
Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6254


ABSTRACT

The ecosystem of the Internet of Things is a set of physical
devices such as sensors and actuators. It includes a set of
servers and gateways that provide connectivity. These devices
can be installed at three levels: the edge level, the fog level,
and the cloud level. Applications that monitor things and
collect data from sensors are deployed at the edge, fog, and
cloud levels. These applications can be containerized and
deployed in different devices by Docker, which takes
advantage of its advantage to create executable containers that
are isolated from each other. This paper presents a generic
Meta-model of the Internet of Things ecosystem based on
microservices and supported by Docker as a containerization
tool, Ansible as a monitoring tool and Kubernetes as scaling
tool. This Meta-model allows us to generate a system of
connected objects that can be deployed on three levels: Fog,
Edge, Cloud. This Meta-model can be used in different types
of domains such as Smart Home - Smart City - Smart Vehicle
- Smart Health - Smart Farm - Smart Factory. The
Meta-model proposed in this article is a fusion between 5
Meta-models: Internet of Things - Microservices - Ansible –
Docker - Kubernetes.

Keywords: Model Driven Engineering, Meta-modeling,
Microservices, Internet of Things, Devops, Docker, Ansible,
Kubernetes.

1. INTRODUCTION

Nowadays, developers and designers are adopting several
technological trends in the field of the Internet of Things [1].
These technologies include microservices [2] and Devops [3].
Microservices are an architectural style in which the software
system is built with standalone components. These
components are separated from each other in terms of
business functionality and have limited granularity [4].
Devops is a fusion of two words: Development and operation.
Devops comprises the work of developers in parallel with the
work of integrators. It allows developers to control the entire
chain of integration and continuous deployment from

development, through pushing code to the built environment,
containerization and orchestration of deployed instances.
Devops culture tools are at the service of microservices.
Among these Devops tools, which participate in the assurance
of the deployment and continuous integration chain, we
mention the following: Docker [5], Ansible [6] and
Kubernetes [7].
Docker makes it possible to containerize the microservices
developed in order to ensure their portability and load
balancing between several microservice instances [5].
Ansible is an open-source DevOps [8] tool that can help the
company in configuration management, deployment,
provisioning, etc. It is simple to deploy; it uses SSH
technology to communicate between servers [9]. It uses the
playbook to describe automation tasks. Ansible participates in
the continuous deployment of the Docker Containers realized.
Playbook is a configuration in which we cite the name of
docker image to be deployed, removed, or updated.
Model-Driven Engineering allows systems to be generated
according to the designer's needs [10,11,12,13]. The objective
of this article is to propose a PIM model [14] that gathers all
the concepts that allow us to build an Internet of Things
system based on microservices and supported by the three
tools Devops Docker, Ansible and Kubernetes. Namely, a
Meta-model is presented for each of the following
ecosystems: IoT [15] – Microservices [2] - Docker [5]-
Ansible [6]. Each ecosystem is modeled as a package and then
these packages are linked together to form a global
Meta-model of the Internet of Things system based on
microservices and supported by the three tools Devops
Docker, Ansible and Kubernetes.
The deployment of containers in a microcontroller must take
into account the running performance of that microcontroller.
Among the microcontroller performance indices is scalability.
Kubernetes offers a solution for self-scalability of Docker
containers in a microcontroller. According to kubernetes.io
Kubernetes is an extensible and portable open-source
platform for managing workloads and containerized services.
It supports both declarative configuration writing and
automation. It is a large and rapidly growing ecosystem.
Kubernetes services, support and tools are widely available.
Kubernetes has a number of features. Kubernetes provides a
container-centric management environment. It orchestrates

Devops and Microservices Based Internet of Things

Meta-Model
Badr El Khalyly, Abdessamad Belangour, Allae Erraissi, and Mouad Banane

Laboratory of Information Technology and Modeling, Hassan II University, Faculty of sciences Ben M’Sik,
Casablanca, Morocco

Emails: badrelkhalyly92@gmail.com, belangour@gmail.com, erraissi.allae@gmail.com,
mouadbanane@gmail.com

 ISSN 2347 - 3983
Volume 8. No. 9, September 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter217892020.pdf

https://doi.org/10.30534/ijeter/2020/217892020

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6255

the computing, networking and storage infrastructure on the
users' workloads.
This Meta-model can be used in different domains [16,17,18].
The fourth section talks about improving the Internet of
Things Meta-model. The fifth section talks about a
Meta-model enhancement of microservices. The sixth section
talks about a proposed Meta-model for the Docker
containerization system. The seventh section discusses a
proposed Meta-model for the Ansible monitoring system. The
eighth section talks about a proposed Meta-model for
Kubernetes. The nineth section merges these Meta-models
into a Meta-model for a microservice-based Internet of Things
system supported by the three tools Devops Docker, Ansible
and Kubernetes.

