
 R. Hamzah et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020, 137 - 141

137

ABSTRACT

This paper presents the containerization of virtualization
method that is done to execute distributed application for
smart urban farming system. Containerization is a
virtualization method for executing distributed applications
without the need of virtual machines. However, when dealing
with container downtime, a backup solution is needed to
ensure that no data lost and to ensure container is in
functioning. A container downtime might be caused by
connectivity failure or maximum CPU capacity utilization.
Therefore, a micro services-based system was developed by
leveraging on containerization technology such as Docker for
its lightweight footprint in terms of infrastructure resources
and container orchestration capabilities from Kubernetes to
enable scalability and reliability of the overall system. The
results showed that efficient data monitoring and management
with the added advantage of self-healing nature of Kubernetes
platform was achieved.

Key words: Kubernetes; IoT, Self-Healing, Smart Urban
Farming, Container

1. INTRODUCTION

Currently, the increasing awareness of organic or pollution
and pesticide-free vegetables importance can be seen in
consumers around the world. However, several factors have
been recognized as the problem that limiting consumers from
getting healthy vegetables. One of the problems is limited
land space. In fact, researchers around the world have
significantly focused on increasing productivity and reduce
the environmental footprint within a framework of urban,
indoor, climate-controlled high-rise buildings [1]. Since the

shortage of land affects the food supply that is needed to cater
the increasing population, smart urban farming is introduced
as one of the solutions. Urban farming is a concept of farming
in the city by growing food in a highly populated town. Urban
farming is not only safe [2] but it is also cost-effective to help
the urban poor to grow their own vegetables or fruit [3].

Although urban farming is becoming famous in providing
solution on many traditional farming problems, it still requires
human intervention to manage the farming, starting from
sowing to harvesting. For urban and modern style farming,
time management is quite an issue. In average, citizens in
large cities spent roughly 11 hours of commuting and working
time per day. Therefore, it is quite impossible to fully care and
maintain the urban farm. The integration of information and
communication technology (ICT) implies Internet of Things
(IoT) to help human being managing their daily task remotely
[4].

Developer has always facing several challenges when
deploying software to IoT devices. IoT devices (e.g. sensors
and controllers) are lack of powerful computing and memory
resources that limiting their abilities to process software
updates. IoT devices are used and also scattered across a large
geographic area and may encounter internet disconnection or
limited network bandwidth that making it difficult to receive
software updates. Logically, software deployment or
delivering on each of the IoT devices from one central source
is ineffective as it will take up a lot of hardware and software
capacity. Therefore, a technology that is called container is
currently being applied in IoT software development.
Container is one of the technologies that can solve this issue.
To install/maintain a container is a lot easier than setting up a
virtual machine to control all of the IoT devices. The
containers’ image registry is easy to be altered and
manipulated (i.e. when container images are updated, Docker
that is located in multiple location will downloads only the
parts of the image that have changed).

A Self-Healing Data Management Architecture for IoT

Applications: A Case Study of Smart Urban Farming on
High-Rise Buildings

R. Hamzah 1, N. Jamil1, S. K. N. A. Rahim1, A. R. M Asmuei2, M. A. Mushaimi2, M.H. M. Noor3,
H.A.Hamzah4. K. A. F. A.Samah5

1Faculty of Computer and Mathematical Sciences, University of MARA Technology , 40450 Shah Alam Selangor
Malaysia, raseeda@uitm.edu.my

2KGR Solutions, 1st Floor, Jalan Suarasa 8/4, Lake Valley, Bandar Tun Hussein Onn, Cheras, 43200, Selangor,
Malaysia, aizzadmushaimi@gmail.com

3BeePlus Agro, No 121, Jalan GunungNuang U11/18 40170 Seksyen 11 Shah Alam Selangor, Malaysia,
beepulsagro@gmail.com

4International Islamic University 25200 Kuantan, Pahang Malaysia, hairulaini@iium.edu.my
5Faculty of Computer and Mathematical Sciences, UniversitiTeknologi MARA Cawangan Melaka KampusJasin,

