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 
ABSTRACT 
 
This paper presents the application of a hybrid optimization 
technique termed as Immune-Evolutionary Programming 
(IEP) to solve Economic Emission Load Dispatch (EELD) of 
power system. IEP has been tested on the IEEE 30-Bus 
Reliability Test System (RTS) with two case studies: base 
case and loaded case. The objective of the optimization 
process is to minimize the total emission. Total system loss 
and total generation cost are calculated and observed while 
minimizing the emission. It is found that IEP is suitable to be 
used to solve EELD problemin giving better total emission, 
total system loss and total generation cost compared to the 
pre-optimization results for the both base case and loaded 
case. 
 
Key words : Hybrid Optimization Technique, Economic 
Emission Load Dispatch, Artificial Immune System, 
Evolutionary Programming.  
 
1. INTRODUCTION 
 
Electricity generation in Malaysia is heavily dependent on 
generating units powered by fossil fuel in the production of 
electricity. Environmental pollution is caused by the release of 
acidic gasses, such as carbon monoxide (CO), carbon dioxide 
(CO2), sulfur dioxide (SO2), and nitrogen oxides (NOx), which 
pollute and corrode the Earth's air. While numerous 
alternatives have been introduced and implemented in the 
country, such as the hydroelectric power plant and renewable 
energy technology, fossil fuel remains the main source of 
electricity generation. 
 
EELD has therefore drawn the researchers' attention to a 
relatively good dispatch scheme due to the growing concern 
about the environmental pollution caused by thermal power 
plants. This would not only bring great economic benefit but 
also reduce the emission of pollutants. Major problems 
require engineers to find an optimal solution that 
simultaneously minimizes fuel use and emissions of 

 
 

hazardous gases. EELD deals with reducing fuel costs through 
considering optimum power generation in each generating 
unit of the power generation network, whereas pollution 
dispatch deals with minimizing the emission of harmful gases 
and particulate matter from the particular system. These 
targets are contradictory in nature and cannot be optimized 
simultaneously for single goal EELD. 
 
Over the past decades, the EELD problem has been solved 
using a variety of optimization methods. A holistic review of 
EELD optimization strategies has been conducted in [1]. Such 
approaches can usually be divided into conventional methods, 
non-conventional methods and hybrid methods to solve the 
complex non-linear problem of non-liner constraints. For 
solving EELD, the traditional approaches based on 
mathematical programming methods such as Lagrange 
relaxation [2], lambda iteration method [3], linear 
programming [4], quadratic programming [5], 
Newton-Raphson [6] and gradient method [7] were initially 
applied. Classical methods have certain benefits, such as they 
have no problem-specific parameters to determine, their 
optimality is proved mathematically and some of them are 
computationally quick [1]. Nonetheless, these conventional 
methods cannot work satisfactorily in solving EELD problem 
as they are sensitive to initial estimates and converge into 
optimal local solution, sensitivity to the initial starting points, 
in addition to their computational complexity when the 
problem becomes complex, i.e. non-smooth, non-convex, 
non-monotonically increasing cost functions etc. [8,9].  
 
A large number of heuristic techniques have been introduced 
over the past two decades and have attracted researchers' 
attention in solving EELD because of the ability to fulfill 
non-smooth cost function compared to conventional methods 
[10]. With the development of these evolutionary 
programming, the research focus has shifted to handling both 
emission pollution minimization targets and cost 
minimization at the same time without combining them into a 
single weighted target. The researchers became particularly 
evolutionary algorithms (EAs) to artificial intelligent 
techniques. Both meta-heuristics, respectively, use processes 
inspired by Darwinian Biological Evolution Theory and 
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Social Interaction. These experiments have shown that EAs 
can effectively solve most of the inconveniences of 
conventional methods [11]– [14]. Some of the examples of 
these algorithms are evolutionary programming (EP) [15], 
particle swarm optimization (PSO) [13], differential evolution 
(DE) [16], chemical reaction optimization (CRO) [17] and 
summation based multi-objective differential evolution 
algorithm (SMODE) [18]. 
 
In this paper, the application of a hybrid optimization 
technique termed as Immune-Evolutionary Programming 
(IEP) for solving EELD problem is presented. The objective 
of this optimization problem is to minimize the total emission 
of three pollutants which are nitrogen oxides (NOx), sulfur 
oxides (SOx), and carbon dioxide (CO2) that emitted by the 
fossil-fueled generating units. Total generation cost and total 
system loss are observed while optimizing the total emission. 
 
