
Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

231


ABSTRACT

The Smart City vision is becoming a reality with the
widespread adaption of Internet of Things (IoT). In this
context, several architectural styles like service-oriented and
microservice architecture have widely been used in the
development of IoT-based systems. However, less amount of
work is done for IoT-based system of systems. The
recognition of system of systems (SoS) as a system with its
unique features such as operationally and administratively
independence has been considered a new trend of distributed
software systems. The collaboration of the SoS independent
system helps to build a larger and more complex system. The
characteristics and domain constraints of SoS make some
quality attributes critical, especially when SoS is based on
IoT. These quality attributes should be considered while
designing such systems. To fill this gap, this article presents a
novel software architecture based on microservices
architectural style, while considering the important quality
attributes required for IoT-based SoS. The applicability of the
proposed architecture is demonstrated through a smart city
case study. In addition, the design quality is evaluated in
terms of scalability and maintainability. The results show that
the design developed using the proposed architecture is better
in terms of these two quality attributes than the existing
approach.

Key words : Internet of Things, micro-services, software
architecture, system of systems, smart city.

1. INTRODUCTION

The entire world is moving towards the era of intelligent
technology. The key factor in bringing this revolutionary
change is Internet of Things (IoT) [1]–[3]. The conversion of
real-world objects into an interactive and intelligent
decision-making systems that can be controlled from remote
sites is only possible due to IoT [1]. Furthermore, IoT has
become an important technology that promises to provide an
intelligent life for humans, by enabling communication
between objects, machines, and everything that exists with
people. IoT represents a system that has sensors, actuators,
and other embedded processing nodes communicating with
real-world elements through a wired or wireless network

structures. With the advent of the Internet of Things concept,
the Internet is becoming more conducive to intelligent living
in all its aspects. One of the key requirements for IoT is to
develop software to automate tasks [2]. As the systems are
becoming more and more software-intensive, there is a need
to focus on software design and architecture [4].

The term "System of Systems" (SoS) has been used for the last
few decades to describe a large complex system as a system,
with its independent constituent systems (ICs), which execute
together to achieve a common goal. SoS and IoT have many
common properties such as their ICs are heterogeneous,
independent, and often distributed. In addition, IoT and SoS
achieve their goals through extremely run time cooperation
that unites them. The recent exposure of IoT-based system of
systems (IoT-SoS) [5], [6] has further speed up the design
and development of such large-scale distributed complex
systems. However, special attention is required to design the
software architecture of such systems. Software architecture is
the high-level design of a software system and the discipline
of creating and connecting components with respect to
different stakeholder views [7]. Software architectures have
been recognized as the pillar of the success of any software
system. In addition, they are responsible for aggregating
quality attributes, such as scalability, interoperability,
reliability, maintainability, and so on.

Smart City (SC) is an example of IoT-based SoS [8], where
many IoT systems work together to provide various services to
citizens. For example, in the case of disaster management,
several ICs such as police, firefighting, and rescue work
together to deal with a disastrous situation. There are several
design approaches for smart cities [9], [10], [11] but an
approach is missing for smart cities as IoT-based SoS. To fill
this gap, a software architecture for IoT-based SoS is
presented in this paper. On the one hand, the proposed
architecture allows the development of IoT-based SoS as it
deals with the major principles of SoS. On the other hand, the
proposed architecture also considers quality attributes, such
as scalability, interoperability, maintainability, and
performance as needed. The proposed architecture is based on
microservices, also known as microservice architecture.
Microservices is an architectural style that is basically a
variation of a service-oriented system [12]. By combining
microservices style with cloud computing improves achieving
of quality attributes in an architecture. To evaluate the
applicability of the proposed architecture, it has been applied

Towards a Software Architecture for Internet of Things based

System of Systems
Muhammad Waqar Aziz1, Usama Musharaf2, Ali Sayyed3

Department of Computer Science, CECOS University of IT & Emerging Sciences Peshawar, Pakistan,
1waqar@cecos.edu.pk, 2usamamusharaf1992@gmail.com, 3alisayyed@cecos.edu.pk

 ISSN 2347 - 3983
Volume 9. No. 3, March 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter14932021.pdf

https://doi.org/10.30534/ijeter/2021/14932021

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

232

in the smart city case study. Then, the quality of the developed
design is evaluated in terms of two quality attributes (i.e.,
scalability and maintainability). The results show that the
proposed architecture, while covering the principles of SoS,
outperforms the existing approach.