2. RELATED WORK

It is in the field of software engineering that the problem of the
expression of executability in meta-models has been studied
in depth, thanks in particular to the development of the IDM
approach. Indeed, since IDM is fundamentally based on the
extensive use of models in all phases of software
development, the question quickly arose of how to execute a
model and how to express the executable semantics of that
-this. In [19], a first reflection on the link between meta-model
and the expression of the executability of models was made on
Petri nets. The authors supplement the static meta-model
which describes the fixed structures in a model (arcs and
transitions in a Petri net), by a dynamic meta-model that
describes the data structures necessary during the execution of
an instance of this model (markings and token movements).
The authors recognize however that this addition is not
sufficient to express all the executability, because the
formalism used (UML class diagram) does not itself have
executable semantics, and they thus call for the creation of an
Executable UML. And it is probably as a result of these
preliminary reflections on the expression of executability that
the Kermeta language was developed [20]. Kermeta
complements UML meta-diagrams in the form of a directly
operational meta-specification. Combined with the principle
of dynamic meta-classes introduced previously [19], this
approach makes it possible to construct a complete
meta-specification for a model. The Kermeta language has so
far been used to construct a complete and executable
description of a simple model, that of the finite state machine
[21], and tested in the context of embedded software systems
to specify meta-models of UML 2.0 in Kermeta [22]. Other
work in the software engineering and IDM community has
focused on engineering process models (called software
process models), given the importance of describing,
controlling, and automating the procedures with which
software systems are built. An important work in this register
is that around UML4SPM, which defines an engineering
process modeling language which is based on UML and close
to the OMG SPEM model [23], [24]. Several experiments are
made to specify the semantics and express the executability of
this language: first, using the BPEL business process

execution language [25], and then using the Kermeta
meta-specification language [26]. For these two approaches,
the issue of interaction with the outside world (the user or
other systems) is underlined as that which distinguishes the
two approaches. Despite several advantages (notably the
existence of reliable technical systems for the execution of
BPEL models), the use of BPEL is not considered satisfactory
because of the absence of concepts to take into account the
interaction with the user. Other research, more oriented
towards the comparative study of approaches, completes this
work around the executability of a process model [27, 28].
In the field of IS engineering and that of method engineering,
in particular, few works to our knowledge have addressed the
question of the explicit expression of executability in a
process meta-model. The definition of a method being the
combination of a product meta-model and a process
meta-model, the product specification is historically the
oldest. [29] Regarding the process, it is the approach by
assembling methodological components that are the most
used. In [30], the language MEL1, a formal language for the
specification of methods, is proposed. Apart from the
structural specification of the components, the process aspect
is described in MEL as formal operators whose semantics are
guaranteed by the underlying mathematical notation.
This approach by assembling methodological components
currently remains predominant [31], however, we wonder
about the models used to formalize the approach, to specify
the content of a methodological component, and to express the
assembly process [32]. Finally, a new research perspective in
this sense is that of defining the methodological components
as being services [33].
A methodological component is directly executable since it is
a service that is written with SOA standards, while the
composition of services is expressed informally at a high level
of abstraction using intentional Map. Banana et al. [34]
proposed a metamodel of Hive [35] and Spark [36], as well as
another metamodel [37] of MongoDB query language. The
IoT is responsible for the collection and / or creation of a large
volume of data. This enormous volume of data, known by the
term "Big Data" [38,39,57,58], allows, on the one hand, to
have an incredible wealth in terms of information allowing the
offer of advanced services. On the other hand, this volume of
data creates new challenges to be considered such as securing,
processing, and real-time accessibility of this data [40,41].
To end this overview, we must mention the metalisms and
meta-modeling languages offered tools and meta-CASE type
environment. MetaEdit is a well-known and popular tool [42],
it allows you to specify a static meta-model with the GOPRR2
formalism, and immediately generate a graphic editor for the
model [43]. It is intended for the creation and tooling of new
domain-specific languages [44]. As far as the "processing"
and "behavior" perspectives are concerned, they are relegated
to the code generation phase where a scripting language
(called Merle) makes it possible to browse and manipulate the
instances of the model and to generate instructions in n ' any
target language (HTML, XML, C ++, Java, etc.). The
executable semantics is thus expressed by the transformation

