
Muhammad Rizki et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1040 - 1046

1040


ABSTRACT

This study about the analysis and design of SOA-based
applications using a microservices approach based on a case
study of PT XYZ. The transformation of the system from
Model View Controller (MVC) with a large codebase evolved
into SOA through the microservices approach, this is an
important part in order to promote independence, speed and
security. according to the conditions of the company through
steps that are comprehensive and effective. adaptation of
microservices architecture is very important in terms of
development life cycle culture in a company and these
changes must be done with a sustainable approach in order to
achieve the target when applying microservices includes
flexibility, speed, and security.

Key words : Microservices, SOA, Domain-driven design,
Online HealthCare.

1. INTRODUCTION

Information technology helps many people to get information
more quickly and accurately including information about
health solutions and online health care is one of the services
in the health industry that is run with online information
technology solutions that can reach the wider community
effectively and efficiently. The opportunity was accepted by
PT XYZ to provide accurate and trustworthy information to
the public about good health about various common diseases,
symptoms and healthy lifestyles, directly from health
practitioners sourced from several doctors providing their
knowledge about a case or tips for prevention. The current
architecture at PT XYZ is an architecture based on
client-server architecture and a typical view controller model
(MVC).

MSA (microservices architecture) is an SOA-based
architecture with an approach through a smaller context and
focuses on create an independent application as a separate
service and each service can communicate in simple and
lightweight, such as the Http protocol. Integration and

building microservices mechanisms are necessary for the
management of various existing systems and future systems.
According to increased business growth, a company is
demanded to increase productivity in all production lines by
increasing existing services, reducing business risk and
simplifying existing processes, it requires effective
transformation and innovation to remain competitive in the
health care industry, information technology has improved
healthcare to the patient at anytime and anywhere to provide
emergency health services and telemedicine provides timely
and costless health services in the society [1]

Business development requires the system to change
accordingly with desired conditions and delivered quickly but
remains operationally safe, this is difficult to implement in a
monolith system, given the many things that need to be
considered to change a function with a large and complex
codebase, functional dependencies are tight coupling instead
of loose coupling and need a few steps to ensure the
transformation, including coordination between departments
or teams involved and re-testing that changes that have been
made, should not interfere with the existing functionality.

The objectives of this study are analysis of existing business
flow and design SOA-based application through the
microservices architecture (MSA) approach using
domain-driven design.

The benefit of this research is to help companies when
planning to transform monolithic architecture systems into
microservices architecture (MSA), providing concrete steps
that can be carried out for the comprehensive implementation
of microservices architecture (MSA). The scope of this
research is to analyze and design a prototype of an SOA-based
application module through the microservices architecture
(MSA) approach to pre-existing business processes using
domain-design driven to describe the results of the
transformation of monoliths to microservices.

2. LITERATURE REVIEW

Service-oriented architecture (SOA) is a service-oriented
approach. By definition, SOA is different from web services,
which means that SOA is not the same as web services, the

Microservices Architecture Design: Proposed for online HealthCare

Muhammad Rizki1, Ahmad Nurul Fajar 2, Astari Retnowardhani 3
1,2,3Information Systems Management Department, BINUS Graduate Program-Master of Information Systems

Management, Bina Nusantara University, Jakarta, Indonesia 11480.
 1muhammad.rizki004@binus.ac.id; 2afajar@binus.edu; 3aretnowardhani@binus.edu

 ISSN 2347 - 3983

Volume 8. No. 4, April 2020
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter14842020.pdf

https://doi.org/10.30534/ijeter/2020/14842020

Muhammad Rizki et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1040 - 1046

1041

SOA approach can cope with a dynamic and rapidly changing
business environment with the flexibility in mind. This
condition can minimize the effort, cost and time to adjust
functionality when requirement changes.
SOA can produce architectures that are loosely coupled and
stateless, this is because the system architecture is built with
service-oriented, some SOA principles described by [2], and
these also form the basis of microservices are as follows:
reusable, share a formal contract, loosely coupled, abstract
underlying logic, composable, autonomous, stateless, and
discoverable.

A common architecture in SOA-based application
development described by [3] are Reuse, Efficient
Development, Integration of Applications and Data, and
Agility, Flexibility, and Alignment.

