
Kottilingam kottursamy et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5932 – 5938

5932


ABSTRACT

Mobile databases have spread into today’s communication
and computing, with numerous applications relying on
mobile technology. It is an ever growing field and very much
in demand, thus proving to be an excellent area to carry out
research. With a large amount of data, management of such
data is the key issue. Existing policies consist of Message
Digest algorithms used along with cache replacement
algorithms. However, the Message Digest algorithms have a
major drawback of data replication, leading to a large
overhead on the memory constraints. This report discuses a
data management policy for heterogeneous mobile databases.
This policy involves a Synchronization Server, which
contains only the most critical of data, instead of all the data
as in case of a normal server. The synchronization server data
is efficiently managed by classifying it under various states
based on the frequency of data access, the time of data access,
i.e., which data has been actively used over a period of time
and which has not been used so. This aims to facilitate
synchronization of data between heterogeneous databases
using cache replacement and to improve the rate of
synchronization between heterogeneous mobile databases and
the database servers. This policy has shown better
performance than Least Recently Used and Most Frequently
Used algorithms in terms of the execution time.

Key words : Message digest algorithms(MDA), Mobile
databases, synchronization and data replacement.

1. INTRODUCTION

The ubiquity of the Mobile Database is expanding step by
step as individuals need data even progressing in the quick
evolving world. This information base innovation grants
representatives utilizing cell phones to associate with their
corporate organizations, crowd the required information,
work in the detached mode and reconnect to the organization
to synchronize with the corporate information base [1] . In
this situation, the information is being drawn nearer to the
applications so as to improve the exhibition and self-rule.

This prompts many fascinating issues with regards to portable
information base exploration and Mobile Database has
become a fruitful land for some analysts. The utilization of
portable information base has expanded quickly in light of the
ceaseless development of the equipment gadgets with more
noteworthy stockpiling limit and more controlled CPU. The
manner by which portable applications access the information
and oversee them is changed totally. Information are drawn
nearer to them to improve the effectiveness and
self-sufficiency as opposed to putting away them in a focal
data set. This new style makes many inspiring issues in
portable information base examination.
There are different definitions found in the writing on Mobile
Databases. A few creators characterized Mobile Database as
an information base that is put away on the cell phones, for
example, PCs, PDAs and Cell telephones. Hardly any
different creators expressed that it is a conveyed information
base in which the getting to mode is portable. Some different
creators portrayed Mobile information base as the association
of dispersed data set, detached information base, Ad-hoc data
set and broadcast plate [11]. The conveyed information base is
treated as the home for portable information base and the
others manage the entrance of versatile clients [16].A Mobile
data set incorporates a Database Server which oversees and
stores information, and gives applications, a far off
information base/DBMS which oversees and stores portable
information, and gives versatile applications, a Mobile
Database Platform which incorporates Laptop, PDA,
cellphones and so on., lastly, a two way correspondence
connect between the workers and Mobile Database Servers.
Essentially, it is a framework with basic and useful properties,
for example, Distributed framework with versatile
availability, Full information base framework capacity,
Complete spatial portability, Wireless and wired
correspondence ability.
There are different definitions found in the writing on Mobile
Databases. A few creators characterized Mobile Database as
an information base that is put away on the cell phones, for
example, PCs, PDAs and Cell telephones[21]. Barely any
different creators expressed that it is a circulated information
base in which the getting to mode is portable. Some different
creators portrayed Mobile information base as the association

An Adaptive Data Management Policy For Heterogeneous

Mobile Databases
Kottilingam kottursamy1, Hrishikesh Rajesh Deshmukh2

1Associate Professor, Department of IT, SRM Institute of Science and Technology, Chengalpattu, India
2Undergraduate Student, Department of IT, SRM Institute of Science and Technology, Chengalpattu, India

1k.kottilik@srmist.edu.in, 2hd7716@srmist.edu.in

 ISSN 2347 - 3983
Volume 8. No. 9, September 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter166892020.pdf

https://doi.org/10.30534/ijeter/2020/166892020

Kottilingam kottursamy et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5932 – 5938

