
JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3986

ABSTRACT

Each component in OpenStack provides fine-grained control
over the access of data and service through OpenStack
component defined policies and Role-based access provided
at the system level. OpenStack does not offer support for
user-specific access control. Confidentiality of the data, as
such, is left to the responsibility of the user. User has no way
to define its policies to allow access to the data.

In this paper, a method is defined that can be implemented
within OpenStack that allows users to set attributesand
policy-based access control to data resources.

The method presents the components to be included
inOpenStack and the way the additional components interact
with native OpenStack components to affect the
confidentiality and policy-based access control.

The components developed in Python language and the
Native python programs interact with the user-defined
python programs through the use of Restful API. The
policies defined by the user are high-level security policies
that are converted to low-level fine-grained security policies
as defined by OpenStack. The users protect the data through
attribute-based encryption and decryption

Key words: OpenStack, Attribute-based access control, User
policy-based access control

1. INTRODUCTION

OpenStack is an Open source software that is used widely for
building private clouds. Through the use of OpenStack,
Infrastructure as service can be provided (IaaS), which
includesthe provision of Virtual machines and storage
services. Users can implement Platform as service (PaaS) and
Software as services (SaaS) on top of IaaS. All the storage
components such as Trove, Swift, Glance, and cinder provide
exceptional grained access control services about which the
user has no idea.

In an organization, functionaries and administrators have to
exchange information on each other collaboratively at the
individual level. Roles based access control defeats the
concept of individual users authorizing access to the data
owned by each other. A user defines their policies to provide
access to their data to others. These policies are set at a higher
level while the OpenStack system components still
implement the fine-grained policies.

Thus there is a necessity to convert high-level user-defined
policies to excellent grained policies defined by the System
based components. There is a necessity to verify whether
user-defined access control can be adapted through making
calls to the System defined fine-grained policies. Adaption of
user-defined policies helpsto share the users generally within
the same organization and the users that work for different
organizations.

OpenStack uses XACML for dealing with the System defined
access policies. Affecting the access control that fits a policy
is achieved by making XACML requests to an object owned
policy server.The users can use a language to define its
policies, which can then be directed as a message,and the
same is converted to a fine-grained policy as adopted by the
OpenStack fine-grained policy enforcement.

In this paper, a method is presented that allows the user to
convey his policy in the JSON language. Then the same is
converted by a Translator into systems defined policy
enforcement in terms of ACML requests.OpenStack does not
provide any functionality that allows the users to share the
data with others. In a real organizational setup, this Kind of
requirements exists on a day to basis.

2. PROBLEM DEFINITION

The main problem thus,the implementation of user-defined
policies and user-defined access control,is integrated with
System defined plans and access control.

3. RELATED WORK

3.1 Policy-Based Related work

Cloud computing systems have to address many challenges
concerning Authorisation, Authentication, access control,

Implementing User defined Attribute and Policy based

Access Control
within OpenStack
Dr. JKR Sastry, B. TrinathBasu

1KoneruLakshmaiah Education Foundation, Vaddeswaram, India, drsastry@kluniversity.in
2KoneruLakshmaiah Education Foundation, Vaddeswaram, India, miriiyala68@kluniversity.in

ISSN 2347 – 3983
Volume 8. No. 7, July 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter171872020.pdf

https://doi.org/10.30534/ijeter/2020/171872020

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3987

confidentiality, and integrity of the data even though the
technologies are helping the businesses to derive several
advantages for supporting cost-effective IT solutions [1].

Most of the solutions recommended in the literature focussed
on introducingthe cryptography layer [2] [3] as an additional
layer within a cloud computing system.

Domain-specific predicates have been proposed [4] for
enforcing the integrity and confidentiality of the data.
Cryptography is extensively used for enforcement of
confidentiality ate storage layer and policy layer of the cloud
computing system. The semantic gap between the secrecy
between the storage layer and files is bridged through the use
of cryptography.