Melaka, Malaysia, khyrina783@uitm.edu.my

 ISSN 2347 - 3983
Volume 8. No. 1.1, 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter2181.12020.pdf

https://doi.org/10.30534/ijeter/2020/2181.12020

 R. Hamzah et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020, 137 - 141

138

Containers are packaged with all dependencies and
software for IoT applications are portable, light and secure
[5]. However, even though containers offer many advantages
in IoT software development, it cannot run from downtime
issue that usually caused by updates activities, maximum
CPU capacity utilization and internet connection problem.
The scale of the smart urban farming accommodating multiple
IoT applications also makes it difficult to monitor and
coordinate the containers running in different applications.
After-deployment maintenance is also in demand for
container-based IoT. A platform to orchestrate all these
containers along with their varying workloads, computing,
networking, and storage are needed. A manually monitored
bundle of containers are also troublesome as it requires
extra-effort and time consuming. Therefore, this work
developed a self-healing Docker containerization architecture
by using Kubernetes orchestration capabilities for a smart
urban farming that ensures containers reliability.

In this research we conducted a case study of smart urban
farming in a high-rise building which is situated in Shah
Alam, one of the large cities in Malaysia. As with other cities
across Peninsular Malaysia, Shah Alam experiences a tropical
rainforest climate according to the Köppen climate
classification [6]. Temperatures are consistent throughout the
year with an average high temperature of 31.9 °C and an
average low temperature of 23.2 °C. The city is warmest in the
month of March, and experiences heavy rains and showers
during the month of November as the northeast monsoon
moves in from October to March. The house development of
Shah Alam can be seen in several categories ranging from
terrace, condominium, apartment as well as flat. Other aspects
such as humidity and temperature also have become an issue
to grow vegetable in their house. As most of them are
working, it added more problems in the monitoring. The
President of Baiduri Apartment in Shah Alam stated that most
of them do not do farming in the house as they found that it is
hard to manage and maintain as most of them are working.
The remainder of this paper is structured as follows. Section 2
discusses the background study of system deployment
framework. The proposed self-healing data management
architecture for smart urban farming is illustrated in Section 3.
Then, we explain the results and discussion in Section 4 and
lastly concluded the research in section 5.

2. RELATED WORKS

This section presents the deployment chronology of system
starting from conventional to Kubernetes system and previous
works related to this research to illustrate the importance of
self-healing data management by using Kubernetes.

2.1 Conventional System

In the previous, applications arerunning on physical servers
and there are no resource boundaries for applications in
physical server. Hence, resource allocation issues happened.
It can cause one application to take up most of the resources
that result in other application underperformed. Researchers
has found a solution to run each application on different

physical server [7]. However, the resources were
underutilized and costly and not scalable. In software
development, cost reduction is an important aim of any
organization [8].
2.2 Virtualized System
Virtualization is the process of transforming a layer of actual
hardware concept into virtual instance. Virtualization has
been invented since 1974 [9]. In virtualization technology,
multiple Virtual Machine (VM) can be operated on a single
physical server’s CPU that it can save a lot of hardware cost as
a set of physical resources can be viewed as a cluster of
disposable virtual machines. Each VM is a complete machine
operating all the components, including its own operating
system, over the virtualized hardware. Since VM allows
applications to be isolated between VMs, it eventually
provides a level of promising security. The information of
one application cannot be easily retrieved by another
application. Virtualization also allows better utilization of
resources and scalability in a physical server since an
application can be added or updated easily.
2.3 Container System
Multiple containers are more practical to run in isolation on a
host Operating System (OS). This is one of the advantages of
container system as it can reduce the faults damage and
maintenance as if one container down, it will not affect the
other. This isolation function can be provided by the
container-based technology where multiple individual
containers shared single OS. The root file system that is
needed on each container is independent to each other and
they can share binaries and libraries system safely. Based on
the lightweight architecture of container-based virtualization,
containers offer several advantages over virtual machines
such as high performance, resource efficiency, and agile
environment. As a result of these advantages, containers have
been adopted in the Information Technology (IT) industry in
areas such as cloud data centers, mobile systems, and
networks [10].

