
David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3649

ABSTRACT

Technology is rapidly evolving to became main component in
education process. Nowadays, schools are relying on
Management Information System (MIS) to handle operations.
In this paper we propose to design SMIS architecture capable
of serve multiple schools by using Representational State
Transfer (REST) as architectural style. Case study, REST
constraint and Service Oriented Architecture (SOA) design
pattern is being used to design the architecture. From the
design process, multitenant architecture is chosen. Kubernetes
is chosen as deployment orchestration to make architecture
scalable. Then we examine and evaluate engineering trade-off
and risks in architectures design decision by using
Architecture Trade-off Analysis Method (ATAM). The
evaluation is based on scenarios and each scenario related to
several software quality attributes. At the end, the architecture
implementation is improved overtime based on the evaluation
result.

Key words: Educational Technology, School Information
System, REST Architecture, Web Service, Trade-off
Analysis.

1. INTRODUCTION

As the technology developed rapidly, school also improve in
terms of technology implementation. School that used SMIS
to manage operation are ready in term of fundamental
technology, network system, and internet connection [1].
School nowadays integrate school fees into virtual account,
make push notification to stakeholder by email or smartphone,
and share educational data to government. School using ID
card with Radio-frequency identification (RFID) and IoT
Technology [2][3]. It being used for entering the building,
park vehicle, borrow books in library, record attendance, and
real-time monitoring student activities. All of this comes
down to SMIS that should be capable to adapt with school’s
needs.

Because SMIS nowadays requires many integrations,
Service-Oriented Architecture (SOA) is chosen. SOA is an
architectural concept in software design that emphasizes the
use of combined loosely coupled services to support business
requirements directly [4]. As the web technology is
developing rapidly, web service used as service-based
technology. Web service technology make the SMIS can be
used across different education company and school. The
functionality can be reused in different platform according to
school needs and configuration [5]. Also with SOA, different
application can communicate with each other by using same
security protocol [6].

This web service will be implemented by using
Representational State Transfer (REST) principle. REST is a
SOA design for hypermedia or distributed system [7]. REST
is an architectural style for creating web SOA and often called
RESTful web server. It has become the industry standard on
large-scale SOA [8].

This research creates new centralized architecture for SMIS
based on case study. To design the architecture, this research
use REST constraint, SOA design pattern, and REST design
pattern [7][9]. Architecture Trade-off Analysis Method
(ATAM) evaluate engineering trade-offs and risks in
architectures design decision [10]. The evaluation is scenario
based and focuses on software quality attributes [11][12].

2. LITERATURE REVIEW

REST is architectural concept founded by Roy Fielding in
2000 and became popular due to its simplicity and lightweight
development model [13]. Khan and Abassi describe REST
have better performance in latency and smaller packet size
[14]. The application of REST is gaining popularity in 2011
and shows REST is the correct architecture for the web [15].
This architecture follows six REST constraint described by
the founder, Roy Fielding [7].

Designing and Evaluating Representational State Transfer
Architecture for School Management Information System

David Alfa Sunarna1, Gede Putra Kusuma2
1 Computer Science Department, BINUS Graduate Program - Master of Computer Science,

Bina Nusantara University, Jakarta, Indonesia, 11480, david.sunarna@binus.ac.id
2 Computer Science Department, BINUS Graduate Program - Master of Computer Science,

Bina Nusantara University, Jakarta, Indonesia, 11480, inegara@binus.edu

ISSN 2347 - 3983
Volume 8. No. 7, July 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter124872020.pdf

https://doi.org/10.30534/ijeter/2020/124872020

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3650

Beside six REST constraint, this paper also uses design
pattern to create the architecture. Design patterns provide
proven solution to a common problem in software design [9].
The problem is documented in a standard format and part of
larger collection. Design pattern is being used to designing
architecture based on case problem because provides
field-tested solution. Because the solution is already available
and tested, design patterns can speed up the development
process. Erl has already defined eighty-five design pattern
profiles for SOA [9]. Also, there are seven REST-inspired
new design patterns to solve problem by using REST
capabilities [16].

Quality of an architecture/software is defined by software
quality attributes as parameters. Quality attributes capture
functional requirement that achieved by the application and
set a minimum standard for application [17].

To be useful, quality attributes must be specified clearly along
with its general scenario. A statement saying, “The
application must be scalable”, is not enough to clearly define
what kind of scalability an application is facing off. Is
application should be capable to handle more request? how
much request? How many concurrency users the system
should be capable of? Or all them is needed in the system.
That is why a quality attributes must be described or realized
as a scenario such as:

 When average CPU usage is above 70%, it must be
possible for the system to clone/raise up server specification
until average CPU usage is below 70% with zero downtime.

Statement above is a good example of scenarios, precise and
meaningful. Then, to evaluate architecture decision from
scenarios a framework called ATAM is being used. ATAM is
a scenario-based testing framework to evaluate quality
attributes and understand trade-off between architecture
decision [18].

A single testing scenario should be able to reflect what
software quality attributes to be achieved. Architecture
Trade-off Analysis Method (ATAM) help determine every
architectural trade-off points location by using scenario
testing, and made us understand design limitation [19]. This
information is useful for making action plans for evaluation,
started new iteration of the method, and modifying
architecture based on the evaluation. ATAM trying to
improve architecture qualities in each iteration of the method.
ATAM output also raise awareness to stakeholder [10].