Many authors addressed confidentiality issues through the
use of fragmentation [5] or the combined use of cryptography
and fragmentation [6]. The concept of splitting data into
different fragments that are stored either in the plain or
encrypted text is advocated extensively. Splitting is done in
such a way the confidential information is not leaked while
retrieving the partitions.

Several access models have been implemented in the
literature, one of which is predominantly use is RBAC (Role-
Based Access Control Model). The owner of the Data is
allowed to store the data in an encrypted manner and also
allows provided access rights to other users through the
assignment of a specific Role, which allows access to
particular data. [7].

It has been explained the way RBAC can be used to
affectthreeessential principles related to confidentiality,
which include the least privilege, data abstraction,and data
separation. RBAC is found to be effective but still many
changes are to be made to cloud computing systems to
implement RBAC within cloud computing systems [8]

It has been proposed that the use of data-centric
cryptosystems is the most appropriate method for ensuring
the confidentiality of that Data. But the technique leads to
many complications, which include the necessity of crucial
management, Certificate Management, carrying actual
encryption and decryption, distribution of the keys, etc. Many
administrative tasks get added, which sometimes reflects on
the response time within which user responses are provided.
In contrast to this approach, the application of policies that
affect access control is found to be a better policy. Polices
provide different levels of access to different users.
Encryption models cover just a set of users as per the
distribution of keys while the policy-based model is global
that satisfies many users who found to fit into the policies of
the organizations

The owner of the data loses control to it once the Data is put
on the Cloud. Users cannot enforce any kind of data access
control. Some of the data cannot even delete the data as many

data archiving methods work in behind within the Cloud for
ensuring the safety [9[[10].

Many users developed Software that controls access to the
data. Users applications developed to affect the access control
to the data [11]. Fine-grained access polices attached to Data,
and the same is effected based on the context in which the
Data access. The association between the Data and polices
recognized as annotations that are defined using a policy
language. The association is also called a seal on the Data,
which is sometimes perceived as a process of encrypting the
data as per policies that apply to the users [12]. The policy
enforcement processes proposed by the above-cited works,
associate to every single Data a defined policy.

The policy is attached to every data element, making it
complicated to manage such Kind of association. The size of
the data will tremendously increase. It takes a lot of time to
deal with and accessing such data. Further research addressed
the attachment of the policies to a set of data to reduce the
complexity of associating policies to the data. Polices are
connected to the containers, partitions, user spaces, instances,
etc. A combination of RBAC and Attribute-based access
control model is implemented[13]

Many works have been presented for attribute-based access
control to the OpenStack. The uses of ABAC has been
studied considering different scenarios, which include cloud
federation and federating identity management [14] [15].

The collocation between the tenants in a cloud under the IaaS
platform has been studied [16]. A unified ABAC model has
been presented that can be configured to effect discretional
Role-based access control, and the way the model
implemented within OpenStack has been shown [17]

A role centric and attributed based model (RABAC)
presented [18] which XACML [19] language for building the
model. XACML is a general-purpose accesscontrol policy
language for managing access to resources. Many of the
objects created within the cloud on-demand, especially the
data objects. Data objects, as such, cannot be pre-identified.
The objects, as such, cannot be predefined in advance so that
policy association can be established.Thus there is a
requirement to attach the polices to the objects dynamically
and also preserve the users' requirements of enforcing the
access control as the demand from time to time. Many
contributions are made for enhancing the security with
OpenStack system which all focussed at different aspects of
security enhancement with OpenStack
[20][21][22][23][24][25][26][27][28][29][30][31].