5933

of circulated data set, detached data set, Ad-hoc information
base and broadcast circle. The dispersed information base is
treated as the home for versatile data set and the others
manage the entrance of portable clients. A Mobile
information base incorporates a Database Server which
oversees and stores information, and gives applications, a far
off data set/DBMS which oversees and stores versatile
information, and gives portable applications, a Mobile
Database Platform which incorporates Laptop, PDA,
cellphones and so on., lastly, a two way correspondence
connect between the workers and Mobile Database Servers.
Essentially, it is a framework with basic and utilitarian
properties, for example, Distributed framework with versatile
network, Full information base framework ability, Complete
spatial portability, Wireless and wired correspondence
capacity.

2. RELATED WORK

Barbara (1999) provides us a basic overview of mobile
databases [3]. This research has produced interesting results
in areas such as data dissemination over limited bandwidth
channels, location-dependent querying of data, and advanced
interfaces for mobile computers. Caching is one of the
primary mechanisms to have been used in the process of
synchronization and in particular mobile databases. Many
caching algorithms have been proposed [2]. The more
popular ones are Belady’s algorithm which always discard the
information that will not be needed for the longest time in the
future, Least Recently Used (LRU) which discards the least
recently used items first and Most Recently Used (MRU),
which in contrast to the LRU, discards the most recently used
items first. Further improvements were made with respect to
the response time of the caching mechanisms and Fawaz
(2013) provides a comprehensive analysis [4]. Mi-Young
Choi (2010) provided an efficient method for synchronization
of mobile databases, incorporating caching mechanisms [1].
This was based on message digest in order to facilitate data
synchronization between a server-side database and a mobile
database. McCormick and Schmidt (2012) focused on data
synchronization patterns in mobile design. Two types of data
synchronization patters were put forth, namely Asynchronous
Data Synchronization and Synchronization and Synchronous
Data Synchronization [8]. Competitive Analysis of Caching
was the main work of Wolfson (1998) [5].This paper revolved
around two objectives. First, a model for evaluating the
performance of data allocation and replication algorithms in
distributed databases.Secondly, an algorithm for automatic
dynamic allocation of replicas to processors.Fanelli (2014)
has presented a solution for efficient context data distribution,
by stressing our principal design guidelines, and highlighting
how the usage of different wireless modes and distributed
context caching can deeply improve Context Data
Management efficiency [6]. Gomaa, Messier, Williamson and

Davies (2013) introduced an analytical model for estimating
the cache hit ratio as a function of time [7]. A Markov chain
analysis was used for estimating the instantaneous hit ratio of
Infinite Cache. The proposed analysis considered a single
Web cache with infinite or finite capacity. For a cache with
finite capacity, two replacement policies were considered:
Least Recently Used (LRU) and First-In–First-Out (FIFO).
LRU ejects the least recently requested object, while FIFO
ejects the object that was brought into the cache earliest. An
improved version of FIFO, called FB-FIFO (Frequency based
FIFO) was introduced. The cache was split into two segments,
namely Protected segment and Unprotected Segment. When
an object is requested for the first time, it is brought into the
Unprotected Cache Segment. The Protected Segment
contains those objects, which have been requested more than
once, i.e., their popularity or frequency is more. When the
cache size is full, the object that was brought into the cache,
the earliest, would be ejected from the cache. Assuming a
fixed number of objects stored at the Web server, the results
show that the hit ratio reaches steady state within a period that
depends on cache capacity, object expiry rate and request rate.
FB-FIFO outperforms LRU and FIFO in the steady state,
especially for small cache capacities. On the other hand, these
results change when the Web server generates new popular
objects periodically.
Hua et al., proposed MobiDNA, an adaptive scheme for
dynamic Web content in a mobile computing environment.
This scheme improved dynamic browsing of mobile content
by lowering browsing latency and bandwidth consumption
[9]. Lu et al., focused on web databases, addressing the
problem of data annotation and automatic data alignment. A
probabilistic method was proposed to combine the annotators.
A clustering based method was used for the alignment
problem [10]. Scotney et al., provided a new method for
integrating aggregate views of distributed databases by using
a dynamic shared ontology [11]. Parker et al., developed an
approach for scaling spatial probabilistic and temporal
databases. Also, algorithms for consistency checking,
optimistic selection and caution selection were proposed [12].
Chen et al., proposed an approach to rank SQL queries results
using users’ navigational behaviour [13]. Wang et al.,
provided algorithms for shared data access in clouds.
Dynamic programming techniques were used to present
optimal solutions [15]. Gitzenis et al., developed a framework
for transmitter power control and cache management.
Dynamic programming and controlled markov chains were
used that help in obtaining the essential performance
trade-offs. The problem of data pre-fetching with power
control in wireless networks was addressed [20]. Holliday et
al., proposed epidemic algorithms for replicated databases.
This helped in maintaining atomicity of transactions,
eliminating global deadlocks achieving consistency and
serializability [17].