Costa et al. present guidelines to evaluate architecture in
REST-based system based on ATAM [12]. Based on the
interview with architecture evaluators, REST must meet six
foundation that described in its original research [7]. The
research also generated basic template for REST quality
attributes scenarios and how REST design can affect software
quality attributes (design question). These guidelines then

being used in for evaluating REST architecture and define the
trade-offs.

3. METHODOLOGY

Figure 1 described the research activity we followed to design
and evaluate REST architecture for SMIS. Literature review
have already discussed in previous chapter. This chapter
discuss design process to create initial architecture in SMIS
based on case study, REST constraint, and SOA design
pattern.

Figure 1: Research Activity Diagram

This research focused on SMIS RESTful architecture design
for K-12. It designs, evaluate, and modify architectural
strategies to handle challenges in SMIS. Then the problem is
formulated and mapped to REST-inspired SOA design pattern
[16]. This research also designs the architecture by following
REST constraint [7]. The design result is initial SMIS
architecture and deployment strategy. The ATAM evaluation
being used in this research is specialized for REST
architecture [12]. This evaluation use scenarios related to
quality attributes obtained from literature review. It examines
REST standard, REST design question, ATAM
scenario-based testing, and the tradeoff in architecture
decision.

3.1 REST Constraint

As mentioned above this architecture use six REST constraint
described by Roy Fielding. The first and basic constraint in
REST is client-server. The client makes request and the server
responds to request. This architecture separate

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3651

client-side-logic and server-side-logic. The server-side-logic
expose Application Programming Interface (API) and uses
HTTP specification as communication protocol. It can be
accessed through URI and return JavaScript Object Notation
(JSON). The main benefits of the Client-Server style are
separation of responsibilities, independent evolution and
maintainability [12].

Second REST constraint being implemented is stateless. The
fundamental explanation of stateless is no client session state
is stored on the server. It means that the server-side-logic does
not store any state about the client session on the server side.
This constraint is very important because the system should
be capable to scale up and scale down. To keep
server-side-logic stateless, this architecture use JSON Web
Token (JWT). JWT are an open, industry standard RFC 7519
method for representing claims securely between two parties
as a JSON object [20].

Figure 2: JSON Web Token

From Figure 2, a login request is coming from the
client-side-logic to server-side-logic. If the username and
password is correct, server-side-logic generate token based on
secret key. Then, token is being saved to a client-side-logic
HTTP header with the format ‘Authorization: Bearer [JWT
token]’. If there is another request from client-side-logic
again, server-side-logic match JWT signature by using a
secret key (HMAC algorithm) or public/private key using
RSA.

The next REST constraint is being used is uniform interface.
It contains three elements: methods, media types, and
resource identifier syntax. SMIS using URI standard to
express where the data is being transferred to or from. It is
also URL because we can use it as a resource identifier and
apply methods upon it [16]. Below is the general syntax of the
URI being used in initial architecture:

{scheme}://{authority}{path}?{query} (1)

An example of URI that is using all the components is
“http://client.smis.example/customer/school-levels/10?page=
2”. Table 1 shows breakdown of each component in URI and
its function to support the architecture.

Table 1: URI’s component breakdown
URI’s Part Usage

http scheme/methods
client.smis.example authority
/customer/school-levels path
10 resource identifier refers to

school level primary key in the
table

?page=2 query

Same URI can be used multiple times to serve different
request by using HTTP method. The URI below shows HTTP
method available for school level in RESTful API. The URI is
“http://client.smis.example/customer/school-levels”. Table 2
shows meaning of each HTTP method in school level API.
The resource identifier being used is school level primary key
with the value of 10.

Table 2: HTTP Method Pattern
HTTP

Method
URI Result

GET

http://client.smis.local/
customer/school-levels

Get all school
level list

PUT

http://client.smis.local/
customer/school-levels

Create new
school level

PATCH

http://client.smis.local/
customer/school-levels/10

Edit school level
with primary key
10

DELETE http://client.smis.local/
customer/school-levels/10

Delete school
level with
primary key 10

This architecture using layered system architecture as one of
REST constraint. For example, attendance contains of three
layers: SMIS API server, SMIS database server, RFID
tapping machine API server. When client-side-logic requests
attendance data, it interacts only with API server without
knowing there is also another layer supporting it.

Redis are being used for cache management in this
architecture design. Meanwhile, Code-on-Demand (COD) is
the only optional constraint in REST because it reduces
visibility. For instance, with Code-On-Demand, a client can
download a JavaScript, java applet or even a flash application
in order to encrypt communication so servers are not aware of
any encryption routines / keys used in this process.
Interoperability also decrease because code must be
compatible with target consumers. Security also became a
concern because it can be injected with malicious code [14].

3.2 Design Pattern

REST-inspired SOA design pattern are used to solve the case
study problem. This design pattern is already optimized for

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3652

REST architectural style [16]. The first design pattern used is
content negotiation and its related to media types in uniform
interface. Media type are expressed both in HTTP request
header and HTTP response header. Client-side-logic
determine media type by using Accept in Request Header.
When the server-side logic returned the value, it also confirms
media type that being returned to the client with Content-Type
in Response header.