4. ACCESS CONTROL IMPLEMENTATION WITHIN

OPENSTACK

4.1 Policy-Based Access implemented with OpenStack

Each service in OpenStack is operated based on policies
designed for a specific function. The component "SWIFT"

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3988

deals with a certain set of policies, while the component like
"Cinder" uses some other police. Polices are ruled that must
be satisfied for allowing a user to carry an operation using a
specific service

The cloud provider documents the required polices to be
enforced by the services. The policies are designed such that
any regulatory or legal requirements are taken care of. Once
the polices are documents and written down as rules and
stored, the same can be modified interactively at a later date.
The regulations that represent the policiesdeveloped using the
conditions and processes for doing a different Kind of
operations and the Kind of objects dealt by specific services.
Different kinds of operations that can be included in the rules
include Enabling, disabling, creating, modifying, deleting,
and assign privileges to the resources that a user can have.
The policies are periodically reviewed, and modifications
carried if required.

OpenStack provides access control only for fine-grained
access to the services. They do not support user-defined
policies especially for accessing the Data

Each OpenStack service defines the access policies for its
resources in an associated policy file. A resource, for
example, could be API access, the ability to attach to a
volume, or to fire up instances. The default policy rules can
be modified by creating a JSON format file called
policy.json.

For example, for the Compute service, create a file called
policy.json in the nova directory. Note that the exact file path
might vary for containerized services. These policies can be
modified or updated to control access to various resources.

In OpenStack, access control is defined based on the
functional roles assigned to the users. The user-defined roles
are converted into System defined roles for allocating to the
same to the user and then use the System identified roles for
affecting the access control.

OpenStack offers Access control based on the functional roles
assigned to the users. The access control is enforced through
the allocation of a system defined roles to the users. Thus
there is a requirement of user-defined functional rules to
System defined rules, achieved through the use of XACML
language for translation.

Users sometimes need to define at run time, the other users
with whom the data can be shared. Such Kinds of
requirements are quite frequent.. It is the user who establishes
other users who can be provided with privileges and
permissions to share the data. The OpenStack does not meet
such Kind of requirement. Thus there is a requirement to
convert user-defined access polices to System defined access
policies.

4.2 Access control enforcement method implemented
within OpenStack

The access control model implemented in OpenStack deals
seven distinct objects that include users, projects, roles,
services, operations, and tokens. The element "Group" is also
included to consider a set of users. In addition to theses, the
concept of domain and Tenants is also used. A domain is a set
of users that have access to an application or module. A
tenant is a set of users who all have access to the same VM.
An administrator manages domains and tenants

Users are persons authenticated to use resources such as
projects, VMs, Storage, etc. Roles are elements that associate
users with resources. The role-project pairs identified with the
permissions which provide access rights to the users for
accessing the services attached to the projects. Users with a
specific Role attached to a project will have individual
permissions to access the services and resources.

Besides, a different resource called object-type is also
considered. Object-type refers to a set of objects of the same
type, such as VMs, Images, files, storage units such as
partitions, user spaces, instances, etc. Operations are also
another kind of entity that defines different processes that can
be used to access the objects. The service components use the
operations to be carried on the objects.

Every user, after logging into OpenStack using user name and
password through keystonegiven with a token which can be
used to access specific resources as per the access rights of
the user. Every Token designed to contain the information
related to the user, the projects that can be obtained, and the
roles that the user can play concerning the projects.

Roles and Permissions derived from the Tokens and the same
are used for enforcing the access to the services and the
objects accessed by those services.This Kind of model is
called the Role-based Access Control method—the model
used by OpenStackshown in Figure-1.

Figure 1: Role-based Access control model implemented by

OpenStack

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3989

Keystone Module implements the access control system.

4.3 Drawbacks of Access control Mechanism within
OpenStack

 Access Control is not implemented as per user
choices, especially the issue of sharing information
as per the decision of the user is not considered

 User-defined Polices also not considered.
OpenStack implements only System defined
policies

5. INVESTIGATIONS AND FINDINGS

5.1 Enhanced Architecture of OpenStack for achieving

user-defined access control

Enhancements to the OpenStack architecture have been
carried toaccommodate and implement the user-defined
policies and sharing the data. The modified architecture
shown in Figure 2.