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6256

of the static and non-productive structures of the model into a
set of software instructions (or components) in another
language or another model whose executability is known and
supported by a platform. target shape. While the definition of
the meta-model is done in a declarative way with a graphical
interface, the executability is expressed operationally with a
programming type interface. This is the main drawback of
MetaEdit.Another meta-modeling formalism supported by a
meta-CASE is the ConceptBase environment [45] built
around the Telos model and language [46]. Built with the
declarative logic language Datalog, ConceptBase is an
extremely powerful meta-modeling environment which
allows you to specify any number of abstraction levels and to
express constraints and requests on several of these levels
(and not on one level as in OCL). The specification is entered
verbatim, but the content of the repository is displayed
graphically at the request of the user. In terms of "processing"
and "behavior" perspectives, ConceptBase has introduced in
its most recent versions, rules of the Event-Condition-Action
(ECA) form to express the dynamics of a meta-model. An
illustration is proposed in [47] with the rules for the execution
of a Petri net.
The Meta-model of an Internet of Things system based on
microservices and supported by the three tools Devops
Docker, Ansible and Kubernetes is a fusion of four
Meta-models: Internet of Things, Microservice, Docker,
Ansible, Kubernetes.

Figure 1: Architecture of the Enhanced Fuzzy Resolution

Mechanism using ANFIS.

In the literature, there are proposals for Meta-models for
microservice ecosystems and the Internet of Things. The
authors in [48] proposed a Meta-model for the ecosystem of
connected objects. Authors in [49] proposed a PIM Level for
the microservice ecosystem.
The microservices in this model are part of the overall
microservice architecture. They are divided into two types:
functional microservices and infrastructure microservices.
Microservices use load balancers and are deployed on
containers. Microservices use service interfaces that are
published at endpoints. Microservices depend on service
operations. Data caching, storage, and asynchronous buses are

part of service operations.
In the literature, there is a lack of Meta-models for
containerization Docker, Ansible and Kubernetes.
The contributions of this article reside in:

 Improving the Meta-model of connected objects.
 Improving the Meta-model of microservices and

proposing the appropriate type of microservice for
IoT applications.

 Meta-model proposal for Docker.
 Meta-model proposal for Ansible.
 Meta-model proposal for Kubernetes.

3. CONSTRUCTING META-MODEL

First, we produce a reference framework of a given subject; it
contains important elements that should be included in the
Meta-model. Then a second step is to gather existing models
of the subject, note that the more models we gather the best is
the quality of our Meta-model. Then we analyze the concepts
using matching technics. Them, finally we optimize the
concepts in one Meta-model containing an aggregation to all
models.
The following step must be executed to build a final
Meta-model:

 Step 0: Reference Framework Definition
The reference framework definition in our case has to take
into consideration 4 fields of search.
For each field of search, we define a set of rules & concepts
that are interconnected to get as results in the relationship (Ri)
and concepts (Cj).

 Step 1: Concepts Gathering
Each ecosystem has its PIM that has its specificities that are
useful during implementation. PIMi is modeling of an
ecosystem i.

i ϵ {Docker, IoT, Ansible, Kubernetes, Microservices}
Number equations consecutively. Equation numbers, within
parentheses, are to position flush right, as in (1), using a right
tab stop.

 Step 2: Meta-model Construction
The Meta-model of an Internet of Things that is based on
microservice and supported by Docker and Ansible is an
intersection between the following PIM: PIM(IoT),
PIM(Microservices), PIM(Docker), PIM(Ansible),
PIM(Kubernetes).

4. META-MODEL OF THE INTERNET OF THINGS
ECOSYSTEM
The Meta-model of an Internet of Things that is based on
microservice and supported by Docker and Ansible is an
intersection between the following PIM: PIM(IoT),
PIM(Microservices), PIM(Docker), PIM(Ansible),
PIM(Kubernetes).
This Meta-model is an improvement of the cited Meta-model
in the state of the art [51].