The rest of the paper is organized as follows: Section 2
provides the background knowledge required to understand
the core concepts, followed by the research methodology in
section 3 and related work in section 4. The proposed software
architecture is presented in Section 5. Its application in the
smart city case study is demonstrated in section 6, whereas the
evaluation of design quality is provided in section 7. Section 8
concludes this paper with our future work.

2. PRELIMINARIES

2.1 System of Systems

The concept System of Systems (SoS) involves the run time
collaboration of distributed and heterogeneous systems to
achieve its goals. In general, IoT and SoS have many common
properties. Some of the IoT-based SoS principles are
managerial independence, operational independence, devices
heterogeneity, geographical distribution of components, and
emergent behavior [13]. For these principles quality attributes
such as interoperability, scalability, maintainability, and
performance are very important. If these properties do not
meet the criteria of the SoS or exceed from a well-defined
threshold, then the system is useless or will fall into a failure
state.

2.2 Microservice Architecture

The microservice architecture style is the approach to develop
a single application in terms of small easy-to-test, loosely
coupled services to perform their assigned task. The aim of
the microservices architectural style is to improve the
development process by creating highly independent services
that scale better on-demand [14]. Communication in a
microservices architecture is done via HTTP REST. The
essential features of microservices are fine granularity and
loose coupling which means that each microservice can be
developed in a different framework, such as programming
languages, thus improving interoperability. In contrast to
microservices, the monolithic architecture has no flexibility
to support continuous development and deployment which is
essential in today's highly heterogeneous environment such as
in IoT based SoS.

2.3 Cloud Computing

Cloud computing is a distributed approach [15] with the
capabilities of providing services such as Infrastructure,
Platform, and Software as a Service. The remotely driven
computing infrastructure of the cloud provides hardware and
software resources on-demand, which helps the cloud world

and IoT to grow rapidly and freely. These worlds are very
different from each other, but their features often complement
each other. In fact, IoT can take advantage of unlimited cloud
capabilities and resources such as storage, processing, and
communication. Cloud can provide effective solutions for
managing and authoring IoT services [16]. In many cases,
clouds can be the middle layer between objects and
applications. Cloud makes it easy for IoT applications to
collect and process data, and to configure and integrate new
elements quickly while maintaining complex data processing
at a better cost.

3. METHODOLOGY

This research work has started with the observation and
analysis of existing architectures from the literature to set a
base for the development of software architecture for IoT
based SoS. Based on observation and analysis, requirements
are obtained which highlight the important challenges and set
a path to develop the software architecture. These
requirements are obtained after a detailed analysis of
architectures from two different domains (IoT and SoS).
Research has already been done on IoT and SoS separately,
but very few research is found where IoT and SoS are
combined. In addition, we have noticed that these works are
in their initial stages. Based on these requirements, the
architectural style and state of the art technologies are
identified that are then used to develop the proposed
architecture. The proposed architecture is applied to the smart
city case study [17] to check its applicability. Moreover, the
design quality is evaluated in terms of scalability and
maintainability, as these two quality attributes are important
from the IoT-based SoS point of view. The scalability is
measured in terms of response time using the Palladio
simulator [18], whereas the ripple effect analysis is performed
to measure the maintainability. The complete research
methodology of developing the proposed software
architecture can be seen in Figure 1.

Figure 1: Research Methodology

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

233

4. RELATED WORK
There is literature available for smart cities but very limited
work is available for SoS based smart cities. Alkhabbas et al.
[5] have presented an overview of SoS based on IoT,
highlighting some identical properties by showing a relation
between IoT and SoS. There are many common
characteristics between IoT and SoS, For example, their ICs
are heterogeneous, autonomous, distributed, operational, and
managerial independent. This study is sufficient to
understand the concept of IoT-based SoS. The study [19]
presents a conceptual model for the integration of existing
systems for the development of smart cities. This research
presents a smart city as a distributed system with an emphasis
to achieve collaboration among the existing individual
systems in order to avoid developing systems from scratch.
This SoS based approach strengthens the vision of a smart
city by integrating existing individual systems of a city. In
[20] a systematic mapping study about design approaches of
IoT-based SoS is presented with some research opportunities.
The study concludes that most of the efforts are associated
with middleware platforms development due to its
significance in dealing with issues regarding interoperability
between different embedded devices and heterogeneity of ICs.
According to this study smart cities might become a reference
scenario of IoT-based SoS.