2. EELD PROBLEM FORMULATION 
 
The cost of managing emissions stems from the need for 
power utilities to reduce their pollutant rates below the annual 
emission allowances allotted for the coal units affected. Total 
emission can be decreased by reducing the three main 
pollutants that are: nitrogen oxides (NOx), sulfur oxides 
(SOx), and carbon dioxide (CO2). In a linear equation, the 
objective function that minimizes total emissions can be 
represented as the sum of all three pollutants resulting from 
real power generators as follows. 
 

ாܨ = ෍ቀܽ௜ + ܾ௜ ௚ܲ௜ + ܿ௜ ௚ܲ௜
ଶ + ݀௜݁݌ݔ൫݁௜ ௚ܲ௜൯ቁ

௡

௜ୀଵ

 (1) 

Where ܽ௜, ܾ௜, ܿ௜ , ݀௜  and ݁௜ are the characteristic coefficients 
of the generator emission. 
 
While minimizing the total emission, total generation cost and 
total system are also calculated using equation (2) and 
equation (3), respectively. 
 

௧௢௧௔௟ܥ = ෍ܥ௜( ௜ܲ), ݅ ∈ {1,2, … ,݊}
௡

௜ୀଵ

 (2) 

௟ܲ௢௦௦ = ෍݃௞[ ௜ܸ
ଶ + ௝ܸ

ଶ − 2 ௜ܸ ௝ܸܿݏ݋൫ߜ௜ − ௝൯ߜ
௟

௞ୀଵ

, ݇

∈ {1,2, … , ݈} (3) 
Where: 
)௜ܥ ௜ܲ)   = the cost of production for ݅ݐℎ generating unit, 
݊     = the number of the generating units in the 
system, 
݃௞    = conductance of ݇th line, 
௜ܸ and ߜ௜  = voltage magnitude and angle of bus ݅ , 

respectively, 
௝ܸ  and ߜ௝  = voltage magnitude and angle of bus ݆ , 

respectively, and 
݈     =  number of lines in the system. 

 
EELD problem is associated with the following constraints: 
 
2.1 OperatingLimits of Generating Units 
 
Every generating unit used has its own cost function that 
could be different from one another. It depends on the 
capacity of the generating units and the type of fuel used. The 
operating limits of a generating unit can be represented as 
follows: 
 

௜ܲ(୫୧୬) ≤ ௜ܲ ≤ ܲ௜(௠௔௫), ݅ ∈ {1,2, … ,݊} (4) 
Where ௜ܲ(௠௜௡)  and ௜ܲ(௠௔௫)  represents the minimum and 
maximum operating limit of ݅ݐℎ generating unit, respectively. 

 

2.2 Power Balance Constraint 
It must be ensured that that the power generated meets the 
demand. Consequently, the net power generated must be 
equivalent to the total system loss and the demand required. 
This constraint can be represented by equation (5). 
 

௚ܲ௘௡௘௥௔௧௘ = ௟ܲ௢௦௦ + ௗܲ௘௠௔௡ௗ (5) 
 
3. IMMUNE-EVOLUTIONARY PROGRAMMING FOR 
SOLVING EELD PROBLEM 
 
The flowchart of Immune-Evolutionary Programming to 
solve EELD problem is illustrated in Figure 1. 
 

 
Figure 1: General Flowchart of IEP 
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The process of solving the EELD problem using IEP can be 
explained in the following steps: 
 
Step 1: Initialization 
IEP begins with the process of initialization in which the 
values of the decision variables are determined. The variable 
deciding the outcome in EED problem is the real power 
produced by the generating units. In this stage the generators 
operating limit is taken into account. The best fitness value is 
measured from there and must be below the base value. Based 
on the literature, the ideal size of the initial population is 
twenty. Therefore, there will be twenty individuals of each 
decision variable at the end of this process. 
 
Step 2: Cloning Process 
The initial population then undergo the cycle of cloning, 
where they are multiplied by ten resulting in two hundred 
individuals. The name for this new population is called 
parents. 
 