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6257

Figure 2:Meta-Model of Internet of Things Ecosystem

We have added the following classes:

• Network: The network to which the controller
belongs manages the connected objects.

• GeoPlace: These GPS geographic coordinates
determine the location of a controller in an
ecosystem in order to locate them. This information
is important in some ecosystems such as those
belonging to the category: Smart Logistic - Smart
Farm.

• SensorCategory: determines the category a sensor
belongs to such as temperature, humidity, distance,
etc.

• ActuatorCategory: determines the category an

actuator belongs to such as motors, light bulbs, etc.
• Domain: Determines the domain to which the sensor

and actuator categories belong. As an example, we
have sensors that belong to the smart farm domain
such as temperature, humidity, and acidity sensors.
Also, some actuators belong to the smart vehicle
domain such as engines.

5. META-MODEL OF MICROSERVICES
ECOSYSTEM

These microservices are programs that are deployed on
machines belonging to the ecosystem [50].

Figure 3: Meta-Model of Microservice Ecosystem

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6258

We were inspired by the meta-model cited in the state of the
art. The components we used are as follows: Microservice is
part of MicroserviceArchitecture by being the main
component.
Microservices are divided into two types:
InfrastructuralMicroservice and FunctionalMicroservice.
Among the InfrastructuralMicroservice there are API
Gateway, Configuration, Registry and Discovery, Security,
Monitoring, Tracing, Log Analysis. Microservices expose
Service Interfaces that are published in EndPoint.
We have proposed types of microservices appropriate to the
ecosystems of connected objects called
FunctionalMicroservice they are divided into 3 categories:
ActuationMicroservice which is responsible for sending
commands to the actuator. SensingMicroservice which are
responsible for sensing physical quantities from sensors.
CompositeMicroservice are microservices that retrieve
information from the SensingMicroservice and perform
processing in order to make decisions to send commands to
the ActuationMicroservice.

6. META-MODEL OF DOCKER ECOSYSTEM

Docker provides containerization services and it is based on

Linux containers. Docker provides a standard runtime across
Docker Engine. It allows us to build Image format. When the
image is run in such an environment like Cloud, Fog, Edge it
is called container. Microservices are organized in the form of
containers are dedicated to being deployed on machines
belonging to the Internet of Things ecosystem.
The Meta-model of the Docker ecosystem is organized as
follows:
DockerDaemon is the docker engine that manages a set of
ControlGroup. Docker's ControlGroup manages
DockerObject. DockerObjects are divided into two types,
Image and Container. A Container is an instantiation of an
Image. An Image is stored in a DockerRegistry which can be
private or public. An Image has a set of ImageVersion
versions. The DockerFile is a file that is responsible for
creating the DockerImage in the DockerRegistry.
DockerCompose is a file that is composed of several services,
each service representing a DockerImage. DockerCompose is
responsible for deploying an application composed of several
DockerImages. The NameSpace are used to provide isolation
to the Container. Docker creates a set of NameSpace for each
Container.

Figure 4: Meta-Model of Docker Ecosystem

6. META-MODEL OF ANSIBLE ECOSYSTEM

Ansible is an open-source DevOps tool that can help the
enterprise in configuration management, deployment,
provisioning, etc. It is simple to deploy; it uses SSH
technology to communicate between servers. It uses the
playbook to describe automation tasks, and the playbook uses
a very simple language, YAML [52].Ansible is responsible
for deploying the Docker Containers on the machines. Its
Meta-model is organized as follows:Ansible’s architecture is

a Master-Slave architecture. The AnsibleMaster is the
machine that performs the administration of other machines
that are no other than microcontrollers. The machines we want
to monitor are stored in a file called Inventory. The
AnsibleMaster generates an SSHKey that it shares with the
other “microcontroller” machines to allow resource sharing
with these machines. Resource sharing and container
deployment is done through YAML files called PlayBook
[53].

