testing
distributed embedded systems.

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

869

[Chen-Huan Chiang, et al., 2004] [1] Test architecture aims
to transmit JTAG signals over a serial channel. The
architecture has been developed to facilitate system testing
and automatic field updating of distributed base stations
situated in a wireless network. The test architectures assume
that the distributed bases stations are on the same back pane
and the same chassis. The architecture considers the use of
boundary SCAN software, which is run by the processor
situated within a wireless sensor node. The nodes configured
by the SCAN software receiving instructions from a remote
location. The SCAN software will also be able to conduct a
system test and find if any system errors exist.

[Dae-Hyun Kum et al., 2006] [2] have presented a model-
based system used for the development of an embedded
system. The model-based systems are useful as it improves
quality, and the development done is the least possible time.
Simulating a system is an essay when model-based
development undertaken. The system, as such, can be
validated in the early stages of the development. Test cases
automatically generated when systems are developed using
the models. All the test cases required for validating the
models and the functions can be generated using the models.
Virtual prototypes o the models developed for undertaking
the testing.

An electronic communication system is presented by [Eric
Armengaud et al., 2005] [3] that connects all the individual
embedded systems fitted into an automobile system. Testing
of the embedded systems fitted into an automobile system
required as the failure of any system may lead to disasters.
Test cases are required to test the automobile system under
stringent conditions. A method is presented to generate test
cases based on the stimulus-response model under tough
conditions. They have developed a method that is accurate
and flexible, which generates test data for testing the
communication within the data link layer. They have used the
method for testing robustness and interoperability between
the distributed systems.

Changes to the existing applications are needed due to new
requirements or due to the introduction of new and
sophisticated technologies. The changes made to the software
may affect the code area where no changes caused;
Regression testing is to be accrued to find whether the
changes made to the software affected other areas of the code.
Specialized hardware and software are required some times to
conduct regression kind of testing. The type of testing tool
selected depends on the strategy of the organization
concerned. A regression testing tool is needed can be
configured by the organizations as per their needs. Manual
test processes are complex and time-consuming and therefore
needs avoidance. Tool based testing is robust, and the process
of undertaking testing rather becomes simple — [G. Walters
et al., 1998] [4] have proposed an automated regression test
tool that can be configured by the users as per their
requirements.

[H. Thane et al., 1999] [5] have presented the testing method
used for testing sequential programs by controlling the
sequence of inputs fed to the application as input. Sequential
test inputs are to be presented in a specific order and during
specified time intervals and the time duration during which
the concurrent tasks executed. One should not use sequential
test techniques as they do not figure out the significance of
the occurrence of the tasks.

An efficient architecture helps to develop decentralized,
reliable, collaborative, and rapid applications, which need to
be highly responsive real-time and distributed embedded
systems. These systems have inbuilt processes for
undertaking the testing. J. Russell Noseworthy, 2008] [6]
have named the architecture as TENA (Testing and Training
enablement architecture). A middleware built into TENA
helps in code generation that is understandable through easy
to understand abstractions. An excellent API included in
TENA is capable of detecting programming errors at
compilation time. TENA includes software components that
can be used to undertake different kinds of testing.

Environment setting becomes very important for undertaking
testing of any embedded system [Pei Tian et al., 2009]. [7]
The basics of the environment setting must be analysed
considering the basic structure, functionalities, and
characteristics of distributed software. A three-layer
development pattern proposed that facilitates the setting
appropriate test environment. This kind of proposal is quite
difficult to implement as it is not possible to dictate a
structure for the development of individual applications
within distributed embedded systems.

Distributed and networked embedded systems are being used
heavily in automobile, space, and many other such
applications. Testing distributed applications are complex.
The distributed applications are generally component-based
and exhibit dynamic behavior. Dynamic interaction,
structural behavior, run-time configurations, etc. makes the
testing of distributed systems complicated. It has been proved
time and again that any amount of testing carried on the
developed product; some unknown errors noticed during the
production time. Therefore, it is necessary to undertake to
test, while distributed embedded systems are in the
production phase. [Peter H. Deussen et al., 2002] [8].
Therefore, there is a need to develop concepts and methods
using which a distributed system tested while the system is in
running mode. Online testing of distributed embedded
systems is, therefore, necessary. Online testing will help to
undertake the testing of functionality under limited time,
resources available, complex transactions that performed
between the components.