Dash Board Key Stone Fernet Server JSON Server

Trove

User Attribute
Repository Server

System Defined
Access Server

User Defined
Acess Policies

System Defined
Policies

ADDS Server

IMS Server

Data Secuity
Module

Figure 2: Enhanced Architecture for implementing user-
defined aces control and data sharing

Users can initiate through DashBoard for either affecting a
user-defined policy or for affecting the data sharing as per
the user requirement. A python-based program is written to
implement the translation of the user policies and Vice
Versa. Users can also request for updating their attributes,
which will be stored in a centralized repository. Users can
also request sharing specific data with other users. The data
sharing request is passed to the System defined Access
server where the Public Key and Private Key structure
generated and stored within the repository. The Public Key

istransmitted to the user who shares the same with all those
with whom the Initiating user would like to share the data.
Every time a user wants to store the data, the same is
encrypted using the user private key and the same submitted
to the respective service for storing the same within the
repositories related to the services.

5.2 Implementing user-defined user polices

OpenStack policies are defined using XACML Language.
User-defined policies can be added to System defined
Policies that can be used to modify the existing System
defined policy. The user-defined policies in XML are
converted to XACML language, and the same is executed to
effect changes to the relating repository system defined
polices.

The XACML policy is composed of four components:

 PEP (policy enforcement point) controls the data
access.

 PDP (policy decision point) locates the many access
rules (using the policy enforcement process),
evaluates them to the access request, and returns a
decision: deny or permit.

 PIP (policy information point) collects the missed
information in access requestsconcerning the
XACML syntax.

 PAP (policy administration point) permits to
manage the rules (create, modify, or delete a rule)

User-defined policies represented using the XML language.
The user request can be either an access request or an ACL
request. In the case of ACL request, the XML recognizes it
as a security policy rule and adds it to the XACML policy as
a new rule via the PAD. However, in case of the access
request, the XML translator sends the XACML request to the
PEP that sends it to PDP for verification.

Three algorithms are written for converting XML request to
XACML request, Translating XML request to XACML
request, and then update the policy.json file and for
translating XACML request response to XML request
response.

Algorithm for translating an XML request into an XACML
request

• Input: XML access request
• Output: XACML request

for all request do

Decompose XML request (request access)
return user, container, action, account

Mover user to sub
Move the container to res
Mover action to action

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3990

Move account to env

Transform XACML (sub, res, action, env)

return XACML request

Algorithm for converting XML request to XACML based
rule

 Input: XML acl request
 Output: update the XACML policy for all ACL do

Decompose acl(acl)

if X container write

then

return user, container, account, write

Move user to sub
Mover container to res
Move account to env
Move to write to action

else

Move user to sub
Move the container to res
Move account to env
Move read to action

end if

if container.xml exists then

updatecontainer.xmladd policy (sub,res, action, env)

else

Createpolicy (container.xml)

end if

return container.xml

end for

Algorithm for converting XACL response to XML
response

• Input: xacml access request
• Output: curl request

for all request do

decomposexacml request(request acess)
 return sub, resource, action, env

Move user to sub
Move the container to res
Move action to action
Move env to account

transform curl (user,container,action)
return XACML request

end for

5.3 Implementing user-defined access control within
OpenStack

Users own data of their own and want to share the data as
they like with other users. The user-defined access must be
based on the attributes of the user. Users can be clearly
distinguished based on their characteristics. The
characteristics of the users and user-defined access rights are
stored in a Repository. A System component within
OpenStack generated each user's private and public Key and
shared with the users, and the user, in turn, shares the public
with other users with whom the user wants to share the data.
A Group is created using the users who are allowed to
exchange the data through an issue of a system command,
and a role is created, and Kind of operations that can be
carried using the Role is created, and the Role is attached to
the Group

When a request for storing thedata received from the user,
the system component encrypts the data using the Private
Key and sends across an application for storing the data to
one of the services that deal with the data.

When a user requests theData having the required Role
provided with the Data, decrypted using the public of the
sender. The service deals with the validation of the key pair
with the help of a certificate server run by it.