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6259

Figure 5: Meta-Model of Ansible Ecosystem

7. META-MODEL OF KUBERNETES ECOSYSTEM
Depending on Kubernetes.io, Kubernetes cluster is an
orchestrated set of nodes. Kubernetes offers two types of node
is Master Node, Slave Node. The Master Node represents the
server that performs the deployment of the Pods. A Pod is the
basic execution unit of a Kubernetes application - the smallest
and simplest unit of the Kubernetes object model that you
create or deploy. A Pod represents the processes running on
your cluster. A Pod encapsulates an application Container (or,
in some cases, multiple Containers), storage resources, a
single network IP, and the options that govern how the
Container(s) should operate. A Pod represents a single
deployment unit is a single instance of an application in
Kubernetes, which may consist of either a single container or
a small number of closely coupled and resource-sharing
containers.

Figure 6: Meta-Model of Kubernetes Ecosystem

In particular, the Master Node is the server that performs the
deployments on the microcontrollers. The microcontrollers
are the Slave Nodes on which the Docker containers are
deployed in the form of Pods.

Kubernetes is responsible for the orchestration of the Docker
containers.

Cluster is a set of machines. Node is the machine on which the
Container Pods run. NonMaster is the node on which the Pods
are deployed. Master is a node that controls the NonMaster
Nodes. Pod is a group of containers deployed together.

Kubectl is a command line application to interact with

Kubernetes. Etcd is a lightweight persistent distributed
storage unit. APIServer is a REST API for communication
with internal and external components. Scheduler is a
Scheduler that allows to select which Node should run a Pod.
ControllerManager is Process in which the main Kubernetes
controllers run. Kubelet is Responsible for the execution
status of the Node. Kube-proxy is Responsible for routing
traffic to the appropriate Container based on the IP address
and port number of the incoming request. CAdvisor is Agent
that monitors and recovers resource consumption and
performance data such as CPU, memory, disk and network
usage of the Node's Containers. ReplicaSet aims to maintain a

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6260

stable set of Pods at a given time. This object is often used to
guarantee the availability of an identical number of Pods.
Deployment provides declarative updates for Pods and
ReplicaSets. Service provides network access to a set of Pods
in Kubernetes. StatefulSet is the workload API object used to
manage stateful applications and allows to manage the
deployment and scaling of a set of Pods, and provides
guarantees on the order and uniqueness of these pods. The
scaling of a set of Pods is typed according to 3 categories
Horizontal Pod Autoscaling - Vertical Pod autoscaling -
Cluster Autoscaling.

8. GLOBAL META-MODEL

The principle of this Meta-model stipulates that the
microservice is containerized using Docker (fig.7). The
Docker container is made in the form of a Pod in order to scale
it up using Kubernetes (fig.8). The Kubernetes Pods are
started in the Kubernetes Node which forms a cluster. The
cluster is created and managed by Ansible's playbooks (fig.9).
The AnsibleMaster machine monitors the existing
microcontrollers in the IoT ecosystem by sharing SSH keys
and launching playbooks to deploy the Kubernetes Pods
(fig10).

Figure 7: Communication between Microservice and Docker Ecosystem

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6261

Figure 8: Communication between Kubernetes and Docker Ecosystem

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6262

Figure 9: Communication between Kubernetes and Ansible Ecosystem

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6263

Figure 10: Communication between IoT and Ansible Ecosystem

Figure 11: Global Meta-packages

9. DISCUSSION
In this paper, we have elaborated a Meta-model which is a
fusion of 5 Meta-models: Meta-model of connected objects -
Meta-model of microservices - Meta-model of Docker -

Meta-model of Ansible – Meta-model of Kubernetes. First of
all, we improved the Meta-model of connected objects quoted
in the state of the art, this improvement will allow identifying
the domain to which the objects belong as well as the

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6264

categories of sensors and actuators, so it allows the
geographical and network identification in an Internet of
Things ecosystem. Secondly, we have realized an
improvement for the Meta-model of microservices by
providing appropriate microservices for the management of
connected objects and data processing and decision support
for the Internet of Things agents. Besides, we have developed
a Meta-model for containerization Docker, in which we have
grouped the concepts constituting an ecosystem that aims to
dock the microservices that will be deployed in objects and
machines, whether at the cloud or fog level. Also, we have
developed an Ansible Meta-model, which brings together the
components of this system and whose objective is to monitor
the containers in the machines and controllers. Finally, we
have grouped these Meta-models into a single one and
realized a dependency between the layers that are represented
by the packages. Each package represents a Meta-model. The
objective of this Meta-model is to generate an Internet system
of objects based on microservices and supported by Devops
technologies: Docker, Ansible & Kubernetes.In future works,
we will use this Meta-model to realize a model transformation
using ATL Language [54,55,56,57], and Model Driven
Engineering approach [58,59]