Most of the distributed embedded systems are built using
fault tolerance concepts. One of the main challenges is to find
the errors occurring while the distributed embedded systems
are in run-state. Faults can occur at any level. The faults
occurring at the PIN level normally affect the network
interfaces and the communication that is built to facilitate

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

870

communication between various distributed nodes which are
networked. Architecture is proposed [Sara Blanc et al., 2003]
[9] which consider the use of a monitor that keeps monitoring
the faults occurring at the PIN level. The monitor observes
the system behavior and also detects whether any failure has
occurred at any of the PIN.

Interconnecting the distributed embedded systems are error-
prone due to the presence of many intricate issues. Individual
embedded systems as such may be error-free and become
error-prone as they get connected to a network. Many
methods used for undertaking the automated testing to trace
out the bugs existing in the working of distributed embedded
systems. [Silvie Jovalekic et al., 2008][10] have proposed
cause and effect graphs which are time-dependent to describe
the test cases considering the distribution and real-time
properties. Tests object structure used for undertaking the
testing in-depth. They have proposed a simple language
describing test objects consisting of modules and
connections. The language enables graphical documentation
and context-sensitive protocol analysis. Symbolic
representation of received messages facilitates better
comprehension of system behavior.

Simulators also are used for Testing distributed embedded
systems, [Steven A. Walters 1994][11] has presented a
methodology for developing a simulator meant for testing a
real-time distributed embedded system. The architecture deals
with the various issue that includes reuse, expandability,
reconfigurability, and modularity. However, the simulations
model found to be inadequate for testing distributed
embedded systems as the model as such is not suitable to
handle inter-process communication and the requirement for
proper scheduling the tasks and the need for establishing
communication between concurrent tasks.

It is quite a difficult test distributed system, especially
considering the issues that include synchronization,
collaboration, concurrency, timing, and interoperability
among the concurrent tasks. Lots of time needed for
developing code required for testing a distributed embedded
system. To address this issue, T. Tsai et al., 2003] [[12] have
proposed a method that helps testing a distributed system
quite rapidly. They have used methods for modelling test
scenarios, state transitions, design, and verification patterns
ripple effect analysis, regression testing, executing the test
cases automatically.

Testing an embedded system can be carried by finding thin
threads which represent END-TO-END testing. END-TO-
END testing is an integration testing approach starting from
sensing to actuating and development of a historical database.
[Tsai W. T et al., 2003] [[13] have presented a method that
helps to carry END-TO-END testing. They have used the
concept of verification patterns used for undertaking testing.
But this approach has not been applied for testing distributed
embedded systems.

A massive number of individual embedded systems were
tested together for reducing the time required for testing.
[Yanfang Wang et al., 2010] [14] has used a master-slave
system in which a PC used as a HOST for undertaking the
testing. RS485 networking used for undertaking mass device
testing. The arrangement used for undertaking individual
device testing and not used testing of distributed embedded
systems itself.

One can use a logic Analyzer for testing proper working of
the hardware of an embedded system by connecting probes to
the junction points exposed from embedded systems.
Commands are sent to a Logic Analyzer so that the LA does
the testing required and forward the test results back to the
PC. [David E. Simon, 1999] [15] presented a method using
which testing of an embedded system carried with the help of
a Logic Analyzer. The testing using logic analyzers carried
either is static or timing mode. The way the testing of an
FPGA based board, signal integrity and memory devices
using Logic analyzers has been presented by [Tektronix,
2006] [16] in their white paper,

Kyeongjoo Kim et al., [17] have presented, an analysis of
streaming the data flowing across the systems presented,
which viewed as the basis for proper data flow across the
network. Sasi et al., [18] has presented a gaming system
which used for testing an embedded system

Many frameworks have been presented in literature for the
development of either stand-alone embedded systems or
distributed embedded systems. The frameworks presented in
the literature includes Component Frame work [18], Rapid
Application development [19], Scalable analysis and design
of system-wide graceful degradation of distributed embedded
systems [20], scheduling and optimising distributed
embedded systems[21], and development of Hard Real time
distributed embedded systems

A framework has been presented that can be used for
diagnosing the faults occurring in distributed embedded
systems. Model based diagnosis architecture is presented by
Gregory Provan et al. [22] which considers distributed sub-
systems connected through a Graph. The model computes
both local minimum diagnosis and Global diagnosis. The
authors focus on to find what errors have happened instead
of testing whether the system is properly developed and
functions properly as per the functional requirements.