User-Defined access control Implementation scheme

 The users defined with an ID and password
 Users identified with a set of attributes having

specific values. The attributes of the user stored in a
repository within OpenStack

 A user can initiate a message that has the list of
users with whom the information can be exchanged
and the Kind of operations that can be carried by the
users

 A separate user group is created with its members as
the listed users

 A role is created, and the Kind of operations that
can be carried using the roles are assigned to the
user group

 Whenever a user wants to store the data within
OpenStack, a service request is made to User-
Access-Control Module newly developed and
installed in the OpenStack

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3991

5.4 Experimentation and Results

Operational setup

Before Implementing the Command Language Interface
carry the following operational command language
sequences

1. Create User "ABC," User Group-ABC, MQY Role
2. Create user "XYZ" to User Group-ABC
3. Assign Create, Insert operations to MQY role
4. Assign MQY-Role to the User Group-ABC
5. User to Initiative a Request to create DB Table

Test-Table having record Number (NUM (10) and
data columns (X(120))

6. User "ABC" to Initiate a Request to create the
record in Test-Table having the Data ("This is the
Test Data")

7. User "XYZ" to initiate a Request for the record in
Test-Table

8. The XYZ user is provided with the Data ("This is
the Test Data"), thus providing the data for which
the user has no rights

Users Initialisation Setup

1. Develop and Implement User-Access-Control
service within OpenStack and include the facility
into service list

2. Within Keystone Create Users, User Groups, Roles,
and operations

3. Assign the user to New-user-group
4. Assign operations to Roles
5. Assign roles to New-user-group
6. Assign User-Access-Control service to New-user-

group
7. Login to OpenStack system as administrator
8. Initiate attribute creation through the use of Token

returned by Keystone System and requesting for
User-Access-Control service

9. The user to Login to the OpenStack
10. User to initiate a request to create private Key and

Private Key, based on attributes stored in the
database and store the same using a Trove Database
system. The user receives the key pair who
distribute the public key to all the users with whom
the user wants to share data.

11. The user initiates a user-defined policy in XML
format, indicating the Kind of operations allowed by
him by the users who are contained within the
specified user group. The user-defined policies are
converted into System defined polices and stored

12. The user policy is translated to System defined
policy and stored

13. The user initiates a data related action by initiating a
request to use-access-control. The access control
system component encrypts the data using the
private key of the user and Initiates the storage of

the same through a data security module and
TROVE database

Experimentation setup

1. User "ABC" to Initiate a Request to create a
record in Test-Table having the Data ("This is
the Test Data")

2. User "XYZ" to initiate a Request for the record
in Test-Table

3. The XYZ user denied with the data. Gets an
error as "Un-Authorised Access")

6. CONCLUSIONS

OpenStack implements fine-grained System defined polices
for affecting the access control to the user data. Every user-
defined with the functional responsibilities which are to be
addressed through user roles, which are provided some
access rights through the ability to make some operations
concerning the resources provided in OpenStack.

Every user also works in tandem with others and therefore
requires sharing the data as they desire. Also, sometimes
even Role-based access is allowed. Some policies defined at
the system level deny access to services and resources.

There is a need to consider the user-defined policies that can
be converted to System driven policies so that twin
objectives of enforcing the user-defined policies while at the
same adhering to system-level policies can be achieved.

In this paper, user-defined policies are defined in XML, and
translation mechanisms have been presented using which
XML request responses are translated into XACML
language, which is used for organizing the Access rules
within the System defined access policies.

Again access control should be implemented as per the
choices of the users. Users must decide with whom the data
can be shared. Therefore there should be an additional layer
within the OpenStack to facilitate user-defined access
control.