Microservice architecture is a collection of independent and
relatively small processes that can communicate with each
other to form complex applications and agnostic to any
programming language. These services consist of small
blocks, separated and focus on light tasks to run modular and
distributed methods in the system. Each module of each
microservices can be implemented and operated as a small but
independent system, this is possible to access internal logic
and data through a predetermined network. it can improve the
ability of the system because each microservices become an
independent unit to carry out development, deployment,
operation, versioning, and scaling [4].

Microservices are a subtype of SOA with independent
services with clear boundaries, microservices are similar to
traditional SOA,. But SOA tends to rely heavily on several
ESB (enterprise service bus) products or similar products,
whereas microservices only rely on lightweight technologies
such as the Http protocol with a REST interface. Some
advantages that are often attached to microservices
architecture (MSA) include faster delivery, improved
scalability, and greater autonomy. microservices are
packaged and deployed through cloud computing using
container technology such as Docker, following the practice
in the DevOps industry that has been proven through the
support of CI / CD (Continuous Integration, Continuous
Delivery) can be fully automated for integration and
deployment [8]. The difference in scaling between monolithic
and microservices can be seen in the difference in monolithic
capabilities which can only be improved by adding the whole
system including its host with some hardware and software,
whereas microservices is more focused by adding services
needed by increasing horizontal scaling while remaining
attached on the same hosts [5].

Previous research related to microservices architecture as
follows:

i. Pooyan Jamshidi [4] Microservices: The Journey So
Far and Challenges Ahead. This study about the
evolution of microservices, advantages, and
disadvantages as well as improvements for the
future. The evolution of microservices made by
researchers, wherefrom the research model can be
seen that the evolution of microservices technology
is developing very fast with the emergence of various
tools to assist in the implementation and
maintenance of modules that are managed and
create with microservices oriented. the results of this
study provide an important picture of the
transformation from a monolithic system to
distributed and independent microservices also as
consideration to make decisions about microservices
architecture.

ii. Christudas [6] Microservices Architecture.
Researchers from The Open Group, SOA Work
Group, develops detailed research on the perspective
of microservices with members of industry working
groups. by providing clear and specific definitions of
microservices, filtering out the core principles of
microservices and key characteristics, and providing
a comparison of MSA with
Service-or-embedded-architecture (SOA).

iii. Andi Singleton [7] The Economics of Microservices.
Researchers conduct studies of microservices in
terms of economics and budget as well as the benefits
and trade-offs that can be obtained in the
implementation of microservices, related to this can
also provide a simple way to change components
without causing or adding new problems throughout
the system.

iv. O’Connor, Elger, & Clarke [8] Exploring the impact
of situational context - A case study of a software
development process for a microservices
architecture. Researchers conduct research on the
importance of context in a decision-making process
using microservices. By understanding the life cycle
model must be appropriate for the scope of the
project, the magnitude of the impact, complexity,
changing needs and opportunities such as the
general domain of situational factors that influence
the development process of microservices can be
seen as strategically important for the future of
software development, classification into several
things such as Personnel, Requirements,
Application, Technology, Organization, Operations,
Management, and Business.

v. Eric Evans [9] Tackling Complexity in the Heart of
Business Software, Domain design-driven is a
philosophy whose focus is on the intricacies of
domains and make these intricacies explained in the
domain model and its implementation in code.

Muhammad Rizki et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1040 - 1046

1042

3. ANALYSIS AND PLANNING

This research begins when a company has migration plans to
convert the system from monolithic to MSA (microservices
architecture), SOA-based application design with MSA
approach is carried out using frameworks, design principles
and methodologies related to domain-driven design (DDD)
adapted from [9] and [10] domain-driven design (DDD) is an
approach used in application development where the domain
model is the center of artifacts. Domain-based design
approach was used in application development where the
central domain model is an artifact with creative
collaboration between technical experts and domains to
iteratively improve the conceptual model that addresses
specific domain problems. The stages that will be carried out
to identify and design the use of the Domain-Driven Design
approach of [9] and [10] in modeling microservices-based
architecture on research objects.