Furthermore contributions have been in presenting the
frameworks that are related to Building Time components
[23], developing frameworks that are related to development
of real-time distributed embedded systems [24], Frameworks
relating to either security aware or building security [25]
A novel method has been presented by [J.K.R Sastry et al.,
2015] [26] for networking different heterogeneous embedded
systems through RS485 and bus-based serial communication
system. One of the computing node connected to the network
behaves like a master having full access and control of the
bus.

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

871

[J.K.R Sastry et al., 2015] [27] have proposed an efficient
method of networking heterogeneous systems using I2C
communication system. All issues related to networking,
including synchronization, timing, arbitration, design of data
packets, etc. presented in this paper. [Sastry et al., 2015] have
addressed the design of USB based network for connecting
heterogeneous Microcontroller based system, design of
specific communication system as required by the distributed
embedded application, address allocation to the salves and
configuring the slaves through descriptors for making them
adaptable for the implementation of distributed embedded
application. The designing of the messages and controlling
the flow of messages across the distributed Microcontroller
based system has been presented considering a distributed
embedded system that monitors and controls temperatures
within a Nuclear reactor system.

Networking of a distributed embedded system is achieved
through networking using the CAN-based communication
system, which is a BUS based serial communication system.
Every communication system requires that messages
communicated in a specific sequence. The application
requires the transmission of messages in a specific sequence.
Both message systems must be combined to arrive at a
composite communication system. [Sastry et al., 2015] have
presented a novel method using which an arbitration method
that takes message flows into account has been presented,
leading to efficient communication using CAN-based
communication system.

Protocols specify the way the messages must flow using the
data packets of different types. Applications require the flow
of messages in a proper sequence and order. A mapping
method is requited that ensure the movement of application-
specific messages while following the way a protocol dictates
the flow of messages.[Sastry et al., 2017] [28] have proposed
a method of organizing the movement of application-specific
messages without

[K. Chaitanya et al., 2018] [29] have presented the way
testing of a distributed system carried when networked using
CAN protocol and using the scaffolding method for testing.
They have also presented a method [30] of testing a
distributed embedded system using networked through an
RS485 network and using the scaffolding method for
undertaking testing of the distributed embedded system.

[Chaitanya et al., 2017] [31] have proposed a method using
which testing of a distributed system can be undertaken
using assert macros to find the existence of the required
environment for undertaking specific embedded processing.
Assert Macros are inserted into the code dynamically either
through the established pointers or through an interactive
process. Macros are generated based on test scripts, and the
same inserted into the embedded application as in-line code.
Instruction set simulators used by [Chaitanya et al., 2017][32]
for testing embedded systems, especially testing for
throughput and response time while simulating the hardware
devices which meant for carrying Input/output. [Chaitanya et

al., 2017][33] have used instruction set emulator for
undertaking the testing the functioning of the Hardware and
software considering the Target with the test cases initiated
from HOST. Logical analyzers have been used by [Chaitanya
et al., 2018] [34] for testing the proper functioning of the
hardware. The testing of the proper functioning of the
hardware is undertaken by Logic analyzers, which fed with
the test cases initiated from HOST.

[K. Chaitanya et al., 2018] [35] have presented the way
testing of a distributed system carried through the different
testing method by using a repository of master test cases and
integrating them. [Chaitanya, 2013] [36] have explained the
complications of Embedded Systems that can occur in
Agriculture Technology by using a Customized Software. A
frame work proposed by Chaitanya et al. [37] based on the
process flows that happen within a framework which can be
used for undertaking testing of distributed embedded systems.

4. INVESTIGATIONS AND FINDINGS

Testing Distributed embedded systems is complicated.
Several test components, connectivity with external devices,
simulators, process flows, system integration is required.
Entire distributed embedded system must be in working
condition to enable testing. The proper working of
communication system is essential. Testing considering
entire distribution is complicated as interworking of testing
gadgets connected to the distributed embedded system is
complicated. Different work flows have to be followed for
undertaking testing of different types. For instance the fork
flows to be followed for testing using Scaffolding method is
different from the workflow to be used for testing through In
circuit emulators

Distinct and different components are to be used for
undertaking testing distributed embedded systems. The test
components must be integrated and formed into a framework
which can be used for undertaking testing of any distributed
embedded system.

The testing framework must include processes that can be
used for extracting the test cases from functional
specification of typical distributed embedded system,
decomposing the test cases logically such that the test cases
be tested using a specific method and selection of a specific
embedded system at which testing must be undertaken.