In [21], the authors presented an SOA-based reference
architecture for an SoS based smart city to counter the
problem of integrating independent systems of smart cities.
This study also presents smart city requirements in the
context of SoS principles. The reference architecture is
enough to understand the concept of SoS based smart cities
but lacks an adequate mechanism for the presentation and
validation of its architecture in a meaningful way. Similarly,
Mohammed et al. [22] present a framework for the integration
of a cyber-physical system of systems for smart city mobility
applications. The study adds a good body of knowledge for
integrating existing cyber-physical systems to present a
holistic view of smart city mobility applications. The focus of
the study is mainly on the service composition of existing CPS
systems.

Conclusion
It is observed from the literature review that the SoS based
smart cities are at their initial development stages. The
researchers of smart cities are aiming to develop smart cities
on the basis of SoS principles but a proper architecture for
smart cities in the context of SoS is still missing.

5. THE PROPOSED SOFTWARE ARCHITECTURE
FOR IOT BASED SOS
The software architecture proposed in this paper consists of
three layers: Device, Cloud, and Service. Figure 2 illustrates
the proposed software architecture in which the Cloud layer is
the main layer that provides services after getting data from
the Device layer. The layers in the proposed architecture are
described in detail below.

5.1 Edge or Device Layer

This layer contains all physical hardware devices in the
system. This ranges from sensors, actuators to other
processing nodes (Raspberry pi / Arduino). It is assumed that
each device in the intelligent system has a memory (to store
the operating system), a microcontroller, a network interface,
and software-accessible device control interfaces. The
integrated processing nodes (Raspberry pi / Arduino) have
GPIO pins (general purpose input / output) to interface with
other nodes (cloud). This layer basically sends data to the
cloud layer for analysis.

5.2 Cloud Layer

To perform a high-speed calculation and for large storage, the
cloud layer is used. IoT based SoS is composed of a large
number of independent information systems, which produce
large amounts of data. As a result, IoT requires the collection,
access, processing, and sharing of large amounts of data. The
cloud offers unlimited storage capacity, low cost, making it
ideal and is the most cost-effective way to manage the data
generated by IoT systems. Data stored in the cloud can be
viewed and accessed from anywhere via APIs.

5.3 Service Layer

This layer contains the services provided by the cloud. In
order to achieve interoperability, the service layer allows
communication with other services through HTTP REST (a
form of JSON). The service is categorized into two types
namely simple service and composite service as shown in
Figure 2. The simple service is a service that provides a single
functionality. A composite service is a group of services
combined together to provide functionality. In the proposed
architecture, the services have direct interaction with other
services without any middleware.

6. APPLICABILITY ON SMART CITY CASE STUDY

This article utilizes the smart city case study [17], whose
ultimate purpose is to uplift the living standard of citizens by
providing various services such as crime prevention, incident
management, and traffic management. In the smart city,
various cameras/sensors are mounted on different sites of the
city to collect data and then send it to the concerned authority
for monitoring. In the crime prevention system, when a crime
is reported by a citizen or detected by the system through
image analysis, the police are informed to reach the crime
spot. The traffic system provides traffic information to
citizens and other concerned authorities. The incident
management system provides a rescue service with the aim of
preventing incidents or any other disaster by taking necessary
actions with the help of police, ambulance, and so on.

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

234

Figure 2: Proposed Software Architecture

Figure 3: Illustration of the Proposed Architecture on Smart City

Case Study

In Figure 3, the case study is mapped using the proposed
architecture. It can be seen that the sub-systems of the smart
city (crime prevention, incident management, traffic
management) work independently and collaboratively to
provide various services to the citizen to improve their way of
life. Each system has its own set of IoT devices such as camera
sensors, actuators, and other processing nodes (Raspberry pi
/ Arduino, etc). The devices send data to the cloud for
analysis. The cloud is the main service provider in the
proposed architecture where several services are deployed
such as crime detection, incident monitoring, and so on. The
service uses other services in order to provide the composite
functionality to users. In the case of crime detection, the crime
detection service uses the service of police to prevent crime.
The police car (equipped with embedded devices) then uses
the service of the traffic system to reach the spot immediately.