Step 3: Mutation 
Subsequently, the parents are mutated using Gaussian 
mutation to produce their offspring. The offspring's 
population size is equivalent to the parents. The Gaussian 
mutation can be mathematically written as follows: 
 

௜ା௠,௝ݔ = ௜ା௝ݔ ௝௠௔௫ݔ)ߚ,0)ܰ+ − )(௝௠௜௡ݔ ௜݂

௠݂௔௫
) (6) 

 
Where: 
 ,௜ା௠,௝  = mutated cloned parent (offspring)ݔ
௜ା௝ݔ    = parent individual, 
mutation scale, 0 =    ߚ < ߚ < 1, 
 ௝௠௔௫  = maximum random number for every decisionݔ
variable, 
௝௠௜௡ݔ   = minimum random number for every decision 
variable, 
௜݂    = fitness for ith random number, and 
௠݂௔௫   = maximum fitness 

 
Step 4: Combination 
The next step is the process of combination where parents and 
offspring are combined to become a large population with a 
size of four hundred. These individuals will be ranked as the 
benchmark with their fitness in selection process. 
 
Step 5: Selection 
In this selection process, the combined individuals are ranked 
based on the best fitness values. Then the best twenty 
individuals are selected among them to undergo the 
convergence process.  
 
Step 6: Convergence Test 
A stopping criterion is set to indicate the optimal solution has 
been found by the algorithm. It is said to be converged when 
the difference between the first graded and the twentieth is 

0.00001 as shown in equation (7). 
 

௧௢௧௔௟(ଶ଴௧௛)ܥ − ௧௢௧௔௟(ଵ௦௧)ܥ ≤ 0.00001 (7) 
 

4. RESULTS AND DISCUSSION 
The IEEE 30-Bus Reliability Test System (RTS) has been 
used to demonstrate the implementation of IEP to solve EELD 
problem. There are six generating units in the system. Two 
case studies are introduced to solve the EELD problem of the 
IEEE 30-Bus RTS. The first case study is called as base case, 
which the original data of the system are used to solve EELD 
problem. Then the second case study is loaded condition. The 
real power demand for this second case is increased by 100% 
to study its effect to the EELD solution. Ten runs were 
performed for each case to study the performance of IEP in 
solving EELD problem. Prior to the IEP implementation, 
pre-optimization results of the IEEE 30-Bus RTS was 
recorded. This pre-optimization results are based on the load 
flow solution of the IEEE 30-Bus RTS. The results are shown 
in Table 1. 
 

Table 1: Pre-Optimization Results 

Total System Loss 

(MW) 

Total 

Generation Cost 

($/hr) 

Total 

Emission 

(ton/hr) 

17.5985 850.2 0.8992 

 
4.1 Case Study 1: Base Case 
 
As the total emission is set as the objective function of the 
optimization process, it can be observed from Table 2 that 
thetotal emission produced for every run is the same, unlike 
total generation cost and total system loss. From the table, the 
3rdrun and the 9thrun produced the best EELD solution with 
total emission of 0.21 tons/hr, total generation cost of 606.1 
$/h and total system loss of 7.05 MW. The real power output 
of the generating units are 60.02 MW, 45.04 MW, 39.03 MW, 
24.72 MW, 28.60 MW and 26.92 MW for ௚ܲଵ , ௚ܲଶ , ௚ܲଷ , ௚ܲସ , 
௚ܲହ  and ௚ܲ଺ , respectively. 

 
Based on Figure 2, there are only three possible establishes of 
convergence value that IEP method managed to acquire. The 
lowest total emission obtained is 0.2114 tons/hr at the 2nd, 3rd 
and 9thruns. Though, it is not the most common converge 
value among the 10 runs. The value of total loss for this 
particular result is 7.057 MW and the total generation cost is 
606.1 $/hr. It appears that to achieve the lowest amount of 
emission, the cost is increasing in value as both parameters are 
non-linear to one another. Nonetheless, the values of the total 
generation cost and total emission are still lower than 
pre-optimization values which are 850.2 $/hr and 0.8992 
ton/hr, correspondingly. The value of real power output of 
generating units is also within the range of the constraints set 
in the program. 
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The worst value of emission is the highest total emission 
produced by the system at the value of 0.2146 tons/hr. This 
value is very close with best result which is the lowest 
emission production obtained with the difference of 0.0032 
tons/hr. At this amount of total emission issued, the amount of 
money needed to be used is 578.1 $/hr with the difference of 
28 $/hr with the best result. 
 
As referred to Figure 3, the worst total emission is 0.2146 
tons/hr while the best score of total emission is 0.2114 tons/hr. 
The median emission has proven that the IEP technique is able 

to reduce the EELD problem by lowering the original 
emission amount from 0.8992 tons/hr to an average of 0.2136 
tons/hr. It is 76.25% reduction, which is a huge achievement. 
 