A specific environment is required for undertaking testing of
the embedded systems. The testing framework must include
process that helps establishing the test environment required
for undertaking actual testing of the embedded systems.

Different workflows are followed for undertaking testing
using the methods such as testing through scaffolding, assert
macros, Instruction set simulator, in-circuit emulator and
Logic Analyser. The framework must have a component that
supports different workflows needed for undertaking testing
of distributed embedded systems.

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

872

An integrator is required for integrating test results and the
test results that reflects the overall testing of distributed
embedded systems is required.
Considering the complexity of testing involved, testing
distributed embedded system manually is not possible. A
framework that automates various processes that can be used
for testing any of the distributed embedded system is
required.

A novel framework is developed that has all the stated
processes, components and workflows. The framework is
shown in Figure 1.0.

The framework includes the following segments.

1. Accessing the test requirements, decomposing the
test cases such that testing can be done using a
specific method and at a allocations

2. Environment setting
3. Mapping Test cases with the required test

environment and generation of test scripts
4. HOST based Application code management
5. Testing through Scaffolding
6. Testing through Assert Macros
7. Testing through Instruction set simulator
8. HOST based Test Application Management
9. Testing Hardware through Logic Analyzer
10. Target Based Application code Management and

Testing through In-circuit Emulator
11. Test Result integrator and Audit Trail developer

4.1 Generating test cases

No formal methods till now exist to automatically generate
the test cases that can be used for undertaking the testing of
the distributed embedded systems. Test cases are to be
generated manually using the functional specification of the
application system. An interactive GUI can be used for
generating the test cases at system level. An interactive GUI
can also be used for decomposing the System level test cases
elementary test cases such that a test case can be tested using
a single method and at a specific location. The framework
flow related to generation of test cases is shown in Figure 2.

Test methods includes the methods used for undertaking
testing that comprise testing through scaffolding, Assert
macros, Instruction set simulator, In-circuit emulator and
Logic Analyzer and any other method that the user might
like to add. Test locations are the individual embedded
systems at which testing must be undertaken. The
decomposition of the master test cases and mapping to test
methods and test locations can be undertaken using a ladder
diagram. The master cases are serial numbered and
decomposed test cases are also numbered as an extension to
the master test case serial number thus making a link
between the decomposed test cases and master test case.
Each of the decomposed test cases is mapped to a testing
method and the location where the testing should be

undertaken. The mapping can be done using interacting GUI
based ladder diagram.

4.2 Setting Environment

Environment setting implies the commands and command
line arguments that must be used for communicating between
the test processes. Environment testing also is related to the
function sequences that must be called to facilitate testing
using the test cases. The function code sequences that must
be executed when testing is to be carried are generated so
that the same can be mapped to test cases subsequently. The
framework segment related to setting environment for
undertaking testing is shown in Figure 3.

Capture Functional
Requirements

Test Case Decomposition

Map Elementary test
cases to Locations and

Test methods

Capture Testing
Requirements

Test
Locations

Test
Methods

Figure 2: Generating test cases mapped to test methods and

Locations

Arguments

Maintain
Arguments

Arguments

Commands

Maintain
Commands

Commands

Map Commands to
Arguments

Source Code
Management

Module

Generate Function
List

Generate Function
List sequence

Generator

Source Code

Function List

Function List

Test Mmethods

Maintain test
Methods

Test Locatioons

Maintain test
Locations

Figure 3: Framework for Environment setting

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

873

Commands indicated the type of testing to be carried.
Command Line arguments are the inputs that must be fed for
undertaking testing also the output variables into which the
test results must be stored. Users can interact with the
framework component and set the environment required for
undertaking testing as per their requirement.
The user defined test methods and Test Location are
maintained through USE of a Graphical Interface and storing
the contents in a database

4.3 Mapping test cases to test environment

The test cases are to be mapped with its related commands
and command line arguments which represents the test input
and expected test results. A separate segment of the
framework achieves this objective. Figure 4 shows the
required framework segment. Test scripts are generated for
each of the test case, which contains the test case, command
representing the test cases, input and output arguments. From
now on words test scripts represents the test cases that can be
presented as input to the processes that actually carries
testing and produce test results.

4.4 Host based Application code management

Host implies PC side of computing. The firmware code
needs to be updated with additional code components that
are required for undertaking testing. A code component
called parser needs to be added which is responsible for
reading test case, test data, assign the test data to internal
variables and also responsible for calling functions in a
sequence that contribute to executing the test case.