Although container system provide usefulness in the IT
technology that can be seen in a lot of IoT applications,
developers need to ensure each container that contains
applications are always run without downtime. When a
container down, developers need to troubleshoot and find the
root cause of the downtime. There are two (2) possibilities of a
downtime container that are: (1) application break or/and (2)
high software and hardware utilization. If the downtime is
causes by application break, the coding need to be fixed.
However, if the downtime is causes by a high utilization, the
container needs to be replicated manually. An alternative way
needs to be figured out on ensuring a backup container for a
down container and it is really good if it can be done
automatically.

2.4 Kubernetes-Container System
A Kubernetes-container technology come into handy to solve
the downtime issue of containers. Kubernetes is a framework
that can offer service discovery and load balancing. Figure
1shows an architecture of Kubernetes cluster.

 R. Hamzah et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020, 137 - 141

139

 Figure 1: Kubernetes Cluster Architecture

3. PROPOSED SELF-HEALING DATA
MANAGEMENT ARCHITECTURE

In this section, the architecture of proposed self-healing data
management architecture of using Kubernetes is discussed.
Prior to that, the requirements involved in this research
regarding the space and system is presented.

3.1 Requirement of smart urban farming of a high-rise
building

High Rise Building Farming Space Requirement
i. Farming kit can be placed anywhere regardless the source
of the natural sunlight as long as it is exposed to some source
of light (e.g. light bulb)
ii. Source of light is needed to store the energy in the battery
so that it can be used to provide power to all sensors and
controllers

System Requirement
i. System or application that is always up and running and run
normal without breakdown.
ii. Continuous monitoring mechanism that can ensure the
system runs in a normal behavior and can reports any
abnormalities of the system
iii. Restore mechanism to ensure system back to normal
functionalities without external assistance

3.2 Design of proposed self-healing data management
architecture

The proposed self-healing data management architecture is

shown in Figure2. In overall, the architecture is partitioned
into hardware (i.e. shelf, sensors, controllers, solar and 3G sim
card), and software (cloud, web applications and mobile
application). First of all, the input sensor will detect and

readthe physical parameter.
The analog digital converter (ADC) will then converts the

analog electrical signal into a digital signal. A
micro-computer that will publish the signal received from
ADC and react according to the instruction received from IoT
Cloud. In the cloud programming, an infra is created that
consists of Kubernetes and database (dB) clusters. The A
protocol is used to send data from all the devices to the cloud
which is MQTT protocol that is based on publish or subscribe
(pub/sub) model. All of the data received is stored in a
database.

In the cloud, a MQTT broker is ready to receive the sending
data of the devices to be filtered and published to the
subscriber. Then, data acquisition system is used that implies
set of functions to control the whole system based on the set
rules and schedules. A web interface that extend the control of
the system to admins and users and mobile application for the
user to manage their own devices is also created. The database
cluster is separated from the Kubernetes Cluster to avoid
single point of failure. For future, the application can be easily
updated without affecting the database.

The components of the Smart Urban Farming that involve
in the replication mechanism of Kubernetes is proposed as in
this research as shown in Figure3. In overall there are three
elements involved which are Kubernetes dashboard that is
used to setup and monitor Kubernetes, Master which is used
as a scheduler, controller manager and API server, and
Worker 1 and 2 which is the location of pods that contains
containers.

The worker 1 and 2 has 1 vCPU and 2 GB memory each.
The choice of Worker 1 and 2 is after considering the amount
of data received from devices which is adequate to be catered.
The specification of each worker is based on resources that is
needed of the application that need to deploy. An alert policy
is set up at the provider site to notify us when the data supplied
is near to the threshold.

 R. Hamzah et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020, 137 - 141

140

Figure 2: Smart Urban Farming Architecture

4. RESULTS AND DISCUSSION

This section presents the results gathered from the
experiments as shown in Table 1.It shows that,
Kubernetes will allocate new container for MQTT
broker to ensure workload will be well-distributed. Once
the allocation is done, the container will be instantiated
by pulling image container for MQTT broker (Emqx).