Kottilingam kottursamy et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5932 – 5938

5934

3. PROPOSED SYSTEM

Figure 1: Overall system architecture

3.1 SYNCHRONIZATION SERVER

The primary function of the Synchronization Server is to
satisfy the user’s requests, either by servicing it itself or with
the help of the Server. Another important function is the data
management. Efficient management of data will lead to faster
retrieval of data, hence leading to quicker times in servicing
the user’s requests. The synchronization Server classifies the
data in its table with respect to certain parameters such as
Frequency of data usage, Time of data access and so on. By
analyzing such parameters, the Synchronization Server
performs cache replacement[22-24], thereby keeping only the
data, that is very essential, which is indicated by the frequency
of its usage, leading to better organization and management
of data. The architecture of the Synchronization can be seen
clearly in Figure 2.

Figure 2 : Synchronization server architecture
As can be seen in Figure 2, some of the states of the data in the
Synchronization Server table are Most Frequently Used Data, Least
Frequently Data and other data, which are neither most frequently
nor least frequently used, but they stay in the Synchronization Server
more often than not. The data can move from one of those states to
the other and this is done as Cache Replacement.
The Server has a large amount of data and hence accessing it every
time to fetch a resource would not be the most feasible choice. This
is where the synchronization server comes into play. Since it has only
a portion of the data in the Server, which are the most important data,
it results in quicker access, faster retrieval and efficient servicing of
requests.

3.2 DATA CLASSIFICATION IN SYNCHRONIZATION
SERVER

Each row in the synchronization server is classified under any of four
states namely, Protected High, Protected Low, Unprotected High
and Unprotected Low. The row id of each row is checked, based on
which it is classified under any of the four mentioned states.

3.2.1 Unprotected Low state

If a new row is to enter the synchronization server table from
the server table, the hit value of the corresponding row is
compared with that of the last row in the Unprotected Low
state. If it is greater, then it replaces the last row in the
Unprotected Low state. Otherwise, there is no replacement.
That row remains in the server. If a row in the Unprotected
Low state is to be deleted, it is directly deleted from the
synchronization server table and is replaced by that row
which has the next best hit value.

Figure 3: State transitions of data from unprotected low state

Algorithm 1: Data classification in Synchronization
Server
1 Integer var //# rowid of each row
2 If var less than 30
3 Classify under "PROTECTED HIGH"
4 else if var between 30 and 50
5 Classify under "PROTECTED LOW"
6 else if var between 50 and 70
7 Classify under "UNPROTECTED HIGH"
8 else
9 Classify under "UNPROTECTED LOW"

Algorithm 2: Management of Unprotected
Low data
1 var rowsync //no of rows in sync server
2 if rowsync ++
3 compare (new row hit value,
min_hitvalue(unprotected low))
4 if new row hit value is greater
5 replace(last row in unprotected low,
new row)
6 else
7 no replacement
8 if rowsync --
9 delete row from sync table

Kottilingam kottursamy et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5932 – 5938