The firmware source must also be updated to cater for testing
using scaffolding methods especially to comment hardware
dependent code. The firmware source code needs to be added
with macros for undertaking environment testing that is
required for proper working of different segments of the
system. The host based application code management is
shown in the Figure 5.

Map Elementary test
cases to Locations
and Test methods

Test
Locations

Test
Methods

Test Script
Generator

Environmental
Setting

Figure 4: Mapping test cases to test environment

Source
Code

HOST based Application
Code Management on PC

side
(Update, complile, Link

and Generate Image) and
Execute

Test script
Function code

generator
Test Script Generator

Environmental
Setting

Testing distributed
Embedded System

Generate
Assert Macros

Additional
Code

Elements

Figure 5: HOST based Application management

The PC side application code management component is
responsible for maintaining the source code, make changes
to the code and add software components required for
undertaking the testing.

This component also have functions required to update the
code, link with library and compile the same and produce an
image that can be executed.

The parser code is responsible for undertaking testing. Each
test case is tested by calling the related functions in a specific
sequence. This component fetches the sequence of functions
to be called for undertaking testing relevant to a test case and
includes the same within the parser code. The association
between a test case and sequence of functions to be called is
established as a part of environment setting

4.5 Testing through Scaffolding

Testing through scaffolding can be undertaken once the
application management on the HOST is complicated.
Testing through Scaffolding is undertaken at each of the
distributed embedded system. The HOST based application
management module will be installed on all the distributed
embedded systems and the application is initiated for
execution through a separate Module “Testing distributed
Embedded System” which is designed to centrally manage
the entire testing process. The Framework segment used for
testing using scaffolding method is shown in Figure 6. The
HOST based application reads the test script one after the
other and the test results are sent are written to a data base
resident on the HOST.

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

874

HOST based
Application Code

Management on PC
side

(Update, complile,
Link and Generate

Image) and Execute

Test Script
Generator

Testing distributed
Embedded System

Test Result
Integrator

Figure 6: Framework for testing through Scaffolding

4.6 Testing through Assert Macros

Testing through Assert macros can be undertaken once the
application management on the HOST is complicated.
Testing through Asset macros is undertaken at each of the
distributed embedded system. The HOST based application
management module will be installed on all the distributed
embedded systems and the application is initiated for
execution through a separate Module “Testing distributed
Embedded System” which is designed to centrally manage
the entire testing process. The Framework segment used for
testing using Assert macros method is shown in Figure 7.
Assert macros are the test cases and therefore there is no
need for the HOST based application to read the test cases.

HOST based
Application Code

Management on PC
side

(Update, complile,
Link and Generate

Image) and Execute

Testing distributed
Embedded System

Test Result
Integrator

Figure 7: Framework for testing through Assert Macros

The HOST based application is executed and the test results
are written to a database resident on the HOST

4.7 Testing through Instruction set simulator

The framework relating to testing through Instruction set
simulator is shown in the Figure 8. The testing process is
initiated through centralised component that manages entire

testing process. Instruction simulator reads the source code
instruction by instruction related to the functions that must
be executed which are related to a specific test case. The
Instruction stimulates the execution of the source code as if
the execution is done on target Micro Controller. The test
results are stored in a Database existing on the HOST.

Test Result
Integrator

Test Script Generator

Testing distributed
Embedded System

Test script
Function code

generator

Instruction Set
SimulatorSource code

Environmental
Setting

Figure 8: Framework for testing distributed embedded
systems through instruction set simulator

4.8 HOST based Test Application Management

A separate application is built on the HOST which is used
for undertaking testing using logic Analyser and In-Circuit
emulators. The application communicates with the Logic
Analyzer and the In-Circuit emulator for submitting a test
case and receives the test results which are written to a
centralised database. The frameworks design for developing
a HOST based application used for undertaking testing using
logic analyser and In-Circuit emulator is shown in Figure 9.

HOST based Test
Application for

testing

Source for Testing
with Logic Analyzer

and In Circuit
Emulator

Library

Compile, Link, Load

Figure 9: Framework segment for development of HOST
based application used for undertaking testing using Logic

Analyzer and In-Circuit emulator.

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

875

4.9 Testing Hardware through Logic Analyzer

Figure 10 shows the framework segment that deals with
testing hardware using a Logic Analyzer. Logic Analyzer is
interfaced with the target using probes. The central
application triggers the HOST based application when
testing using Logic Analyzer is required. The HOST based
application reads the test cases and sends commands to
Logic Analyzer for undertaking testing and making available
test results which are stored in a centralised database.