4.2 Case Study 2: Loaded Case 
 

Table 2: EELD Solution of the IEEE 30-Bus RTS for 10 Runs (Case Study 1) 

No. 

of 

runs 

Real Power Output of Generating Unit, ௚ܲ௜(MW) Total 

System 

Loss 

(MW) 

Total 

Generation 

Cost ($/h) 

Total 

Emission 

(tons/hr) ௚ܲଵ  ௚ܲଶ  ௚ܲଷ  ௚ܲସ  ௚ܲହ  ௚ܲ଺  

1 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

2 60.02 45.04 39.03 24.72 28.60 26.92 7.05 606.1 0.21 

3 60.02 45.04 39.03 24.72 28.60 26.92 7.05 606.1 0.21 

4 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

5 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

6 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

7 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

8 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

9 60.02 45.04 39.03 24.72 28.60 26.92 7.05 606.1 0.21 

10 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

 
 

 
Figure 2: Total Emission vs Number of Run (Case Study 1) 
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The real power load of the IEEE 30-Bus RTS is increased by 
100 %. After that, IEP is employed to solve EELD problem of 
the system, again for 10 runs to minimize total emission. The 
results obtained are tabled in Table 3. 
 
Figure 4 shows the values of total system loss, total generation 
cost and total emission for 10 runs with the objective function 
of minimizing the total emission. The lowest value of total 
power emission is 0.2114 tons/hr at the 2nd, 3rd and 8th runs, 
which only covers 30% of overall 10 test runs. The values of 
total system loss and total generation cost at this set of 
solution are 7.0570 MW and 606.1 $/hr, respectively. 
Remarkably, the pattern is precisely identical with the base 
case. This is proof that the IEP can still solve EELD problem 
flawlessly even when the real power load of IEEE 30-Bus 
RTS isdoubled. The values of each real power output of the 
generating units are also within range of restrictions set in the 

program.The value of total emission is the highest at the 1st, 
4th, 5th, 6th, 7th and 9th runs with the value of 0.2146 tons/hr. 
Still, the total system loss is lower at 7.8364 MW compared to 
7.0570 MW obtained at 0.2114 tons/hr. While the total 
generation cost obtained is 578.1 $/hr. It can be seen that the 
cost value compensates the higher emission compared to the 
lower emission value. At the very last run, the value of total 
emission is 0.2116 tons/hr with 8.3135 MW of total 
generation loss. While the total generation cost is 521.5 $/hr. 
For this run, the total system loss is the highest, however the 
total generation cost is the lowest and the total emission is 
near to the lowest emission. 
 
Based on Figure 5, the worst value of total emission is 0.2146 
tons/hr, while the best total emission is 0.2114 tons/hr. 
Evidently, both the best and worst valuesof total emission are 
similar to the base case even when the real power load 

 
Figure 3: Comparison of Total Emission (Case Study 1) 
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Table 3: EELD Solution of the IEEE 30-Bus RTS for 10 Runs (Case Study 2) 

No. 

of 

runs 

Real Power Output of Generating Unit, ௚ܲ௜(MW) Total 

System 

Loss 

(MW) 

Total 

Generation 

Cost ($/h) 

Total 

Emission 

(tons/hr) ௚ܲଵ  ௚ܲଶ  ௚ܲଷ  ௚ܲସ  ௚ܲହ  ௚ܲ଺  

1 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

2 60.02 45.04 39.03 24.72 28.60 26.92 7.05 606.1 0.21 

3 60.02 45.04 39.03 24.72 28.60 26.92 7.05 606.1 0.21 

4 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

5 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

6 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

7 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

8 60.02 45.04 39.03 24.72 28.60 26.92 7.05 606.1 0.21 

9 65.24 33.16 37.21 27.40 25.89 23.92 7.83 578.1 0.21 

10 52.24 36.45 37.50 23.65 28.35 15.33 8.31 521.5 0.21 
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isincreased by 100%. The average total emission for this 
loaded case is 0.2133 tons/hr. The aggregate value of this 
loaded case is still significantly lower than the 
pre-optimization value of total emission without modification 
in the IEEE 30-Bus RTS. 
 

5. CONCLUSION 
This paper has presented the application of a hybrid 
optimization technique termed as Immune-Evolutionary 
Programming (IEP) to solve EELD for total emission 
minimization. Based on the EELD solution of the IEEE 
30-Bus RTS produced by IEP for the two case studies (base 
case and loaded case), it can be concluded that IEP is a 
powerful optimization technique to be used to solve EELD 
problem for total emission minimization. 
For future development, the EELD can be solved using IEP 
with multiple objectives optimization instead of only single 
objective optimization in this paper to give better EELD 
solution. 
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