5935

Reduction of frequency of a row from Unprotected Low which
in turns moves the row to Protected High and causes
corresponding replacement of the respective row from
Protected Low. Reduction of frequency of a row from
Unprotected Low which in turns moves the row to Protected
Low and causes corresponding replacement of the respective
row from Protected Low. Reduction of frequency of a row
from Unprotected Low which in turns moves the row to
Unprotected High and causes corresponding replacement of
the respective row from Unprotected High.
Reduction of frequency of a row from Unprotected Low
resulting in removal of the row from the Synchronization
Server. Replacement of the row deleted from Synchronization
Server with the corresponding row from Server table.
Figure 3 depicts clearly the above transitions.

3.2.2 Unprotected High state

Increase of frequency of a row from Unprotected High which
in turns moves the row to Protected High and causes
corresponding replacement of the respective row from
Protected Low. Increase of frequency of a row from
Unprotected High which in turns moves the row to Protected
Low and causes corresponding replacement of the respective
row from Protected Low.
Reduction of frequency of a row from Unprotected High
which in turns moves the row to Unprotected Low and causes
corresponding replacement of the respective row from
Unprotected Low. Figure 4 depicts clearly the above
transitions.

Figure 4: State transitions of data from unprotected high state

3.2.3 Protected Low state

Figure 5 : State transitions of data from protected low state

1) Increase of frequency of a row from Protected Low which in
turns moves the row to Protected High and causes
corresponding replacement of the respective row from
Protected Low.
2) Reduction of frequency of a row from Protected Low which
in turns moves the row to Unprotected High and causes
corresponding replacement of the respective row from
Unprotected High.
3) Reduction of frequency of a row from Protected Low which
in turns moves the row to Unprotected Low and causes
corresponding replacement of the respective row from
Unprotected Low.

3.2.4 Protected High state

If a new row is to enter the Protected High state from the
Protected Low state, the hit value of the corresponding row is
compared with that of the last row in the Protected High state.
If it is greater, then it occupies the corresponding position in
Protected High state, pushing the remaining rows down.

Algorithm 3: Management of Unprotected
High data
1 var uph // No of rows in unprotected
high
2 if uph ++
3 compare (new row hit value,
min_hitvalue(Unprotected High))
4 if new row hit value is greater
5 replace(last row in Unprotected High,
new row)
6 else
7 no replacement
8 if uph --
9 move row (Unprotected

Algorithm 4: Management of Protected Low data
1 var pl // No of rows in Protected Low
2 if pl ++
3 compare (new row hit value,
min_hitvalue(Protected Low))
4 if new row hit value is greater
5move (new row,corresponding position in Protected
Low)for var i new row to last row, row[i]-> row[i]+1
else no replacement if pl - move(row,corresponding
position in Unprotected High).

Algorithm 5: Management of Protected High data
1 var ph // No of rows in Protected High
2 if ph ++
3 compare (new row hit value,
min_hitvalue(Protected High))
4 if new row hit value is greater
5 move (new row,corresponding position in
Protected High)
6 for var i new row to last row
7 row[i]-> row[i]+1
8 else
9 no replacement
10 if ph --
11 move(row,corresponding position in
Protected Low).

Kottilingam kottursamy et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5932 – 5938

5936

Otherwise, there is no replacement. That row remains in the
Protected Low state. If a row in the Protected High state is to
be deleted, it is moved to its corresponding position in
Protected Low state.
1)Reduction of frequency of a row from Protected High which
in turns moves the row to Protected Low and causes
corresponding replacement of the respective row from
Protected Low.
2) Reduction of frequency of a row from Protected High
which in turns moves the row to Unprotected High and causes
corresponding replacement of the respective row from
Unprotected High.
3) Reduction of frequency of a row from Protected High
which in turns moves the row to Unprotected Low and causes
corresponding replacement of the respective row from
Unprotected Low.