7. DESIGN QUALITY MEASUREMENT

This section evaluates the quality of the proposed architecture
by analyzing its scalability and maintainability.

7.1 Scalability Analysis

Scalability can be defined as the ability of the system to
maintain its performance when the size of the system grows.
Scalability is an essential quality attribute as it helps in
extending the system functionality. In order to analyze the

scalability of the proposed architecture, the Palladio simulator
[18] is used.to predict software performance at the design
level. The simulation is performed in order to get response
time. The steps for measuring scalability are defined below.

Step-1:
Initially, we have modeled a crime prevention scenario and
incident management scenario in the Palladio simulator by
adding components and their interfaces which can be
observed in Figure 4. In the crime prevention scenario and
incident management, the camera sensor captures images and
then send it to the cloud for analysis. In case of any abnormal
situation, the city police or ambulance get notified to reach the
crime spot. Both scenarios represent a composite
service-based scenario with the involvement of more than one
service as shown in Figure 4.

Step-2:
In the second step, we set the simulation parameters of
services with the help of stochastic expressions. The
stochastic expression in the internal action (service effect
specification SEFF) of a component is used to represent
component behavior in terms of its complexity. To predict
exact resource demand at the design time is often difficult. In
this regard, a stochastic expression can help in order to set a
value for resource demand. For example, the expression
(CPU: DoublePMF[(5;0.5)(7;0.3)(10;0.2)]) represents the
resource demand of a component. This demand translates to
as in 50% of the cases the component or more specifically a
service requires 5 CPU work units (normal case); in 30% of
the cases it requires 7 CPU work units (average case) and in
20% of the cases it requires 10 CPU work units (worst case).
In this way, a service resource demand covers all aspects of
complexity. The details of service with respect to resource
demand can be observed in Table 1.

Step-3:
In the third step, the physical resources are assigned to the
components. Some more parameters such as processing
speed, and linking resource (network) are set in this stage
which can be observed in Figure 5. The components are
distributed on different servers like the working of a
cloud-based environment.

Step-4:
In the last step, a workload is induced in the system to
measure scalability. The workload here refers to the requests
made by users or objects (in our case various sensors/cameras
are mounted on different sites sends data regularly). In Table
2, two usage models are implemented in the simulator with
the best and worst cases.

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

235

Figure 4: Component Model in Palladio Simulator

Figure 5: Deployment Model

Table 1: Simulation parameters of services in proposed
architecture

Proposed Architecture
Services

Stochastic Expression

Crime Prevention Service

DoublePMF[(1.0; 0.7)(2.0; 0.2)(3.0;
0.1)]

Protection Service DoublePMF[(1.0; 0.6)(3.0; 0.4)]

Traffic Information
Service

DoublePMF[(1.0; 0.7)(2.0; 0.2)(3.0;
0.1)]

Ambulance Service DoublePMF[(1.0; 0.6)(2.0; 0.4)]

Fast Route Information
Service

DoublePMF[(1.0; 0.7)(2.0; 0.2)(3.0;
0.1)]

Incident Management
Service

DoublePMF[(1.0; 0.7)(2.0; 0.2)(3.0;
0.1)]

Table 2: Usage Models

Scenarios Best Case Worst Case

Crime
Prevention

After every 60
seconds, a crime
happens.

After every 20 seconds,
a crime happens 4
times.

Incident
Management

After every 60
seconds, an incident
happens.

After every 20 seconds,
a crime happens 4
times.

7.2 Maintainability Analysis

Software maintainability is an important quality attribute in
present-day software systems. This is because changes need to
be incorporated in the system with the passage of time to keep
the software meet the growing demands. In general, more
than 60% of the cost in the software development life cycle is
related to the maintainability of the software [23]. In order to
validate the proposed architecture in terms of maintainability,
ripple effect analysis (REA) [24] is used. REA is a technique
to observe the impact of changes made in one software
component into other components. In this work, the REA of
the proposed architecture is performed through features to
service association and service to service association matrix.