Collecting data is needed at the beginning of the preparation
of this stage, such as by conducting visits and interviews with
relevant parties at PT. XYZ interviews were conducted with
several teams involved in developing online health care
applications including doctor chat modules, doctor bookings,
hospital search, insurance, and health information. This
interview aims to get an overview of how the application
architecture and business capabilities of existing applications
and what obstacles are encountered and get documentation
from the system. Next, analyze the architectural models that
are in productions and study the documentation at PT. XYZ,
such as functional specification document, technical
specification document, and user manual, user journey from
the current online health care application system with the aim
of the results obtained will become a reference and guide the
existing system specifications for the process of developing
and modeling microservices. At this stage, identify and
classify the domain model with the Domain-Driven Design
approach where the steps are as follows:

1) Analyze business domains by understanding the
functional flow of application processes. The output
of this step is an informal description of the domain,
which can be made a reference and refined to a more
formal set of domain models,

2) Define the domain. bounded context represents a
particular subdomain of a larger application that
contains a domain model,

3) Apply tactical DDD patterns to define entities,
aggregates, and bounded contexts services domains,
and

4) Use the results from the previous step to identify
microservices.

The application architecture design phase determines how the
communication design between services, API Design, Data

Management and design patterns that will be applied to the
online health care system at PT. XYZ

3.1 Infrastructure Analysis

The infrastructure using third-party services to maintain
services in optimal conditions, such as when users access
applications or websites will be directed to Cloudflare as
Content Delivery Network (CDN) that can protect against
threats such as SQL injection and identity theft. Cloudflare
also improves site performance and speeds up loading time by
using several data centers located throughout the world and
then be directed to the Google Cloud Platform (GCP) for
proxies, load balancers, virtual machines, and databases. To
increase the resilience of the monolith architecture, load
balancers are used to refer to the process of distributing tasks
over a series of resources, to make the overall process more
efficient. when disruption to network functionality and denial
of service attacks can have a major impact on healthcare
delivery and protecting data availability, ensuring consistent
connectivity and access to services is major requirement [11].

Figure 1: Current Infrastructure

As shown Figure 1, a load balancer distributes user traffic on
several server instances, by working on load distribution, load
balancers can reduce the risk of applications being overhead,
slow, or not functioning.

3.2 Business Domain Analysis

The object of research is PT. XYZ is a company engaged in
online healthcare services, the services offered are in the form
of health care solutions developed to meet the needs of the
public in finding, obtaining information and health services,
consisting of several modules such as Figure 2.

Figure 2: Business Model

Those modules packaged as monolithic application describes
a single-tiered software application in different components
combined into a single program from a single platform as
shown in Figure 3.

Muhammad Rizki et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1040 - 1046

1043

Figure 3: Monolithic Package

Information Workflow is a sequence of tasks that process a set
of data, workflows occurring in each type of product and
domain. information can be sent at any time by the user or the
system. The workflow Information is a flow that describes
how something changes from the first step to desired
information that can be processed and received. several
workflows occur as follows, such as: Chat Workflow,
Booking Workflow, Hospital Workflow, Insurances
Workflow and Magazine Workflow.

Chat Workflow is a process of transferring information and
functional domains in the Chat with Doctors product, which
starts with user registration in the application and then user
can search for the specialist doctors, if they have found a
suitable doctor to consult, user can pay a nominal amount to
start chatting, after the payment transaction is verified, user
can immediately consult and ask questions with a doctor as
Figure 4.

Figure 4: Chat Workflow

Workflow Booking is a process for reserving queues in
conducting offline consultations in accordance with the
doctor's schedule given by the hospital as Figure 5.

Figure 5: Booking Workflow

Hospital Workflow is a process of finding information about
doctors, procedures and hospitals, according to the keywords
that the user wants, this keyword goes to keyword validation
process based on data available in the application as Figure 6.

Figure 6: Hospital Workflow

Insurance Workflow is the process from insurance products,
such as registering users as insurance participants through the
application, after submission there will be data verification
followed by validation of payments to be deducted monthly
during the insurance policy period, as long as the user's in
active status, they can get benefits in accordance with the
agreement stated in the insurance policy, users can submit
claims, then the claim will be validated and adjusted
according to the policy as Figure 7.

Figure 7: Insurance Workflow

Magazine Workflow is a process of transferring information
about health articles, information related to disease and drug
names, users can directly search for information based on the
desired topic in the form of health topics or users can ask
about health conditions through Ask the doctor's page and
there are various names of diseases and drugs accompanied by
an in-depth explanation that can be an important reference
about medical terms that are often used in health sciences as
Figure 8.