The next design pattern is reusable contract. The goal of this
architecture is to serve many education companies and
centralized the system. Reusable contract is related with
uniform contract constraint. One contract should be available
to all education company. Also, each of education company is
having many schools spread in different location. There must
be a contract that also shared internally between education
company.

Figure 3: Reusable Contract Implementation

Figure 3 explain how SMIS handle multiple education
company by using reusable contract. Report card is different
on each client and need different service. Both of client
accessing the same contract which is GET –
printReportCard(). The request is forwarded into different
service with capabilities “print report card for client 1” and
“print report card for client 2”. The only thing differentiates
the request is base URL. Client 1 using base URL
http://client1.smis.example and Client 2 using
http://client2.smis. example.

4. RESULT AND EVALUATION

From the design process, the best approach for architecture
pattern in SMIS is multitenancy. Multitenancy allow multiple
customer called tenant, sharing system resources but keep
configuration and data for each tenant exclusive [21]. The
server-side-logic and client-side-logic can serve multiple
tenants which means multiple education company. In every
tenant there is many schools with certain year level and
curriculum. This also need specialized configuration.
Database configuration for each tenant is separate database
and separate schema [22]. Database configuration for each
school in tenant is shared database and shared schema.
Separation in tenant data is critical properties in multitenant
applications [23].

Figure 4: Initial Architecture Design

Figure 4 described how initial architecture handle
multitenancy. Core controller and core database handle shared
business logic (model) being used together such as
authentication, tenant setting and user management. Core
controller and core database define user request belong to
which tenant. It responsible to manage request and forward it
into specific tenant controller, model, and database. When
new tenant created, a new database is created in tenant
database section. Tenant data is isolated and not mixed with
others. User access SMIS through single web application and
mobile phone but with different theme and styling. There is
also third-party application accesses the system by using
authorization token.

Figure 5: Core Controller

Figure 5 explain how request is separated into different tenant.
In this architecture, each tenant has different API endpoint.
Every request goes through core controller. First, core
controller matches the API endpoint. All the API endpoint
with belonging tenant stored in core database. If the API
endpoint is registered, core controller checks the request
access token. Valid access token and its belonging user also
stored in core database. Finally, request is forwarded to
correct tenant.

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3653

Figure 6: Tenant Controller

This architecture provides two levels of multitenancy.
Although lies in the same tenant, it is possible for each school
have special configuration. In Figure 6, tenant controller is
responsible to handle school specific request and forward it to
school controller and model. This architecture not only
separate each education company but also separate each
school inside education company. This approach is done by
creating database relation that coupled school with year level
and school level.

4.1 Deployment Strategy

All the benefit of multitenant architecture needs a right
deployment strategy. Software deployment takes a role key in
relevant aspect of multitenant system such as performance,
availability, reliability, and fault tolerance [23].

This architecture use cloud server, docker container engine
and Kubernetes for architecture orchestration. Container have
equal and better performance than Virtual Machine (VM)
[24]. Kubernetes cluster is created by multiple machines both
virtual and physical. Each machine called node and can be
increased to scale out application. A Pod is a group of one or
more container with shared storage and network to make
application running [25]. Pod can be replicate to scale up and
destroyed to scale down application.

This architecture deployed in cloud that provide Kubernetes
cluster. The application images are saved on the cloud
registry. Application database lies outside Kubernetes cluster
and using cloud database. To create stateless architecture,
shared files and all the multimedia data are stored in cloud
storage.

4.2 Evaluation Scenarios

The evaluation use quality attributes as a benchmark. It
mainly focusses on system performance, scalability, and
security quality attributes. Performance needed to make sure
tenant creation is fast and increasing number of tenant
endpoint does not decrease user experience. Scalability
needed to make sure system is capable of scaling in and
scaling out when the number of concurrent users increased
dramatically. Template for creating general scenarios is
obtained based on the research created by Costa [12].

Table 3: General Scenarios
Quality

Attribute
General QA Scenario

Security SE1 - Client ‘A’ makes a request to service ‘B’ with
correct authentication, service ‘B’ will give the token.
SE2 - Client ‘A’ makes a request to service ‘B’ with
false authentication, service ‘B’ will reject the request.
SE3 - Client ‘A’ makes a request to service ‘B’ with
correct authentication but false tenant, service ‘B’ will
reject the request.

Scalability SC1 - Server-side logic is proven to be stateless and
scalable.
SC2 - Server-side logic save and get media data
(picture, videos, etc.) in another storage to support
horizontal scaling.
SC3 - Tenant website and service API are created
seamlessly with zero configuration on the server.
SC4 – REST Application can auto scale up and scale
out when the CPU threshold is reaching certain level.

Performance P1 – Tenant creation is fast, easy, and does not slow
down entire system.
P2 – System is being hit by certain amount of tenant at
measured time and does not decrease user experiences.
P3 – System is being hit by certain amount of
concurrent request at measured time and does not
decrease user experiences.

Interoperability I1 - Client ‘A’ is created with different platform, make
a request to service ‘B’ with specified media type.
Service `B` return correct media format.
I2 - Client ‘A’ is created with different platform, make
a request to service ‘B’ and filling the authorization http
header with the token, service ‘B’ will validate the
request and responses to ‘A’.