 Figure 6: State transitions of data from protected high state

3.3 DATA MANAGEMENT IN SYNCHRONIZATION

SERVER

 3.2.1 Based On Frequency

Here, the frequency of updation of data is of primary concern.
The synchronization server holds only the most critical of
data, which is indicated by its frequency. So, every time a row
is updated or deleted, its frequency is updated. The average
frequency of the rows in the synchronization server is
calculated, and it is compared with the frequency of
individual rows. In case a new row is being updated more
frequently, it will be put into the Synchronization server. But,
as the capacity of the synchronization server is fixed, any

incoming row will replace the last row of the synchronization
server, i.e, the Least Frequently Used row.

3.2.2 Based On Time
Here, the time of updation of data is the main criterion. Every
time a row is updated, the time at which the update took place
is recorded. Also, the time of the update immediately before
the most recent update is recorded. The time difference
between these two updated is found for each row in the
synchronization server. Also, the average time difference of
the updated for the rows in the synchronization server is
calculated. Any row, whose update time difference is greater
than that of the average time difference is removed and
replaced with a row that has a shorter update time difference
than the row that is to be replaced. Hence, the Most Recently
used row has the highest priority.

This method combines the features of the two methods
discussed above. The frequency of the updation of rows is
calculated as said in 1) and the synchronization server is
maintained. Then the update time difference of the rows is
calculated and the Synchronization server is maintained as
said in 2). A new criterion called ‘Popularity’ is introduced
here. This measures the number of different users using a
particular row. So, each time a different user does some
manipulation with a row, its popularity increases. In case one
or some users delete a row from their respective table, the
popularity of the corresponding row is decreased and the
synchronization server is rearranged. So, despite a row being
very frequently accessed, the reduced popularity pushes it
down the synchronization table. In this way, the
synchronization server is managed more effectively with
respect to the three criteria discussed above.

4. RESULTS AND ANALYSIS
4.1 Comparative Analysis
A comparison is done between three different data
management policies, namely, Synchronization Server, Least
Recently Used replacement policy and First-In-First-Out
replacement policy. Figure 15 shows the time taken to
perform synchronization of 100 rows of data using the
synchronization server.

Algorithm 6: Data Management based on
Frequency
1 Integer var1
2 for each row i inserted into Sync table
3 var1[i] ---> 1
4 for each row i updated in Sync table
5 Increment var1[i] by 1
6 if new row enters Sync table
7 Compare(var1[new row], avg[var1])
8 Classify under one of the four
mentioned categories.
9 sort sync table based on var1
10 Display cache

Algorithm 7: Data Management based on Time
1 time v1,v2
2 for each row i inserted into Sync table
3 store v1[i]
4 for each row i updated in Sync table
5 store v2[i]
6 for each successive update of row i
7 v2[i]----> Most recent update time
8 v1[i]----> Last but one update time
9 v3---> Calculate Difference(v2[i],v1[i])
10 compare(v3[i], avg[v3])
11 sort sync table based on var3
12 classify under one of the four categories.
13 Display cache

Kottilingam kottursamy et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5932 – 5938

5937

Figure 7 : Comparison of performance of various data management
policies
It takes 711 ms to perform the above operation. The same
operation is done using an LRU cache replacement policy. So,
it can be seen that the synchronization server performs much
better than LRU cache replacement. The analysis can be
extended to more rows of data. Figure 15 depicts the
performance of various data management policies, with
respect to the execution time.
For smaller data, FIFO performs the best. It takes only 80ms
for updation of 10 rows compared to 112ms for
Synchronization Server and 150 ms for LRU. FIFO is the
simplest of all policies, hence works very well with small
data.

However, when it is increased to 100 rows, it can be seen that
the synchronization server outperforms both the LRU and
FIFO policies. It takes only 711ms for the Synchronization
server, whereas it takes 912 and 980 ms for LRU and FIFO
respectively. Further, on scaling up the number of rows to
1000 we can observe that boththe LRU and FIFO take
comparatively longer time to the Synchronization Server.
This is the case on increasing the rows to 1500, 3000 and

Table 1: Represents the time taken by various synchronization
algorithm

6000. Ultimately, on increasing the row numbers to 10,000
we can observe that the time difference between the LRU and
FIFO to the Synchronization server is 5960 ms and 4480ms
respectively. This is due to the fact that the synchronization
server has better data management by organizing the data into
various states and operating only on the data essential rather
than FIFO and LRU, which involve the entire set of data. The
proposed data management policy performs better than both
LRU and FIFO. It works well especially with large amount of
data, due to its efficient management.