Figure 8: Magazine Workflow

3.3 Bounded Context Analysis

Bounded Context is a semantic contextual boundary and
components inside a Bounded Context are context specific,
each component of the software model has a specific meaning
and does specific things [12].

Muhammad Rizki et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1040 - 1046

1044

A bounded context is the boundary within a domain where a
particular domain model applies and well-defined, area of
responsibility in the business domain with its own unique
vocabulary, why using Bounded Contexts? because often
teams do not know when to stop piling more and more
concepts into their domain models.

The model may start small and, but then more concepts, and
more, and adding more. This soon results in a big problem.
Not only are there too many concepts, but the language of the
model becomes blurred, because there are actually multiple
languages in one large, confusing, unbounded model [12] as
shown in Figure 9.

Figure 9: Overflow Context

Core Domain Context is the core services provided by PT
XYZ, as Customer Perceived Value is one of the most
influential forces in the market. Value, in marketing, is
usually described from the customer's perspective, which
defines performance, quality and price [13] and premium chat
with doctors becomes the main service of all products offered
to the community. the schedule of doctors from early morning
to night and various options for specialist doctors who are
capable answering user complaints according their
experiences and a strong medical background, then chat
services with doctors grows into other complementary
services.

Figure 10: Core Domain

As shown in Figure 10, it starts with chat services that can be
assisted by doctors or chatbots, then grows into a number of
other services, such as health articles, hospitals and
insurance.

Sub Domain Account Context, this is related to transactions
made by users, including payment of premium chat with
doctors as shown in Figure 11.

Figure 11: Account Domain

Payment can be integrated with various modules related to
transactions, such as validation for repayment of insurance
members.

Sub Domain Content Context, these health articles, including
information about doctors and hospitals as collaborator, a
collection of medical terms such as diseases and drug names,
that can be a reference material in analyzing health
conditions as shown in Figure 12.

Figure 12: Content Domain

Sub Domain Insurance Context, this is part of an insurance
product that handles insurance life cycles, start from
registration to claims such as Figure 13.

Figure 13: Insurance Domain

Sub Domain Member Context is part of the core domain that
regulates membership, users or doctors registered in the
service and roles that can be set in for flexibility in the system
such as Figure 14.

Figure 14: Member Context

Sub Domain Schedule Context is part of the doctor's schedule
and integrated with the hospital booking and for premium
chat with doctors in applications such as Figure 15.

Muhammad Rizki et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1040 - 1046

1045

Figure 15: Schedule Context

There are 1 Core Domains and 5 Sub Domains as the basis for
bounded context in the online health care application at PT
XYZ, includes chat, booking, hospital, article and insurance
services.

Figure 16: Domain Contexts

A collection of multiple context domains as shown in Figure
16 and Context Mapping Integration using by RESTful http.

3.4 Aggregates Analysis

 Aggregate is a logical boundary for things that can change in
a business transaction of a given context and defining
consistency boundaries and enforcing invariants as shown in
Figure 17.

Figure 17: Domain Aggregates

3.5 Microservices Design

Microservices provide more agility on the software
development life cycle than the traditional Monolith,
coordination between team are less coupling because
microservices are independent and small.

Based on aggregates analysis, identifying services candidate
is clearer than before, as shown in Figure 18, there are 8
services candidates will be packaged as microservices
application as shown in Figure 18.

Figure 18: Microservices Architecture

Services can be deployed independently, responsible for
persisting their own data or external state and communicate
with each other by using well-defined APIs. Internal
implementation each service only accessible via API gateway
and that the only one entry point for clients, API Gateway
forward the call to destination services. In order to manage
services nodes, failures, rebalancing
Management/Orchestration is included.

Services communicate through APIs. Consider the case where
the Chat service requests information about doctor schedules
from the Schedule service as shown in Figure 19.

Figure 19: Services Communication

In microservices architecture (MSA) client services might
interact with one or two services, API gateway sits between
clients and services also as reverse proxy, handle routing from
clients to services. It may also handle various cross-cutting
tasks such as authentication, SSL termination, and rate
limiting as shown in Figure 20.