Testability T1 - Service can be configured to give information
needed to identify the fault.

General scenarios, as shown in Table 3, tell us what need to be
achieved in by the architecture. It mostly gathered from
stakeholders. Interoperability and testability only support the
capabilities of three main quality attributes. Security needed
to make sure data in each tenant is secure and cannot be
accessed by other tenant. General scenarios detailed in a way
as described on Table 4. It contains recommendation on how
to implement it on real scenarios.

Table 4: General Scenarios in details for Performance
General QA Scenario Recommendation

for Real
Scenarios

Design Question

P1 – Tenant creation is
fast, easy, and does not
slow down entire system.

Should be defined
how fast in
second.

How are service
packaged and
deployed?

P2 – System is being hit
by certain amount of
tenant at measured time
and does not decrease
user experiences.

Should be defined
how many tenant
requests coming to
server.

How to protect the
Web server from
request overload?

P3 – System is being hit
by certain amount of
concurrent request at
measured time and does
not decrease user
experiences.

Should be defined
how many
concurrent
requests coming to
server.

Is there replication of
the REST service at
runtime?

To make general scenarios applicable on evaluation, real
scenarios is needed. It derived from general scenarios and
contains expected result in a form of number or benchmark.
Table 5 tells a story about the evaluation step and expected
result.

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3654

Table 5: Real Scenarios
Quality

Attribute
Real Scenarios

Security (SE1) A POST request is sent to login API in tenant ‘A’ with
body contain of username and password for tenant ‘A’.
System identify correct username and password and
return access token with expiration date.

Security (SE2) A POST request is sent to login API in tenant ‘A’ with
body contain of random username and password.
System identify false username and password and return
error message.

Security (SE3) A POST request is sent to login API in tenant ‘A’ with
body contain of username and password for tenant ‘B’.
System identify correct username and password but
false tenant and return error message.

Security (SE4) A GET request is sent to school list API in tenant ‘A’.
The request contains access token from tenant ‘B’.
System detect invalid token.

Scalability
(SC1)

A GET request is sent to academic calendar API in
tenant ‘A’. Academic calendar API is protected resource
and need authentication to access. The request must
contain access token in JWT form to be properly
authenticated and no session state stored in the server or
database.

Scalability
(SC2)

A GET request is sent to student profile API in tenant
‘A’. Student profile image data come from another
storage. System will not save user’s data on the same
storage with server.

Scalability
(SC3)

Tenant created and configured through admin panel
with no technical or server configuration needed. Once
tenant created, the system automatically deploys tenant
database, website (client-side logic) and tenant API
endpoint (server-side logic).

Scalability
(SC4)

School level API in tenant ‘A’ is being hit with certain
amount of concurrent user in one minute. Amount of
concurrent user increase in each iteration and stop until
reach 250 concurrent users. Kubernetes Pod duplicate if
the total Pod CPU usage reach 50%. If the total Cluster
size is not enough for Pod to duplicate, Kubernetes
Cluster scales out to increase computing power.

Performance
(P1)

Tenant created and configured through admin panel
with no technical or server configuration needed. New
tenant will have school name, logo, website color
scheme, and credentials for admin to login and insert
school data. New tenant is created and deployed under 5
minutes.

Performance
(P2)

25 concurrent users accessed certain number of tenants
randomly in one minute. The number of tenants increase
in each repetition and stop until reach 30 tenants.
System availability remain 98% and the response time
average is under 2 seconds.

Performance
(P3)

School level API is being hit with certain amount of
concurrent user in one minute. Amount of concurrent
user increase in each iteration and stop until reach 250
concurrent users. System availability remain 98% and
the response time average is under 2 seconds.

Interoperability
(I1)

Request with Request Header application/json
accessing tenant API. System return value with
Response Header application/json and list of school
level in JSON.

Interoperability
(I2)

Request using authentication bearer contain JWT token
used for accessing protected source. System can identify
false or expired token.

Testability
(T1)

System give proper error response to let user know if
something wrong.

4.3 Architectural Analysis

Architectural analysis is the result of real scenario evaluation.
Based on the real scenarios, ATAM analyze architectural
analysis, risk, and tradeoff from multiple quality attributes.
Table 6 show architectural analysis in Security (SE1). It
evaluates architecture login procedure to get access token.

Table 6: Architectural Analysis on SE1
Scenario
Summary

A POST request is sent to login API in tenant ‘Client’ with
body contain of username and password for tenant ‘Client'.
System identify correct username and password and return
access token with expiration date.

Business
Goal(s)

Make authentication system secure and stateless.

Quality
Attributes

Security (SE1)

Architectural
Analysis

System successfully return HTTP status 200 when
username and password is correct. With, user token, and
token expiration. Token expires in three days after login.
Request also return user data, roles, and permission.

Risk If the token expires, user should login again to the system.
Token expiration should be defined correctly, not too long
but also not too short depends on user’s habit.

Tradeoff Token expiration increase security because the token has a
lifetime and cannot be used forever but it makes user should
repeat login process if the token expires.

ATAM will require us to explain future risk and tradeoff
between quality attributes after architectural analysis result.
This is important to determining which quality attributes is
strengthen and which are weaken when architectural decision
is made.