REFERENCES

1. S. De Capitani di Vimercati, S. Foresti, and P. Samarati,

"Managing and accessing data in the cloud: Privacy risks
and approaches," in Risk and Security of Internet and
Systems (CRiSIS), 2012 7th International Conference on,
Oct 2012, pp. 1–9.
https://doi.org/10.1109/CRISIS.2012.6378956

2. Vahldiek-Oberwagner, E. Elnikety, A. Mehta, D. Garg,
P. Druschel, R. Rodrigues, J. Gehrke, and A. Post,
"Guardat: Enforcing data policies at the storage layer," in
Proceedings of the Tenth European Conference on
Computer Systems, ser. EuroSys'15. New York, NY,
USA: ACM, 2015, pp. 13:1– 13:16.

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3992

3. D. Sangeetha, V. Vijayakumar, V. Thirunavukkarasu,
and A. Ramesh, "Enhanced security of phr system in
cloud using prioritized level based encryption," in Recent
Trends in Computer Networks and Distributed Systems
Security, ser. Communications in Computer and
Information Science. Springer Berlin Heidelberg, 2014.
https://doi.org/10.1007/978-3-642-54525-2_5

4. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S.
Paraboschi, G. Pelosi, and P. Samarati, "Encryption-
based policy enforcement for cloud storage," in
Distributed Computing Systems Workshops (ICDCSW),
2010 IEEE 30th International Conference on, June 2010,
pp. 42–51.

5. P. Samarati and S. D. C. di Vimercati, "Data protection
in outsourcing scenarios: Issues and directions," in
Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, ser.
ASIACCS'10. New York, NY, USA: ACM, 2010.

6. V. Cipriani, S. De Capitani di Vimercati, S. Foresti, S.
Jajodia, S. Paraboschi, and P. Samarati, "Fragmentation
and encryption to enforce privacy in data storage," in
Computer Security ES- ORICS 2007, ser. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007,
pp. 171–186.

7. L. Zhou, V. Varadharajan, and M. Hitchens, "Enforcing
role-based access control for secure data storage in the
cloud,"Comput. J. vol. 54, no. 10, pp. 1675–1687, Oct.
2011.
https://doi.org/10.1093/comjnl/bxr080

8. W. Li, H. Wan, X. Ren, and S. Li, "A refined RBAC
model for cloud computing," in Computer and
Information Science (ICIS), 2012 IEEE/ACIS 11th
International Conference on, May 2012, pp. 43–48.

9. M. Henze, R. Hummer, and K. Wehrle, "The cloud needs
cross-layer data handling annotations," in Security and
Privacy Workshops (SPW), 2013 IEEE, May 2013, pp.
18–22.

10. C. Cachin, K. Haralambiev, H.-C. Hsiao, and A.
Sorniotti, "Policy-based secure deletion," in Proceedings
of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, ser. CCS '13. New
York, NY, USA: ACM, 2013, pp. 259–270.

11. C. Squicciarini, G. Petracca, and E. Bertino, "Adaptive
data protection in distributed systems," in Proceedings of
the Third ACM Conference on Data and Application
Security and Privacy, ser. CODASPY'13. New York,
NY, USA: ACM, 2013, pp. 365–376.
https://doi.org/10.1145/2435349.2435401

12. N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu,
"Policy-sealed data: A new abstraction for building
trusted cloud services," in Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12).
Bellevue, WA: USENIX, 2012, pp. 175–188.

13. D. Kuhn, E. Coyne, and T. Weil, "Adding attributes to
role-based access control," vol. 43, no. 6 June 2010, pp.
79–81.

14. D. W., Chadwick, K. Siu, C. Lee, Y. Fouillat, and D.
Germonville, "Adding federated identity management to

OpenStack," Journal of Grid Computing, vol. 12, no. 1,
pp. 3–27, 2014.

15. C. A. Lee and N. Desai, "Approaches for virtual
organization support in OpenStack," in IEEE
International Conference on Cloud Engineering (IC2E).
IEEE, 2014, pp. 432–438.

16. X. Jin, R. Krishnan, and R. Sandhu, "A unified attribute-
based access control model are covering DAC, MAC and
RBAC," in IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, 2012, pp.
41–55.