10. CONCLUSION
The paper talks about a fusion of 5 Meta-models: Internet of
things Meta-model, Microservice Meta-model, Docker
Meta-model, Ansible Meta-model, Kubernetes Meta-model.
We have elaborated an amelioration of the existing
Meta-model regarding IoT, we have elaborated an
amelioration of Microservice Meta-model by adding
enumerations that correspond to the Internet of Things need.
Then we have made a new proposition regarding Docker,
Ansible Meta-model and Kubernetes Meta-model

REFERENCES
1. Ashton, Kevin. "That ‘internet of things’ thing." RFID

journal 22.7 (2009): 97-114.
2. Thönes, Johannes. "Microservices." IEEE software 32.1

(2015): 116-116.
3. Bass, Len, Ingo Weber, and Liming Zhu. DevOps: A

software architect's perspective. Addison-Wesley
Professional, 2015.

4. Dragoni, Nicola, et al. "Microservices: yesterday, today,
and tomorrow." Present and ulterior software
engineering. Springer, Cham, 2017. 195-216.

5. Merkel, Dirk. "Docker: lightweight linux containers for
consistent development and deployment." Linux journal
2014.239 (2014): 2.

6. Mohaan, Madhurranjan, and Ramesh Raithatha. Learning
Ansible. Packt Publishing Ltd, 2014.

7. Kubernetes. https://kubernetes.io/. Accessed 19 Aug
2020

8. Hüttermann, Michael. DevOps for developers. Apress,
2012.

9. LIU, Bin, and Zui WANG. "Application of office
automation based on ssh framework [J]." Computer
Technology and Development 1 (2010): 39.

10. Schmidt, Douglas C. "Model-driven engineering."
COMPUTER-IEEE COMPUTER SOCIETY- 39.2
(2006): 25.

11. Erraissi, A., And Belangour, A. (2018). Data sources and
ingestion big data layers: meta-modeling of key concepts
and features. International Journal of Engineering and
Technology, 7(4), 3607- 3612.

12. Erraissi A., Belangour A. (2019) Capturing Hadoop
Storage Big Data Layer Meta-Concepts. In: Ezziyyani M.
(eds) Advanced Intelligent Systems for Sustainable
Development (AI2SD'2018). AI2SD 2018. Advances in
Intelligent Systems and Computing, Flight 915. Springer,
Ham

13. Erraissi Allae, and Abdessamad Belangour. "Hadoop
Storage Big Data Layer: Meta-Modeling of Key
Concepts and Features." International Journal of
Advanced Trends in Computer Science and Engineering
8, No. 3 (2019): 646-53.

14. Kleppe, Anneke G., et al. MDA explained: the model
driven architecture: practice and promise.
Addison-Wesley Professional, 2003.

15. Lee, In, and Kyoochun Lee. "The Internet of Things
(IoT): Applications, investments, and challenges for
enterprises." Business Horizons 58.4 (2015): 431-440.

16. Erraissi Allae, and Abdessamad Belangour.
"Meta-Modeling of Big Data visualization layer using
On-Line Analytical Processing (OLAP)." International
Journal of Advanced Trends in Computer Science and
Engineering 8, No. 4 (2019).

17. Erraissi, Allae, and Abdessamad Belangour. "An
Approach Based on Model Driven Engineering For Big
Data Visualization In Different Visual Modes."
International Journal of Scientific & Technology
Research (2020).

18. Erraissi Allae, and Abdessamad Belangour. "A Big Data
Security Layer Meta-Model Proposal." Advances in
Science, Technology and Engineering Systems Journal 4,
No. 5 (2019). https://doi.org/10.25046/aj040553.

19. Breton, Erwan, and Jean Bézivin. "Towards an
understanding of model executability." Proceedings of
the international conference on Formal Ontology in
Information Systems-Volume 2001. 2001.