Sometimes one real scenarios in specific attributes can
intersect another real scenario. SE2 scenario should return
error response when using wrong username. It matches with
T1 that require architecture to have proper response when
something wrong. Table 7 explain further about real scenario
in Security (SE2) and Testability (T1).

Table 7: Architectural Analysis on SE2 and T1

Scenario
Summary

A POST request is sent to login API in tenant ‘Client’ with
body contain of random username and password. System
identify false username and password and return error
message.

Business
Goal(s)

Make authentication system secure and stateless.

Quality
Attributes

Security (SE2), Testability (T1)

Architectural
Analysis

System return HTTP status 400 Bad Request when
username and password is false. With error code 401 and
message “invalid_credentials”.

Risk JWT just using one key, if the key is leaked and attacker can
generate the token then the rest of the system is vulnerable.

Tradeoff Implementing token authentication can make system
stateless and increase scalability. But since there is no state
between client and server, token became the only security
system on the server.

JWT is commonly used is REST based architecture. We can
improve the security by adding two-factor authentication, so
the system does not rely to JWT only. Architecture can detect

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3655

false username and password. But since this is a multitenant
architecture, the authentication system must be isolated per
tenant and have no correlation on each other. Table 8 shows
architectural analysis in Security (SE3) and Testability (T1) to
prove authentication is isolated.

Table 8: Architectural Analysis on SE3 and T1

Scenario
Summary

A POST request is sent to login API in tenant ‘A’ with body
contain of username and password for tenant ‘B’. System
identify correct username and password but false tenant and
return error message.

Business
Goal(s)

Make authentication system isolated in each tenant.

Quality
Attributes

Security (SE3), Testability (T1)

Architectural
Analysis

System return HTTP status 400 Bad Request when
username and password is false. With error code 4000 and
message “errUnregisteredUser_HostMismatch”.

Risk User authentication are isolated between tenant. User
belong to multiple tenants have multiple credentials.

Tradeoff User belong to multiple tenants have multiple credentials
because we cannot use same account to access another
tenant. This make system not flexible but increase security
because protected resources are isolated on each tenant.

Authentication is proved isolated in every tenant. The
authentication system is proven support multitenancy with
certain tradeoff in system flexibility. Using perimeter security
is one of the solution on addressing security challenges in
cloud based architecture [26]. Table 9 evaluate Scalability
(SC1) and Interoperability (I1) in authentication process.

Table 9: Architectural Analysis on SC1 and I1
Scenario
Summary

A GET request is sent to academic calendar API in tenant
‘A’. Academic calendar API is protected resource and need
authentication to access. Request contains JWT token from
tenant ‘A’ in authentication bearer. Request also contain
value of Request Header application/json. System
authenticate the request and return value with Response
Header application/json and list of school level in JSON.

Business
Goal(s)

Make authentication system stateless.

Quality
Attributes

Scalability (SC1), Interoperability (I1)

Architectural
Analysis

System successfully return HTTP status 200 and return
academic calendar data in JSON.

Risk To access protected resource, every request should contain
JWT token and increase request size.

Tradeoff Implementing token authentication can make system
stateless and increase scalability. Request size also
increased due to token addition in every request.
 Service only response to authorized token and increase
security. But making implementation/integration to
other client more difficult, especially client that using
non-stateless system.
 The server request is standardized and improves
interoperability. But become less flexible due to JSON
return value.

To make architecture support horizontal scaling in
Kubernetes, token-based authentication is not enough.
Database and media data should be push out from the server to
another storage. Table 10 evaluate storage in architecture to
support horizontal scaling based on real scenario in
Scalability (SC2)..

Table 10: Architectural Analysis on SC2
Scenario
Summary

A GET request is sent to student profile API in tenant ‘A’.
Student profile image data come from another storage.
System will not save user’s data on the same storage with
server.

Business
Goal(s)

Make architecture system scalable.

Quality
Attributes

Scalability (SC2)

Architectural
Analysis

Student profile comes from amazon s3 storage. Server did
not contain media data. Database and media are saved on
the cloud storage.

Risk Increase cost to rent cloud storage. The configuration is
important to make sensitive data cannot be accessed by
public.

Tradeoff By separating media storage, it improves scalability and
performance because server did not clone media data
when do horizontal scaling (scale out). But it increases cost
to rent cloud storage and it should be configured properly
to avoid data breach.

The architecture is proven scalable by implementing
token-based authentication and external storage. There is no
state on the server and theoretically can perform scale up and
scale out. Since the architecture is multitenant, we must
consider about tenant creation. To improve user experience,
tenant creation, configuration, and management must be done
through admin panel with no technical configuration on the
server. Table 11 evaluate Scalability (SC3) and Performance
(P1) on tenant creation.

Table 11: Architectural Analysis on SC3 and P1
Scenario
Summary

Once new tenant created, the system automatically deploys
tenant database, website (client-side logic) and tenant API
endpoint (server-side logic). New tenant will have school
name, logo, website colour scheme, and credentials for
admin to login and insert school data. New tenant is created
and deployed under 5 minutes.

Business
Goal(s)

Tenant deployment is easy and doesn’t decrease user
experience

Quality
Attributes

Scalability (SC2), Performance (P1)

Architectural
Analysis

- Tenant management, user management are managed
through admin panel.
- Tenant logo, colour scheme, can be customized through
admin panel.
- Tenant database, website and API endpoint deployed
instantly in 15 seconds.
- Tenant deletion time is depending on tenant data.