Figure 20: API Gateway Architecture

Muhammad Rizki et al., International Journal of Emerging Trends in Engineering Research, 8(4), April 2020, 1040 - 1046

1046

Each service packaged using container technology such as
Docker in order to make application small as deployable
units.

4. SUMMARY
Microservices is a single application of small services, each
service running its own process and uses lightweight
mechanism for communicate, each service does a specific
business goal and communicate with other sets of services
using a simple and well-defined interface. development effort
around multiple teams is more efficient because the team is
responsible only for one or more service.

The application starts faster, which makes developers more
productive, and speeds up deployments and utilizing
Domain-design driven by analyzing the business domain to
understand the application's functional requirements Tactical
DDD provides a set of design patterns that can use to create
the domain model. These tactical patterns such as entities,
aggregates, and domain services will help to design
microservices that are both loosely coupled and cohesive such
as bounded context, apply Tactical DDD patterns to define
entities, aggregates, and domain services. As an application
evolves, there are probabilities to break apart a service into
several smaller services.

5. CONCLUSION
A case study for online health care as references for
organizations who plan to convert their big and monolith
system into flexible as deployable units that can scale as
business grows without downgrade the quality of existing
functional domain and package the domain as microservices
architecture with Domain-design driven approach.

ACKNOWLEDGEMENT

I would first like to thank PT XYZ and the CTO, who made
this research possible. I would also like to thank my
supervisor Dr. Ahmad Nurul Fajar, S.T., M.T and Astari
Retnowardhani, S.kom, M.Kom, Phd , for help, guidance and
patience. The criticisms and contributions were concrete and
helped in the formulation and completion of this research.

REFERENCES
1. G. Gregory Mihuba, M. Joseph Shundi, B. Obadia

Kyetuza, M. Anthony Msafiri, Design of Telemedicine
System Based on Mobile Terminal, International
Journal of Emerging Trends in Engineering Research,
Vol. 7, no. 1, pp. 5-6, Jan 2019.
https://doi.org/10.14445/23488549/IJECE-V6I3P101

2. Erl, T. (2009). SOA Design Patterns. In Elements.
https://doi.org/10.1016/j.artmed.2009.05.004.
https://doi.org/10.1016/j.artmed.2009.05.004

3. Rosen, M. Applied SOA: Service-Oriented
Architecture and Design Strategies, U.K.: Wiley,
2008.

4. Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., &
Tilkov, S. (2018). Microservices: The journey so far
and challenges ahead. IEEE Software.
https://doi.org/10.1109/MS.2018.2141039

5. Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M.,
Mustafin, R., & Safina, L. (2018). Microservices: How
to make your application scale. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics). https://doi.org/10.1007/978-3-319
74313-4_8

6. Christudas, B., & Christudas, B. (2019). Microservices
Architecture. In Practical Microservices Architectural
Patterns. https://doi.org/10.1007/978-1-4842-4501-9_4

7. Singleton, A. (2016). The Economics of Microservices.
IEEE Cloud Computing.
https://doi.org/10.1109/MCC.2016.109

8. O’Connor, R. V., Elger, P., & Clarke, P. M. (2016).
Exploring the impact of situational context - A case
study of a software development process for a
microservices architecture. Proceedings -
International Conference on Software and System
Process, ICSSP 2016.
https://doi.org/10.1145/2904354.2904368

9. Evans, E. (2002). Tackling Complexity in the Heart of
Business Software. Pattern Languages of Program.

10. Steinegger, R. H., Giessler, P., Hippchen, B., & Abeck,
S. (2017). Overview of a Domain-Driven Design
Approach to Build Microservice-Based Applications.
The Third International Conference on Advances and
Trends in Software Engineering Tivities.

11. D. J. Joel Daniel, S. J. Ebeneze, A Survey on Security
Issues in IoT, International Journal of Emerging Trends
in Engineering Research, Vol. 7, no. 12, pp. 2-3, Dec
2019.

12. Vernon, V. Domain-driven Design Distilled,
Addison-Wesley, 2016

13. E. Mehdi, Investigating the Role of Green Perceived
Value on Customer Loyalty with the Mediating Role
of Green Brand Preference, International Journal of
Emerging Trends in Engineering Research, Vol. 7, no.
10, pp. 6-7, Oct 2019.