5. CONCLUSION

A data management policy for mobile databases is proposed
using a Synchronization server. This has made organization
of data efficient and replacement of cache better, thereby
improving the retrieval rate of data. The proposed policy has
proven to be better than existing cache replacement policies
such as LRU and FIFO terms of the response time. This
makes it very viable for applications that give most
importance to data management.This algorithm can be
applied to mobile devices such as PDAs, Tablets and so on, to
speed up the synchronization of data between them, while
taking into account the most important aspect, ‘Mobility’.

REFERENCES

1. Mi-Young Choi, Eun-Ae Cho, Dae-Ha Park, Chang-Joo
Moon, Doo-Kwon Baik, “A Database Synchronization
Algorithm for Mobile Devices”, in IEEE Transactions on
Consumer Electronics, Vol. 56, No. 2, May 2010, pp
392-398.
2. K. Kedzierski, M. Moreto, F.J. Cazorla, M. Valero
“Adapting cache partitioning algorithms to pseudo-LRU
replacement policies”, Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium, 19-23 Apr.
2010, pp 1-12.
3. Daniel Barbara, “Mobile Computing and Databases- A
survey”, in IEEE Transactions on Knowledge and Data
Engineering, Vol 11, No 1, Jan. 1999, pp 108-117.
4. KassemFawaz, Hassan Artail, “DCIM: Distributed
Cache Invalidation Method for Maintaining Cache
Consistency in Wireless Mobile Networks”, in IEEE
Transactions On Mobile Computing, Vol. 12, No. 4, Apr.
2013, pp 680-693.
5. Ouri Wolfson, Yixiu Huang, “Competitive Analysis of
Caching in Distributed Databases ”, in IEEE Transactions
On Parallel And Distributed Systems, Vol. 9, No. 4, Apr.
1998, pp 391-409.
6. M. Fanelli, Foschini, L. ,Corradi, A., Boukerche, A. , “
Self-Adaptive Context Data Management in Large-Scale
Mobile Systems”, in IEEE Transactions on computers, Vol.
63, No 10 , Oct. 2014, pp 2549 – 2562.
7. HazemGomaa, Geoffrey G. Messier, Carey Williamson
and Robert Davies "Estimating Instantaneous Cache Hit
Ratio Using Markov Chain Analysis", in IEEE/ACM
transactions on Networking, Vol. 21, no. 5, Oct. 2013 , pp
1472 – 1483.
8. Zach McCormick and Douglas C. Schmidt, "Data
Synchronization Patterns in Mobile Application Design" ,
in proceedings of the Pattern Languages of Programs (PLoP)
2012 conference, Oct. 19-21.
9. Zhigang Hua, Xing Xie,Hao Liu,Hanqing Lu,Wei-Ying
Ma, “Design and Performance Studies of an Adaptive
Scheme for Serving Dynamic Web Content in a Mobile
Computing Environment” , in IEEE transactions on Mobile
Computing, Vol. 5, No. 12, Dec. 2006, pp 1650-1662.