Logic Analyzer Code

HOST based Test
Application for testing Test Script Generator

TARGET EMBEDDED SYSTEM

Testing distributed
Embedded System

Test Result Integrator

Figure 10: Framework Segment for testing through Logic

Analyzer

4.10 Target Based Application code Management and
Testing through In-circuit Emulator

The framework related to testing through In-Circuit emulator
is shown in figure 11.

The target code is added with the test components and a new
application is developed and loaded into the Target Machine
through a separate interface. The centralised component
triggers a HOST based application for undertaking testing
through In-Circuit Emulator. The Host based application
reads a test script, forwards the same to the target which then
undertakes testing and the test results are sent back to the

HOST based Application which then stores the test results in
a Centralised database.

Traget Code

Application code
Management on Target
side (Update, Compile,

Link, prepare and
Migrate Image)

Test
Components

HOST based Test
Application for testing

Testing distributed
Embedded System

Test Result Integrator

Test Script Generator

Figure 11: Framework Segment for Testing through In-

circuit Emulator

4.11 Test Result integrator and Audit Trail developer

The Framework segment that processes the final test results
is shown Figure 12. The central component triggers the Test
result Integrator component for combing and integrating the
test results that have been written into a centralised database
by the individual centralised test components that are
resident on different distributed embedded systems. The
integrated test results then are processed to find the
reliability of the system

Test Result Integrator

Audit Trails

Testing distributed
Embedded System

Figure 12: Framework segments for integrating test results
and conducting Audit trail.

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

876

5. CONCLUSION

Testing Distributed embedded system is complicated as it
involves testing at individual locations and also considering
entire system as whole.

The testing of distributed embedded systems involves setting
testing environment, generation of test cases and creation of
test scripts, source code management on the HOST and
source code management on the target. Several framework
components are required for undertaking different kinds of
testing carried through methods such as Scaffolding, Assert

macros, Instruction set simulators, Logic Analyzer and In-
circuit Emulator. Framework components also are required
for testing both hardware and Firmware. The test results
obtained at different locations have to be collected and
collated at one place so that the same can be integrated and
system level test results are produced.

Testing distributed embedded systems requires a framework
that can be adapted for testing any type of distributed
embedded systems.

REFERENCES

1. Chen-Huan Chiang, Paul J. Wheatley, Kenneth Y.
Ho, Ken L. Cheung, Testing and Remote Field
Update of Distributed Base Stations in a Wireless
Network, IEEE Conference Publications, 2004, page
no.711-718

2. Dae-Hyun Kum, Joonwoo Son, Seon-bong Lee and
Ivan Wilson, Automated Testing for Automotive
Embedded Systems. IEEEConference Publications,
2006, page no. 4414-4418

3. Eric Armengaud, Andreas Steininger, Efficient
Stimulus Generation for Testing Embedded
Distributed Systems -The Flex Ray Example, IEEE,
2005, page no.763-770

4. G. Walters, E. King, R. Kessinger, R. Fryer.
Processor design and implementation for Real-Time
Testing of embedded systems. IEEE Conference
Publications, vol.1, 1998

5. H. Thane, Real-Time Res. Center, Malardalen Univ.,
Vasteras, Sweden, H. Hansson, Towards systematic
testing of distributed real-time systems, Real-Time
Systems Symposium. Proceedings. The 20th IEEE,
1999, page no.360-369

6. J. Russell Noseworthy. The Test and Training
Enabling Architecture (TENA) —Supporting the
Decentralized Developmentof Distributed
Applications and LVC Simulation. IEEE Conference
Publications, 2008, page no. 259-268
https://doi.org/10.1109/DS-RT.2008.35

7. Pei Tian, JianchengWang, HuaijingLeng, Kai Qiang.
Construction of Distributed Embedded Software
Testing Environment. IEEE Conference Publications,
vol.1,2009, page no. 470-473
https://doi.org/10.1109/IHMSC.2009.125

8. Peter H. Deussen, George Din, Ina Schieferdecker,
An online Test platform for component-based
systems. IEEE Conference Publications, 2002, page
no.96-103

9. Sara Blanc, Pedro. J. Gil. Improving the multiple
errors detection coverages in distributed embedded
systems. IEEE Conference Publications, 2003, page
no. 303-312