20. Muller, Pierre-Alain, Franck Fleurey, and Jean-Marc
Jézéquel. "Weaving executability into object-oriented
meta-languages." International Conference on Model
Driven Engineering Languages and Systems. Springer,
Berlin, Heidelberg, 2005.

21. Online http://www.kermeta.org.
22. Koudri, Ali, Joël Champeau, and Denis Aulagnier. "Une

sémantique opérationnelle pour une meilleure
méta-modélisation." 3e journées sur l’Ingénierie Dirigée
par les Modèles, France (2007): 223-228.

23. Bendraou, Reda, Marie-Pierre Gervais, and Xavier
Blanc. "UML4SPM: A UML2. 0-based metamodel for
software process modelling." International Conference
on Model Driven Engineering Languages and Systems.
Springer, Berlin, Heidelberg, 2005.

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6265

24. Bendraou, Reda, et al. "Software process modeling and
execution: the UML4SPM to WS-BPEL approach." 33rd
EUROMICRO Conference on Software Engineering and
Advanced Applications (EUROMICRO 2007). IEEE,
2007.

25. Bendraou, Reda, et al. "Definition of an Executable
SPEM 2.0." 14th Asia-Pacific Software Engineering
Conference (APSEC'07). IEEE, 2007.

26. Bendraou, Reda, et al. "Vers l'Exécutabilité des Modèles
de Procédés Logiciels." 2008.

27. Combemale, Benoît, et al. "Expériences pour décrire la
sémantique en ingénierie des modèles." Hermes
SCIENCES/LAVOISIER, éditeur: 2ième journées sur
l’Ingénierie Dirigée par les Modèles (IDM) (2006):
17-34.

28. Combemale, Benoit, et al. "Towards Rigorous
Metamodeling." MDEIS 6 (2006): 23-27.

29. Harmsen, Frank, and Motoshi Saeki. "Comparison of
four method engineering languages." Working
Conference on Method Engineering. Springer, Boston,
MA, 1996.

30. Rolland, Colette. "Capturing system intentionality with
maps." Conceptual modelling in Information Systems
engineering. Springer, Berlin, Heidelberg, 2007.
141-158.

31. Henderson-Sellers, Brian, and Jolita Ralyté. "Situational
method engineering: state-of-the-art review." Journal of
Universal Computer Science (2010).

32. Seidita V., Ralyté J., Henderson-Sellers B., Cossentino
M., Arni-Bloch N., « A comparison of deontic matrices,
maps and activity diagrams for the construction of
situational methods », CAiSE Forum, 19th Int. Conf. on
Advanced Information Systems Engineering, Trondheim,
Norway, 11-15 June, 2007

33. Rolland C., « Method engineering: towards methods as
services », Software Process: Improvement and Practice,
vol. 14, n°3, pp. 143-164, 2009

34. BANANE, Mouad, ERRAISSI, Allae, et BELANGOUR,
Abdessamad. SPARQL2Hive: An approach to
processing SPARQL queries on Hive based on
meta-models. In: 2019 8th International Conference on
Modeling Simulation and Applied Optimization
(ICMSAO). IEEE, 2019. p. 1-5.

35. Banane, Mouad, and Abdessamad Belangour. "A new
system for massive RDF data management using Big
Data query languages Pig, Hive, and Spark."
International Journal of Computing and Digital Systems
9.2 (2020): 259-270.

36. BANANE, Mouad et BELANGOUR: A Big Data
Solution To Process Semantic Web Data Using The
Model Driven Engineering Approach, International
Journal of Scientific & Technology Research. vol. 9, no
02, 2020.

37. Banane, Mouad, and Abdessamad Belangour. "Towards
a New Scalable Big Data System Semantic Web Applied
on Mobile Learning." International Journal of Interactive
Mobile Technologies (iJIM) 14.01 (2020): 126-140.

38. A. Erraissi, B. Mouad and A. Belangour, "A Big Data
visualization layer meta-model proposition," 2019 8th
International Conference on Modeling Simulation and

Applied Optimization (ICMSAO), Manama, Bahrain,
2019, pp. 1-5. doi: 10.1109/ICMSAO.2019.8880276

39. Erraissi Allae, et Abdessamad Belangour. « A Big Data
Security Layer Meta-Model Proposition ». Advances in
Science, Technology and Engineering Systems Journal 4,
nᵒ 5 (2019). https://doi.org/10.25046/aj040553.