17. X. Jin, R. Krishnan, and R. Sandhu, "Role and attribute-
based collaborative administration of intra-tenant cloud
IaaS," in IEEE International Conference on
Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2014, pp. 261–274.

18. X. Jin, R. Sandhu, and R. Krishnan, "RABAC: role-
centric attribute-based access control," in International
Conference on Mathematical Methods, Models, and
Architectures for Computer Network Security. Springer,
2012, pp. 84–96
https://doi.org/10.1007/978-3-642-33704-8_8

19. “XACML.” [Online]. Available:
https://en.wikipedia.org/wiki/XACML

20. M.TrinathBasu, Dr.JKRSastry, A full security included
Cloud Computing Architecture, International Journal
of Engineering & Technology, Volume 7, Issue 2.7,
Page 807-812, 2018

21. M. TrinathBasu, JKRSastry, Improving the OpenStack
Authentication system through federation with JASON
Tokens, International Journal of Advanced Trends in
Computer Science and Engineering, Volume 8, Issue 6,
Pages 3596-3614,2019
https://doi.org/10.30534/ijatcse/2019/143862019

22. TrinathBasu, JKRSastry, Strengthening Authentication
within OpenStack Cloud Computing System through
Federation with ADDS System, International Journal
of Emerging Trends in Engineering Research, Volume
8, No. 1, Page, 213-238, 2020
https://doi.org/10.30534/ijeter/2020/29812020

23. JKRSastry, M TrinathBasu, Multi-Factor
Authentication through Integration with IMS System,
International Journal of Emerging Trends in
Engineering Research, Volume 8, No. 1, Page, 88-113,
2020

24. J. K. R. Sastry, K. Sai Abhigna, R. Samuel and D. B.
K. Kamesh, Architectural models for fault tolerance
within clouds at the infrastructure level, ARPN Journal
of Engineering and Applied Sciences, VOL. 12, NO.
11, 2017, Pages 3463-3469

25. DBK Kamesh, JKRSastry, Ch. Devi Anusha, P.
Padmini, G. Siva Anjaneyulu, Building Fault
Tolerance within Clouds at Network Level,
International Journal of Electrical and Computer
Engineering (IJECE), Vol. 6, No. 4, pp. 1560~1569,
2016 https://doi.org/10.11591/ijece.v6i4.10676

26. S. L. SUSHMITHA, Dr. D. B. K. JKRSASTRY, V. V.
N. SRI RAVALI, Y.SAI KRISHNA REDDY, building
fault tolerance within clouds for providing

JKR Sastry et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3986 - 3993

3993

uninterrupted Software as service, Journal of
Theoretical and Applied Information Technology,
Vol.88. No.1, Pages 65-76, 2016

27. JKRSastry, M TrinathBasu, Securing Multi-tenancy
systems through user spaces defined within the
database level, Jour of Adv Research in Dynamical &
Control Systems, Volume 10, issue 7, Page 405-412,
2018

28. JKRSastry, M TrinathBasu, Securing Multi-tenancy
systems through multi DB instances and multiple
databases on different physical servers, International
Journal of Electrical and Computer Engineering
(IJECE), Volume 9, Issue 2, Pages 1385-1392, 2019.
https://doi.org/10.11591/ijece.v9i2.pp1385-1392

29. JKRSastry, M TrinathBasu, Securing SAAS service
under cloud computing-based multi-tenancy systems,
Indonesian Journal of Electrical Engineering and
Computer Science, Volume 13, Issue 1, Page 65-71,
2019 https://doi.org/10.11591/ijeecs.v13.i1.pp65-71

30. M TrinathBasu, JKRSastry, Enhancing Data Security
under Multi-Tenancy within OpenStack, International
Journal of Advanced Trends in Computer Science and
Engineering, Volume 9, Issue 1, 2020, pp .533-544

31. Dr.JKRSastry, M. TrinathBasu, Enhancement of
Security within OpenStack – Some measures,
International Journal of Emerging Trends and
Engineering Research, Volume 8, Issue 3, 2020, pp.
919-938