1. Feature to Service Association Matrix

In feature to service association matrix, a feature to service
mapping is done to observe the changes in services with
respect to features. The features can be elicited from user
requirements but in our case, it is elicited from the services of
a smart city case study which can be observed in Figure 6.

2. Service to Service Association Matrix

In a microservices-based system, there are a number of
services. Although the services are often independent, any
modification in one service can have an impact on other
services. For this reason, we use service to service mapping in
order to analyze the effect of one service on another.

7.3 Comparison and Discussion

In this section, we have compared the proposed architecture
with smart city architecture namely InterSCity [9] which is
based on microservices. In order to compare the results of the
proposed architecture with InterSCity, we first model
InterSCity architecture on the smart city case study. The
working of services coordination in InterSCity can be
observed in Figure 7.

1. Scalability Results Comparison

The scalability is evaluated on the basis of two usage
scenarios as shown in Table 2. The result of scalability is
shown in Figures 8 to 11. The horizontal axis in these figures
shows the probability while the verticle axis shows the
response time. It can be observed that the proposed
architecture is more scalable than InterSCity architecture. In
the proposed architecture, the service coordination
(orchestration) is done at the system level, thus eliminating
middleware. The InterSCity architecture is based on the
middleware (orchestrator) which is responsible for the
coordination among services. The use of middleware in
InterSCity added one extra service as being responsible for
service coordination.

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

236

Figure 6: Features Elicited from Smart City Case Study

Figure 7: Services Coordination in InterSCity

In this context, the resources demand of services in
“InterSCity” is lesser than the proposed architecture because
there is one additional service (orchestrator) for the
coordination of services. In the modeling of the InterSCity
architecture, the simulation parameter (stochastic expression)
is set as by keeping resource demand of services idle in 20 to
30% cases that are enough for the justification of not having
coordination at service or system-level like in the proposed
architecture. The simulation parameters of InterSCity are
shown in Table 3.

2. Maintainability Results Comparison

The maintainability is evaluated through REA on the basis of
observing changes. A new service (Traffic Violation Service)
is introduced in a case study in order to observe the changes as
shown in Table 4 and 6. In this way, we are now able to
extract those services which are affected by these newly added
features and service (shaded green). In Tables 5 and 7, the
change can be observed in red shaded color. The proposed
architecture is more maintainable than InterSCity
architecture as adding new services have no impact on other
services. In InterSCity, the services coordinate with other
services through middleware (orchestrator). Adding new
services would require making changes in middleware and
any change in middleware would affect all services as shown
in Table 7.

Table 3: Simulation parammeters of services in InterScity
architecture

InterScity Architecture
Services

Stochastic Expression

Crime Prevention Service DoublePMF[(1.0; 0.6)(2.0; 0.2)(0.0; 0.2)]

Protection Service DoublePMF[(1.0; 0.6)(2.0; 0.2)(0.0; 0.2)]

Traffic Information
Service

DoublePMF[(1.0; 0.6)(2.0; 0.2)(0.0; 0.2)]

Ambulance Service DoublePMF[(1.0; 0.7)(0.0; 0.3)]

Fast Route Information
Service

DoublePMF[(1.0; 0.6)(2.0; 0.2)(0.0; 0.2)]

Incident Management
Service

DoublePMF[(1.0; 0.6)(2.0; 0.2)(0.0; 0.2)]

Orchestrator (Middleware) DoublePMF[(1.0; 0.5)(2.0; 0.2)(3.0; 0.3)]

Figure 8: Crime Prevention Scenario Best Case Comparison

Figure 9: Crime Prevention Scenario Worst Case Comparison

Figure 10: Incident Management Scenario Best Case Comparison

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

237

Table 4: Feature to Service Association Matrix of Proposed Architecture
 Services