40. Erraissi, Allae, and Abdessamad Belangour. "An
Approach Based On Model Driven Engineering For Big
Data Visualization In Different Visual Modes."
International Journal of Scientific & Technology
Research.

41. Fatima Kalna, Allae Erraissi, Mouad Banane, Belangour
“A Scalable Business Intelligence Decision-Making
System in The Era of Big Data” International Journal of
Innovative Technology and Exploring Engineering 2019.
https://doi.org/10.35940/ijitee.L3251.1081219

42. Kelly, S., Lyytinen, K., Rossi, M., « MetaEdit+: A Fully
Configurable Multi-User and MultiTool CASE
Environment », Proceedings of 8th Int. Conf. on
Advanced Information Systems Engineering (CAiSE'96),
LNCS 1080, Springer-Verlag, pp. 1–21.

43. Online http://www.metacase.com/.
44. Kelly S., Tolvanen J., Domain-Specific Modeling:

Enabling Full Code Generation, Wiley & Sons, New
Jersey, 2008

45. Jarke M., Jeusfled M.A., Nissen H.W., Quix C., Staudt
M., « Metamodelling with Datalog and Classes:
ConceptBase at the Age of 21 » 2nd Int. Conf. Object
Oriented Data Bases (ICOODB’09), LNCS 5936,
pp.95-112, Springer, 2010

46. Mylopoulos J., Borgida A., Matthias J., Koubarakis M., «
Telos: representing knowledge about information
systems », ACM Transactions on Information Systems,
vol. 8, Issue 4

47. Jeusfled M.A., Jarke M., Mylopoulos J., (Eds),
Metamodeling for Method Engineering, The MIT Press,
2009.

48. D. Alulema, J. Criado, and L. Iribarne, “A Model-Driven
Approach for the Integration of Hardware Nodes in the
IoT,” in Advances in Intelligent Systems and Computing,
2019, vol. 930, pp. 801–811.

49. N. Alshuqayran, N. Ali, and R. Evans, “Towards Micro
Service Architecture Recovery: An Empirical Study,” in
Proceedings - 2018 IEEE 15th International Conference
on Software Architecture, ICSA 2018, 2018, pp. 47–56.

50. Badr El Khalyly, et al. " A comparative study of
Microservices-Based IoT platforms" International
Journal of Advanced Computer Science and Applications
(IJACSA) 12, no. 8 (2020).

51. M. Zadka and M. Zadka, “Ansible,” in DevOps in
Python, Apress, 2019, pp. 139–145.

52. Hall, Daniel. Ansible Configuration Management. Packt
Publishing Ltd, 2015.

53. Erraissi, Allae, and Abdessamad Belangour.
Meta-Modeling of Big Data Management Layer.
International Journal of Emerging Trends in Engineering
Research 7, 7, 36-43, 2019.
https://doi.org/10.30534/ijeter/2019/01772019.

54. Banane, Mouad, Allae Erraissi, and Abdessamad
Belangour. "SPARQL2Hive: An approach to processing

Badr El Khalyly et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 6254 – 6266

6266

SPARQL queries on Hive based on meta-models." 2019
8th International Conference on Modeling Simulation
and Applied Optimization (ICMSAO). IEEE, 2019.

55. Erraissi, Allae. "Using model Driven Engineering to
transform Big Data query languages to MapReduce
jobs." International Journal of Computing and Digital
Systems 9 (2020): 1-9.

56. Jouault, Frédéric, et al. "ATL: A model transformation
tool." Science of computer programming 72.1-2 (2008):
31-39.

57. BANANE, Mouad et BELANGOUR, Abdessamad.
Towards a New Scalable Big Data System Semantic Web
Applied on Mobile Learning. International Journal of
Interactive Mobile Technologies (iJIM), 2020, vol. 14, no
01, p. 126-140.

58. BANANE, Mouad et BELANGOUR: A Big Data
Solution To Process Semantic Web Data Using The
Model Driven Engineering Approach, International
Journal of Scientific; Technology Research. vol. 9, no 02,
2020.

59. Banane, Mouad, and Abdessamad Belangour.; A new
system for massive RDF data management using Big
Data query languages Pig, Hive, and Spark; International
Journal of Computing and Digital Systems 9.2 (2020):
259-270