1. Sync
Algori
thm

2. No. of
3. Rows

SYNCHRO
NIZATION
SERVER
(ms)

4. LRU
5. (ms)

6. FIFO
7. (ms)

10 112 150 80
100 711 912 980
500 1512 1810 1736
1500 4536 5430 5208
3000 9072 10,860 10,416
6000 18,144 21,720 20,832
10,000 30,240 36,200 34,720

Kottilingam kottursamy et al., International Journal of Emerging Trends in Engineering Research, 8(9), September 2020, 5932 – 5938

5938

10. Yiyao Lu, Hai He, Hongkun Zhao, WeiyiMeng, Yu, C.,
“Annotating Search Results from Web Databases” , in
IEEE Transactions on Knowledge And Data Engineering,
Vol.25, No 3, Mar. 2013, pp 514-527.
11. McClean, S., Scotney, B., Greer, K., “A scalable
approach to integrating heterogeneous aggregate views of
distributed databases”, in IEEE Transactions on
Knowledge And Data Engineering, Vol.15, No 1, Jan. 2003,
pp 232-236.
12. Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.,
“SPOT Databases: Efficient Consistency Checking and
Optimistic Selection in Probabilistic Spatial Databases” ,
in IEEE Transactions on Knowledge And Data Engineering,
Vol.21, No 1, Jan. 2009, pp 92-107.
13. Zhiyuan Chen, Tao Li, Yanan Sun, “A Learning
Approach to SQL Query Results Ranking Using Skyline
and Users' Current Navigational Behavior”, IEEE
Transactions on Knowledge And Data Engineering, Vol.25,
No 12, Dec. 2013, pp 2683-2693.
14. Weigang Wu, Jiannong Cao, Xiaopeng Fan, “Design and
Performance Evaluation of Overhearing-Aided Data
Caching in Wireless Ad Hoc Networks”, in IEEE
Transactions on Parallel And Distributed Systems, Vol.24,
No 3, Mar. 2013, pp 450-463.
15. Yang Wang, Veeravalli, B., Chen-KhongTham “On
Data Staging Algorithms for Shared Data Accesses in
Clouds”, in IEEE Transactions on Parallel And Distributed
Systems, Vol.24, No 4, Apr. 2013, pp 825-838.
16. Bassiouni, M.A., “Single-site and distributed
optimistic protocols for concurrency control”, in IEEE
Transactions on Software Engineering, Vol.14, No 8, Aug.
1998, pp 1071-1080.
17. Holliday, J., Steinke, R., Agrawal, D., El Abbadi, A.,
”Epidemic algorithms for replicated databases”, in IEEE
Transactions on Knowledge And Data Engineering, Vol.15,
No 5, Sept. 2003, pp 1218-1238.
18. Hui Chen, Yang Xiao, Shen, Xuemin, “Update-Based
Cache Access and Replacement in Wireless Data
Access”, in IEEE Transactions On Mobile Computing, Vol.
5, No. 12, Dec. 2006, pp 1734-1748.
19. Xin Yu, “Distributed cache updating for the dynamic
source routing protocol”, in IEEE Transactions On Mobile
Computing, Vol. 5, No. 6, Jun. 2006, pp 609-626.
20. Gitzenis, S., Bambos, N., “Joint Transmitter Power
Control and Mobile Cache Management in Wireless
Computing”, in IEEE Transactions On Mobile Computing,
Vol. 7, No. 4, Apr. 2008, pp 498-512.
21.V.Nallarasan,Dr.K.Kottilinagam, “Enhanced security in
IoT Networks using ensemble learning methods-A
Cognitive Radio Approach”, International Journal of
Emerging Trends in Engineering Research, Volume 8. No. 8,
August 2020.
22. Kottursamy, Kottilingam, Gunasekaran Raja, and K.
Saranya. "A data activity-based server-side cache
replacement for mobile devices." Artificial Intelligence and
Evolutionary Computations in Engineering Systems.
Springer, New Delhi, 2016. 579-589.

23. Kottursamy, Kottilingam, Gunasekaran Raja, Jayashree
Padmanabhan, and Vaishnavi Srinivasan. "An improved
database synchronization mechanism for mobile data
using software-defined networking control." Computers &
Electrical Engineering 57 (2017): 93-103.
24. Raja, Gunasekaran, Kottilingam Kottursamy, Sajjad
Hussain Chaudhary, Ali Hassan, and Mohammed Alqarni.
"SDN assisted middlebox synchronization mechanism for
next generation mobile data management system."
In 2017 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computed, Scalable
Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
pp. 1-7. IEEE, 2017.