Risk Anyone has the valid access for system admin can deploy
and delete tenant.

Tradeoff Tenant can be created easily and speed up deployment
speed. It increases performance and scalability rather than
single tenant architecture. But since it does not need
another configuration or two step verification anyone with
access can create and delete tenant and reduce security.

After the requirement to create horizontal scaling is fulfilled,
it is time to evaluate the architecture scalability in Kubernetes.
This scenario is mentioned in Scalability (SC4) and
Performance (P3). To create this scenario, Kubernetes
specification must be defined. In this scenario, Kubernetes
running in Google Kubernetes Engine (GKE) located in
region asia-southeast-1b.

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3656

Cluster contain of two nodes specification or called node pool.
First node pool specification is 1 vCPU and 3.75 GB of RAM,
second 1 vCPU and 0.6 GB of RAM. Both of node pool does
autoscaling with minimum size of 3 VM and maximum 5 VM.
Pod autoscaling is set to 50% CPU utilization with minimum
Pod is 2 and maximum 50.

In this scenario, a number of concurrent users are trying to
access School API every second during with one-minute
period. Concurrency is a number of simultaneous
connections. The number started from 25 concurrent users and
increases in every iteration until reach 250 concurrent users.
The reporting format is modeled after Lincoln Stein’s
torture-testing web servers [27].

Siege is being used to create stress testing with defined
concurrent users to server. It accesses School Resource API
with content type JSON. School API size is 52KB when
returned. Number of delays in every request is between 0 and
1 second. This delay allows for the transactions to stagger
rather than to allow them to pound the server in waves. Table
12 show the result of testing scenarios.

Table 12: Evaluation Result for Scalability Concern
Concurrency
(user/seconds)

Pod
Replicas

Availability Average
Response

Time
(seconds)

25 4 100% 1.24
50 8 100% 4.39
75 10 99.43% 3.47
100 12 98.09% 6.32
125 12 98.53% 7.61
150 18 99.75% 9.19
175 20 99.43% 8.2
200 20 100% 9.7
225 20 100% 9.95
250 35 100% 10.81

From the table above, all the number have tendency to
increase linear with concurrent user. The application never
crash or unable to access during one minutes of testing. The
availability is 99.52% in average, but the average response
time failed to reach the scenario expectation (7.08s). Success
transaction return HTTP 200 OK implies that the response
contains a payload that represents the status of the requested
resource. Table 13 summarize evaluation in Scalability (SC4)
and Performance (P3) in the architectural analysis.

Table 13: Architectural Analysis on SC4 and P3

Scenario
Summary

School level API in tenant ‘A’ is being hit with certain
amount of concurrent user in one minute. Amount of
concurrent user increase in each iteration and stop until
reach 250 concurrent users. Kubernetes Pod will duplicate
if the total Pod CPU usage reach 50%. If the total Cluster
size is not enough for Pod to duplicate, Kubernetes Cluster
will scale out to increase computing power. System
availability remain 98% and the response time average is
under 2 seconds.

Business
Goal(s)

Prove the system reliable, scalable and always available to
client.

Quality
Attributes

Scalability (SC3), Performance (P3)

Architectural
Analysis

The pod replicate as the number of concurrent users
increases. When Pod cannot replicate because of node pool
reach maximum capacity, node pool will increase capacity
by adding more virtual machine to the cluster. System
availability always above 99.52% but the average response
time is 7.08 and failed to reach scenario expectation.

Risk Increased latency when number of concurrent user
increases. As the number of Pods increases, load balancer
works harder to spread incoming connection to each Pod.

Tradeoff Kubernetes makes application always available and
increase scalability, and availability. Latency (response
time) increase as the number of concurrent users increases
and reduce performance.

From this evaluation, we can see that the number of
concurrent user responsible in increasing latency. The system
is abused to serve many requests in every second and cause
Pod to duplicate. Pod duplication process take time to finish.
During that time, load balancer works very hard to distribute
the request evenly. If the incoming request is too much for
Pod capacity, the request should wait until new Pod is created
and make latency/response time increases.

The previous evaluation is to test architecture capability in
handling concurrent user. In the next scenario we evaluate
architecture capability in handling multiple tenants at once.
The real scenario is described in Performance (P2). 25
concurrent users are trying to hit different number of tenant
URI every second during one-minute period.

The specification of Kubernetes Cluster is the same with
scalability testing. Autoscaling set to minimum 10 Pods
replica and maximum 50 Pods replica with CPU threshold set
to 50%. Tenant URI is different in each iteration, but the
resource remains the same which is School API. The number
started from 3 tenants and increases in every iteration until
reach 30 tenants. Table 14 show the result of testing scenarios.

Table 14: Evaluation Result for Multitenant Performance
Number

of
Tenant

Total
Transaction

Availability Average
Response

Time
(second)

3 1238 100% 0.94
6 1062 100% 1.13
9 826 100% 1.44

12 878 100% 1.21
15 713 100% 1.3
18 658 100% 1.44
21 964 100% 1.28
24 619 100% 1.65
27 976 100% 1.19
30 877 100% 1.19

Average 881 100% 1.27

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3657

The availability is always 100% in meaning there is no failed
request and always return HTTP 200 OK code. Longest
transaction is increases linear with number of tenant increase
means there still some request facing latency issue. Shortest
transaction remains the same under 0.45 second which is very
good.