10. Silvie Jovalekic, Bernd Rist, Test Automation of

Distributed Embedded Systems based on Test Object
Structure Information, IEEE Conference Publications,
2008, page no. 343-347
https://doi.org/10.1109/EEEI.2008.4736543

11. Steven A. Walters, Practical Techniques for
Distributed Real-time Simulation. IEEE Conference
Publications, vol.2,1994, page no. 890-896

12. Tsai W. T., R Mojdehbakhsh and F. Zhu, Ensuring
Systems and Software Reliability in the Safety-
Critical Systems, IEEE ASET 98, Dallas, Texas,
March 1998, page no.48-53

13. W. T. Tsai, L. Yu, A. Saimi. Scenario-Based Object-
Oriented Test Frameworks for Testing Distributed
Systems. IEEE Conference Publications,2003, page
no.288-294

14. Yanfang Wang, Wandui Mao, Jinying Li, Peng
Zhang, Xiaoping Wang, A Distributed Rectifier
Testing System Based on RS-485. IEEE Conference
Publications, 2010, page no. 779-781
https://doi.org/10.1109/ICIEA.2010.5515241

15. David E. Simon, An Embedded Software Premier,
Pearson Publications, 1999, page no.313-319

16. The XYZs of Logic Analysers Primer, Tektronix, A
Logic Analyzer Tutorial part1, http://
nutsvolts.texterity.com/, nutsvolts /
200709/?folio=71&pg=71#pg71

17. Kyeongjoo Kim, Jihyun Song, Minsoo Lee, Real-
time Streaming Data Analysis using Spark,
International Journal of Emerging Trends
 in Engineering Research, Volume 6, No.1, 2018, pp.
1-5 https://doi.org/10.30534/ ijeter/2018 /01612018

18. Christo Angelov, Krzysztof Sierszecki, Nicolae
Marian, and Jinpeng Ma, A Formal Component
Framework for Distributed Embedded Systems,
Gorton et al. (Eds.): CBSE 2006, LNCS 4063, pp.
206 – 221, 2006.

19. R. Obermaisser, P. Peti, A Framework for Rapid
Application Development of Distributed Embedded
Real-Time Systems

20. Charles P. Shelton, Philip Koopman, William Nace,
A Framework for Scalable Analysis and Design of
System-wide Graceful Degradation in Distributed
Embedded Systems, WORDS03 – January 2003

21. Adrián Noguero, Isidro Calvo, A Framework with
Proactive Nodes for Scheduling and Optimizing

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

877

Distributed Embedded Systems, HAL Id: hal-
01056492 https://hal.inria.fr/hal-01056492
Submitted on 20 Aug 2014

22. Christo Angelov, Krzysztof Sierszecki, Feng Zhou,
A Software Framework for Hard Real-Time
Distributed Embedded Systems, 2008 IEEE

23. Chetan Raj1, Jiyong Park1, Jungkeun Park2 and
Seongsoo Hong, CREAM: A Generic Build-time
Component Framework for Distributed Embedded
Systems, 2008 IEEE.

24. Khaled Chaaban, Paul Crubillé, and Mohamed
Shawky, Real-Time Framework for Distributed
Embedded Systems, pp. 96–107, 2004. © Springer-
Verlag Berlin Heidelberg 2004

25. Hyunsuk Nam and Roman Lysecky, Security-
Aware Multi-Objective Optimization of Distributed
Reconfigurable Embedded Systems,
https://doi.org/10.1016/j.jpdc.2018.02.015

26. Dr. J. Sasi Bhanu, Dr. JKR Sastry, B. Sunitha Devi,
and Dr. V Chandra Prakash, Career Guidance through
TIC-TAC-TOE Game, International
 Journal of Emerging Trends in
Engineering Research, Volume 7, No.6, 2019, pp. 25-
31 https://doi.org/10.30534/ijeter/2019/01762019

27. J. K. R. Sastry, A. Suresh, and Smt J. Sasi Bhanu,
Building Heterogeneous Distributed Embedded
Systems through RS485 Communication Protocol,
ARPN Journal of Engineering and Applied Sciences,
issue. 16, vol.10, 2015

28. Sastry JKR, J Viswanath Ganesh, Sasi Bhanu J, "I2C
based Networking for Implementing Heterogeneous
Microcontroller, based Distributed
 Embedded Systems", Indian Journal of
Science and Technology, Vol. 8, Vol. 15, pp. 1-10,
2015-1
https://doi.org/10.17485/ijst/2015/v8i15/68739