Finally, the emqx-container starts its function. This is
known as pod instance in Kubernetes deployment. The
configuration was done by using Horizontal Pod
Autoscaler (HPA). One of the needs for pods replication
configuration is “targetCPUUtilizationPercentage”. For
demonstration purpose, “targetCPUUtilization” value is
set to 30%, 65%, 75%, and 90%. It is observable that

Figure 3: Proposed Replication Mechanism of Kubernetes for Smart

Urban Farming

Kubernetes dashboard

Monitoring
Pod
replication Resource provisioning

Master

API server

Scheduler
Controller
Manager etcd

Worker #1
Docker MQTT broker cluster

Kubelet

Pod

Data acquisition system Mobile apps

Web apps

Docker MQTT broker cluster

Kubelet

Kub Proxy

Pod

Data acquisition system
Mobile
apps

Web apps

Worker #2

Kub Proxy

 R. Hamzah et al., International Journal of Emerging Trends in Engineering Research, 8(1.1), 2020, 137 - 141

141

when there are too many data requests, when the CPU
utilization increased to 90% it activates and triggers to
create new pod automatically. Based on observation,
Kubernetes is used to scale in/out depending on the
volume of data request/transaction received. This is
done based on new pods creation when a certain
threshold is triggered (in our case CPU utilization). It
means that when volume of data requests increase, the
number of pods will increase as well to handle the load.
This can be resource intensive because we require a
bigger size of Kubernetes cluster initially. However, to
control this aspect (for economic reason), we can make
the pod instance to be more efficient in handling
transactions, simply by using optimized (low level)
language for our program.In our case, initially we use
python but it is not able to handle huge load and requires
more pods to be spun up. But we already switched to

Golang which is a more optimized and
high-performance language. Hence, each pod is able to
handle a larger number of requests and overall number
of pods required in the Kubernetes cluster can be
significantly reduced. From development perspective,
coding in python is much simpler and faster, however
resource can be intensive (e.g. Kubernetes cluster size).
Another option is to implement a high performance
Golang language. Despite its complex language
structure compared to Python and requires more control,
the resources can be optimized which is an added benefit
to this research and other IoT application development.

.

Table 1: CPU utilization experiment on new pod creation

CPU utilization New pod creation trigger

30% No
65% No
75% No
90% Yes

5. CONCLUSION
This paper presents the self-containerization that can ensure
the data availability and functioning system at the user side.
The main objective is to evaluate the effectiveness of
self-healing data management of Kubernetes in dealing with
downtime error. It shows that, when the CPU utilization hit
the CPU utilization that was set, a new pod is produced. In
comparison, this self-healing data management is helpful to
solve the downtime error automatically. Conventionally, the
system needs human availability to overcome the situation.

ACKNOWLEDGMENTS

We would like to thank the Ministry of Higher Education of
Malaysia and University of MARA technology (UiTM) Shah
Alam for sponsoring this research under
600-IRMI/FRGS-RACER 5/3 (081/2019) grant.
REFERENCES
1. N.V. Fedoroff. Food in a future of 10 billion.

Agriculture & Food Security, 2015, 4(1), pp.1-10.
2. K. Benke,&B. Tomkins. Future food-production

systems: vertical farming and
controlled-environment agriculture,Sustainability:
Science, Practice and Policy, 2017, 13(1), 13-26.

3. S. Golden.Urban Agriculture Impacts: Social,
Health, and Economic: A Literature
Review,University of California, 2016.

4. A. Siegner, J. Sowerwine, &C. Acey. Does urban
agriculture improve food security? Examining the
nexus of food access and distribution of

urbanproduced foods in the United States: A
systematic review,Sustainability, 2018, 10(9), 2988.

5. C. Kerang, H. Lee, and H. Jung. Task Management
System According to Changes in the Situation
Based on IoT, Journal of Information Processing
System, Vol.13, No.6, pp.1459-1466, December 2017.

6. S. Muralidharan, G. Song, &H. Ko, H. Monitoring
and managing iot applications in smart cities using
kubernetes, CLOUD COMPUTING, 2019, 11.

7. P. J. Armington. Systems and methods for migrating a
server from one physical platform to a different
physical platform, US7769720B2 A1, United States
Patent and Trademark Office, 12 January 2006.

8. W. Vogels. Beyond server consolidation, Queue,
2008, 6(1), 20-26.

9. R.P. Goldberg.Survey of Virtual Machine Research,
Computer, June 1974, pp. 34-45.

10. K.Lee, Y. Kim, & C. Yoo, C. The Impact of
Container Virtualization on Network Performance
of IoT Devices, Mobile Information Systems, 2018.