Unlike the previous evaluation, response time is 1,27 seconds
in average and really shows good performance. This happened
because only the number of tenants increase not the number of
concurrent users. Total transaction decrease as the tenant
number increases. Kubernetes capabilities to handle
transaction decrease as the number of tenant increases. Table
15 resume the evaluation in architectural analysis.

Table 15: Architectural Analysis on P2
Scenario
Summary

25 concurrent users accessed certain number of tenants
randomly in one minute. The number of tenants increase in
each repetition and stop until reach 30 tenants. System
availability remain 98% and the response time average is
under 2 seconds.

Business
Goal(s)

System capable of handling concurrent requests from
different tenant.

Quality
Attributes

Performance (P2)

Architectural
Analysis

Architecture proven capable in handling multiple tenants at
once. The system remains 100% available until reach 30
tenants. Response time is 1.27 second in average which is
above expectation in 2 second.

Risk Transaction speed decrease as the number of tenant increase.
This is caused total transaction decreased as the number of
tenant increase.

Tradeoff System remain responsive and available as the number
tenant increase but transaction speed decrease.

Since it only 25 concurrent users, there is no problem in load
balancer and Pod capacity to handle the load. That is why the
system remain very responsive and 100% available. Request
come into the system from different tenant URI. The core
controller inside Pod then spread request into each tenant and
make request to different database simultaneously. This is
caused the transaction rate is decreasing since the application
should spread the request into different database.

5. CONCLUSION

The main contribution of this research is to solve current
educational technology problem based on case study by
proposed new architecture design in SMIS. The architecture is
created based on design pattern and REST constraints to meet
REST standard. By providing multitenant architecture, SMIS
is able to serve many educational companies from private
sector to government area. With this new multitenant
architecture, the application in educational technology are
centralized and easy to integrate. This architecture also
provides two levels of multitenancy to identify each school
inside education company.

By providing scenario test, ATAM is able to identify system
capabilities in multitenancy. Security aspect is proven to be

stateless and isolated in every tenant (SE1, SE2, SC1, SC2).
Tenant data is isolated and cannot be accessed by another
tenant (SE3, SE4). The architecture is capable to scale
up/down and scale out/in when traffic increases/decreases
(SC4, P3). This architecture accessed by 250 concurrent user
per seconds and the availability still above 99.52%. Tenant
management proven to be easy with zero additional
configuration on the server or database (SC3, P1). Increasing
number tenant with 25 concurrent users per second still makes
application responsive with average 1.27 second of response
time (P2). This architecture gives clear error state and
message when something wrong in the system (T1).

ATAM output in tradeoff and risk used to enhance
architecture in the next iteration. This make the architecture
improved overtime. From the evaluation result, we also
realize that this architecture need improvement in the next
iteration. Token is the only security system to access protected
resource (SE2). Two factor authentications can be used in the
next iteration, so the system did not only rely in username and
password to get token access. The average response time in
evaluation SC4 and P3 reach 7.08 second. To fix this latency
issue, architecture must provide faster Pod duplication. This
can be achieved by making Pod size as small as possible.
Increase bandwidth size in the cloud configuration also helps
to deal with increasing request. To keep the transaction rate
stable when the number of tenant increases (P2), slave and
master database replication can be used to enhance
performance. All of this will be implemented and evaluated in
the next ATAM iteration.

REFERENCES
1. S. Srima, P. Wannapiroon, and P. Nilsook, “Design of

Total Quality Management Information System
(TQMIS) for Model School on Best Practice,”
Procedia - Soc. Behav. Sci., vol. 174, pp. 2160–2165,
2015, doi: 10.1016/j.sbspro.2015.02.016.

2. P. Tan, H. Wu, P. Li, and H. Xu, “Teaching
Management System with Applications of RFID and
IoT Technology,” Educ. Sci., vol. 8, no. 1, p. 26, 2018,
doi: 10.3390/educsci8010026.

3. C. Z. Zulkifli, H. N. Hassan, A. A. Zalay, S. M. Kamis,
and N. H. A. Hassan, “Special Issue INTEGRATED
RFID TECHNOLOGY AND WIRELESS MESH
NETWORK,” 2018.

4. I. Graham, Requirements modelling and specification
for service oriented architecture. John Wiley & Sons,
2008.

5. M. Halim, N. Adadi, D. Chenouni, and M. Berrada,
“Web services composition in E-Learning platform,”
Int. J. Emerg. Trends Eng. Res., vol. 8, no. 2, pp.
525–532, 2020, doi: 10.30534/ijeter/2020/41822020.

6. M. Rizky, A. Nurul Fajar, and A. Retnowardhani,
“Microservices Architecture Design: Proposed for
online HealthCare,” Int. J. Emerg. Trends Eng. Res.,
vol. 8, no. 1, pp. 8–11, 2020, doi:
https://doi.org/10.30534/ijeter/2020/14842020.