29. Sastry JKR, Sai Kumar Reddy, Sasi Bhanu J,
"Networking Heterogeneous Microcontroller based
Systems through Universal serial bus," International
Journal of Electrical and Computer Engineering, Vol
5, Iss. 5, 2015-2

30. Sastry JKR, Vijaya Lakshmi Machineni, Sasi Bhanu
J, "Optimizing Communication between
heterogeneous distributed Embedded Systems using
CAN protocol," ARPN Journal of engineering and
applied sciences, Vol. 10, Iss. 18, Pg. 7900-7911,
2015-

31. JKR Sastry, T. Naga Sai Tejasvi and J. Aparna,
Dynamic scheduling of message flow within a
distributed embedded system connected through
RS485 network, ARPN Journal of Engineering and
Applied Sciences, VOL. 12, NO. 9, MAY 2017

32. K. Chaitanya, Dr. K. Raja Sekhara Rao, Testing
Distributed Embedded Systems Built over CAN using
Scaffolding Method, International Journal of
Emerging Technology and Advanced Engineering,
issue.12, vol. 8 December 2018, page no. 28-42.

https://doi.org/10.30534/ijatcse/2019/84842019
33. J.K.R. Sastry, K. Chaitanya, K. Rajasekhara Rao,

D.B.K. Kamesh, An Effective Model for Testing
Distributed Embedded Systems using Scaffolding
Method, PONTE International Journal of Sciences
and Research, issue.8, vol.73, 2017,
https://doi.org/10.21506/j.ponte.2017.8.1

34. K. Chaitanya, Sastry JKR, K. N. Sravani, D. Pavani
Ramya and K. Rajasekhara Rao,Testing
Distributed Embedded Systems Using Assert Macros,
ARPN Journal of Engineering and Applied Sciences,
2017, page no.3011-3021

35. Sastry JKR, K. Chaitanya, K. Rajasekhara Rao, DBK
Kamesh, Testing Distributed Embedded Systems
Through Instruction Set Simulators, PONTE,
International Journal of Sciences and Research,
issue.7, vol.73, July 2017, page no.353-382

36. JKR Sastry, K. Chaitanya, K. Rajasekhara Rao, DBK
Kamesh, An Efficient Method for Testing Distributed
Embedded Systems using In-circuit Emulators,
PONTE, International Journal of Sciences and
Research, issue.7, vol.73, 2017, page no.390-422

37. K. Chaitanya, JKR Sastry, K. Rajasekhara Rao,
Testing Distributed Embedded Systems Using Logic
Analyzer, International Journal of Engineering and
Technology, March 2018, page no. 297-302.

38. Chaitanya Kilaru, K. Rajasekhara Rao,
Comprehending Testing of distributed embedded
systems, International Journal of Engineering and
Technology, issue. 2.7, vol. 7 March 2018, page no.
303-307

39. K. Chaitanya, K. Rajasekhara Rao, Complication of
Embedded Systems in Agriculture Technology using
Customized Software, International Journal of
Emerging Technology and Advanced Engineering,
issue. 7, vol. 3, July 2013, page no. 368-373

40. K Chaitanya, Dr. K Rajasekhra Rao, Dr. JKR Sastry,
A Framework for Testing Distributed Embedded
Systems, International Journal of Advanced Trends in
Computer Science and Engineering, Volume 8, No.4,
July – August 2019, Pp. 1194-1227

K Chaitanya et al., International Journal of Emerging Trends in Engineering Research, 7(12), December 2019, 867 - 878

878

Capture Functional
Requirements

Test Case Decomposition

Source
Code

HOST based Application
Code Management on PC

side
(Update, complile, Link

and Generate Image) and
Execute

Test Result Integrator

Audit Trails

Test script
Function code

generator

Map Elementary test
cases to Locations and

Test methods

Capture Testing
Requirements/ Test case
generation using Existing
Combinatorial Methods

and Tools

Test
Locations

Test
Methods

Test Script Generator

Environmental
Setting

Testing distributed
Embedded System

Generate
Assert Macros

Traget
Code

Application code
Management on Target
side (Update, Compile,

Link, prepare and Migrate
Image)

Test
Components

Test script
Function code

generator

Logic Analyzer Code

Instruction Set
Simulator

Source code

Additional
code

elements

HOST based Test
Application for testing

Environmental
Setting

 Figure 1: Framework for Testing Distributed Embedded Systems