Features

Traffic
Violation
Service

Crime
Prevention

Service

Protection
Service

Traffic
Information

Service

Ambulance
Service

Fast Route
Information

Service

Incident
Management

Service

Crime Detection 0 1 0 0 0 0 0

Alert Police 0 1 0 0 0 0 0

Provide Protection 0 0 1 0 0 0 0

Request Traffic Info 0 0 1 0 0 0 0

Provide Traffic Info 0 0 0 1 0 0 0

Provide Ambulance 0 0 0 0 1 0 0

Request Fast Route Info 0 0 0 0 1 0 0

Provide Fast Route Info 0 0 0 0 0 1 0

Incident Monitoring 0 0 0 0 0 0 1

Alert Police 0 0 0 0 0 0 1

Alert Ambulance 0 0 0 0 0 0 1

Violation Detection 1 0 0 0 0 0 0

Alert Police 1 0 0 0 0 0 0

Table 5: Service to Service Association Matrix of Proposed Architecture

 Services

Services

Traffic
Violation
Service

Crime
Prevention

Service

Protection
Service

Traffic
Information

Service

Ambulance
Service

Fast Route
Information

Service

Incident
Management

Service

Traffic Violation Service 0 0 0 0 0 0

Crime Prevention Service 0 0 0 0 0 0

Protection Service 0 1 0 0 0 1

Traffic Information Service 0 0 1 0 0 0

Ambulance Service 0 0 0 0 0 1

Fast Route Information Service 0 0 0 0 1 0

Incident Management Service 0 0 0 0 0 0

Figure 11: Incident Management Scenario Worst Case Comparison

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

238

Table 6: Feature to Service Association Matrix of InterSCity Architecture
 Services

Features

Traffic
Violation
Service

Crime
Prevention

Service

Protection
Service

Traffic
Information

Service

Ambulance
Service

Fast Route
Information

Service

Incident
Management

Service

Orchestrator

The rest of the features are the same as in Table 4.

Identifies Request 0 0 0 0 0 0 0 1

Load Balancing 0 0 0 0 0 0 0 1

Coordinates Request 0 0 0 0 0 0 0 1

Violation Detection 1 0 0 0 0 0 0 0

Alert Police 1 0 0 0 0 0 0 0

Table 7: Service to Service Association Matrix of InterSCity Architecture

 Services

Services

Traffic
Violation
Service

Crime
Prevention

Service

Protection
Service

Traffic
Information

Service

Ambulance
Service

Fast Route
Information

Service

Incident
Managemen

t Service

Orchestrator
(Middleware)

Traffic Violation Service 0 0 0 0 0 0 1

Crime Prevention Service 0 0 0 0 0 0 0

Protection Service 0 1 0 0 0 1 0

Traffic Information Service 0 0 1 0 0 0 0

Ambulance Service 0 0 0 0 0 1 0

Fast Route Information
Service

0 0 0 0 1 0 0

Incident Management Service 0 0 0 0 0 0 0

Orchestrator (Middleware) 1 1 1 1 1 1 1

8. CONCLUSION

In this paper, a microservice based layerd architecture for
smart city is proposed. The proposed architecture provides a
way to model the smart city in terms of services. We have
shown a smart combination of SoS principles with
microservices to propose a software architecture for smart
cities with several quality attributes including salability,
interoperability, maintainability.The proposed architecture is
applied on a smart city case study. The quality of proposed
architecture is evaluated in terms of scalability and
maintainability. In future we will improve our architecture by
adding some more quality attributes like evolvability, security
etc.

REFERENCES

1. Z. Kamal. Aldein Mohammed and E. Sayed Ali Ahmed.

Internet of Things applications, challenges and
related future technologies, World Scientific News,
Vol. 2 (67), pp. 126-148, 2017.

2. K. Kaiva and G. Atkinson. What the Internet of
Things (IoT) needs to become a reality, White Paper,
FreeScale and ARM, pp. 1-16, 2013.

3. A. Whitmore., A. Agarwal,. and L. Da Xu. The Internet
of Things—A survey of topics and trends, Information
Systems Frontiers, Vol. 17(2), pp. 261-274, 2015.

4. P. Kruchten. An ontology of architectural design
decisions in software intensive systems, in 2nd
Groningen workshop on software variability, pp. 54-61.
2004.

5. F. Alkhabbas, R. Spalazzese, and P. Davisson. IoT-based
Systems of Systems, 2016.

6. J. Lukkien. A systems of systems perspective on the
internet of things, ACM SIGBED Review, Vol. 13(3),
pp. 56-62, 2016.