7. R. T. Fielding, “Architectural Styles and the Design of

David Alfa Sunarna et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 3649 - 3658

3658

Network-based Software Architectures,” Building,
vol. 54, p. 162, 2000, doi: 10.1.1.91.2433.

8. R. T. Fielding et al., “Reflections on the REST
architectural style and ‘principled design of the
modern web architecture’ (impact paper award),”
Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE
2017. pp. 4–14, 2017, doi: 10.1145/3106237.3121282.

9. T. Erl, SOA Design Patterns, 1st ed. Prentice Hall PTR,
2009.

10. M. Barbacci, P. Clements, A. J. Lattanze, L. M.
Northrop, and W. Wood, “Using the Architecture
Tradeoff Analysis Method (ATAM) to Evaluate the
Software Architecture for a Product Line of Avionics
Systems : A Case Study,” Tech. Note - C., no. July, p.
31, 2003.

11. B. Costa, P. F. Pires, F. C. Delicato, and P. Merson,
“Evaluating a Representational State Transfer
(REST) architecture: What is the impact of REST in
my architecture?,” Proc. - Work. IEEE/IFIP Conf.
Softw. Archit. 2014, WICSA 2014, pp. 105–114, 2014,
doi: 10.1109/WICSA.2014.29.

12. B. Costa, P. F. Pires, F. C. Delicato, and P. Merson,
“Evaluating REST architectures - Approach, tooling
and guidelines,” J. Syst. Softw., vol. 112, pp. 156–180,
2016, doi: 10.1016/j.jss.2015.09.039.

13. A. Ejsmont, “Programming & Web Dev-Web
scalability for startup engineers : tips & techniques
for scaling your Web application.” 2015.

14. M. W. Khan and E. Abbasi, “Differentiating
Parameters for Selecting Simple Object Access
Protocol (SOAP) vs . Representational State
Transfer (REST) Based Architecture,” J. Adv.
Comput. Networks, vol. 3, no. 1, 2015, doi:
10.7763/JACN.2015.V3.143.

15. M. Garriga, C. Mateos, A. Flores, A. Cechich, and A.
Zunino, “RESTful service composition at a glance: A
survey,” J. Netw. Comput. Appl., vol. 60, pp. 32–53,
2016, doi: 10.1016/j.jnca.2015.11.020.

16. T. Erl, B. Carlyle, C. Pautasso, and R. Balasubramanian,
SOA with REST: Principles, Patterns &Constraints for
Building Enterprise Solutions with REST, 1st ed.
Upper Saddle River, NJ, USA: Prentice Hall Press,
2012.

17. I. Gorton, “Essential software architecture,” Essent.
Softw. Archit., pp. 1–283, 2006, doi:
10.1007/3-540-28714-0.

18. L. Bass, M. Klein, G. Moreno, and S. E. Institute,
“Applicability of General Scenarios to the
Architecture Tradeoff Analysis Method,” Carnegie
Mellon University Technical Report, no.
CMU/SEI-2001-TR-014, ESC-TR-2001-014. 2001.

19. R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, and J. Carriere, “The architecture tradeoff
analysis method,” Proceedings. Fourth IEEE Int. Conf.
Eng. Complex Comput. Syst. (Cat. No.98EX193), pp.
68–78, 1998, doi: 10.1109/ICECCS.1998.706657.

20. M. Jones, J. Bradley, and N. Sakimura, “Json web token
(jwt),” 2015.

21. J. Kabbedijk, C. P. Bezemer, S. Jansen, and A. Zaidman,
“Defining multi-tenancy: A systematic mapping
study on the academic and the industrial
perspective,” J. Syst. Softw., vol. 100, pp. 139–148,
2015, doi: 10.1016/j.jss.2014.10.034.

22. E. J. Domingo, J. T. Niño, A. L. Lemos, M. L. Lemos, R.
C. Palacios, and J. M. G. Berbís, “CLOUDIO: A Cloud
Computing-oriented Multi-Tenant Architecture for
Business Information Systems,” Proc. - 2010 IEEE
3rd Int. Conf. Cloud Comput. CLOUD 2010, pp.
532–533, 2010, doi: 10.1109/CLOUD.2010.88.

23. A. Furda, C. Fidge, A. Barros, and O. Zimmermann,
Chapter 13 - Reengineering Data-Centric Information
Systems for the Cloud – A Method and Architectural
Patterns Promoting Multitenancy, 1st ed. Elsevier Inc.,
2017.

24. W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An
Updated Performance Comparison of Virtual
Machines and Linux Containers,” pp. 171–172, 2015.

25. V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U.
Arronategui, and O. F. Rana, “Characterising resource
management performance in Kubernetes,” Comput.
Electr. Eng., vol. 68, no. May 2017, pp. 286–297, 2018,
doi: 10.1016/j.compeleceng.2018.03.041.

26. S. Sharaf, “Security Issues in Serverless Computing
Architecture,” Int. J. Emerg. Trends Eng. Res., vol. 8,
no. 1, pp. 8–11, 2020, doi:
https://doi.org/10.30534/ijeter/2020/43822020.

27. Lincoln D. Stein, “Web Techniques: Torture-Testing
Web Servers,” 1999. [Online]. Available:
https://people.apache.org/~jim/NewArchitect/webtech/1
999/07/stein/. [Accessed: 11-Nov-2018].