7. E.Woods. Software architecture in a changing world,
IEEE Software, Vol. 33(6), pp. 94-97, 2016.

8. E. Cavalcante, N. Cacho, F. Lopes, T. Batista, & F.
Oquendo. Thinking smart cities as
systems-of-systems: A perspective study, in Proc. of
the 2nd International Workshop on Smart Cities, pp.
9:1-9:4. ACM 2016.

Muhammad Waqar Aziz et al., International Journal of Emerging Trends in Engineering Research, 9(3), March 2021, 231 – 239

239

9. A. D. M. Del Esposte, E.F. Santana, L. Kanashiro, F.M
Costa., K. R. Braghetto, N. Lago, & F. Kon. Design and
evaluation of a scalable smart city software platform
with large-scale simulations, Future Generation
Computer Systems, Vol. 93, 427441, 2019.

10. N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, I.
Jawhar, & S. Mahmoud. A service-oriented
middleware for cloud of things and fog computing
supporting smart city applications, in 2017 IEEE
SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computed, Scalable Computing &
Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
pp. 1-7, IEEE, 2017.

11. A. Krylovskiy, M. Jahn, & E. Patti. Designing a smart
city internet of things platform with microservice
architecture, in 3rd International Conference on Future
Internet of Things and Cloud, pp. 25-30, IEEE, 2015.

12. D. Namiot, and S. S. Manfred. On micro-services
architecture, International Journal of Open Information
Technologies Vol. 2, No. 9, pp. 24-27, 2014.

13. M. W. Maier. Architecting principles for
systems-of-systems, Systems Engineering: The Journal
of the International Council on Systems Engineering,
Vol. 1(4), pp. 267-28, 1998.

14. D. Shadija, D., Rezai, M., & Hill, R. Towards an
understanding of microservices, in 23rd International
Conference on Automation and Computing (ICAC), pp.
1-6, IEEE, 2017.

15. T. Erl, R. Puttini, and Z. Mahmood. Cloud computing:
concepts, technology & architecture. Pearson
Education. 2013.

16. Y. Marcelo, R. Miltio, R. Serral Gracia, D. Montero, and
M. Nemirovsky. Key ingredients in an IoT recipe: Fog
Computing, Cloud computing, and more Fog
Computing, in IEEE 19th International Workshop on
Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), pp.
325-329, IEEE, 2014.

17. S. K. Lee, H.R. Kwon, H. Cho, J. Kim,, & D. Lee.
International Case Studies of Smart Cities: Anyang,
Republic of Korea. Inter-American Development Bank
2016.

18. S.Becker, H. Koziolek, & R. Reussner. The Palladio
component model for model-driven performance
prediction, Journal of Systems and Software, Vol. 82
(1), pp. 3-22, 2009.

19. V. Javidroozi, H. Shah, A. Cole., & A. Amini. Towards
a City's Systems Integration Model for Smart City
Development: A Conceptualization, in International
Conference on Computational Science and
Computational Intelligence (CSCI), pp. 312-317, IEEE,
2015.

20. P. Maia, E. Cavalcante, P. Gomes, T. Batista, F. C.
Delicato, & P. F.Pires. On the development of
systems-of-systems based on the internet of things: A

systematic mapping, in Proc. of the 2014 European
Conference on Software Architecture Workshops, pp.
1-8, ACM, 2014.

21. S.J. Clement., D.W. McKee, & J. Xu. Service-oriented
reference architecture for smart cities, in IEEE
symposium on service-oriented system engineering
(SOSE), pp. 81-85, IEEE, 2017.

22. M. Elshenawy, B. Abdulhai, & M. El-Darieby. Towards
a serviceoriented cyber–physical systems of systems
for smart city mobility applications, Future
Generation Computer Systems, Vol. 79, pp. 575-587,
2018.

23. G. Alkhatib. The maintenance problem of application
software: An empirical analysis, Journal of Software
Maintenance: Research and Practice, Vol. 4 (2), pp.
83-104, 1992.

24. S. Anwar, S. Haleem, T. A. Syed, A. Adnan, T. A.
Tanveer, M. Alam, M. Ali & A. Rauf. A FODA
Oriented Approach to Architecture Based Ripple
Effect Analysis, INFORMATION-AN
INTERNATIONAL INTERDISCIPLINARY JOURNAL,
Vol. 14 (6), pp. 2139-2149, 2011.

