
Garvit Jain et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1091 – 1096

1091

A Survey on Trending Topics of Microservices

Garvit Jain1, Urjita Thakar2, Vandan Tewari3, Sudarshan Varma4

1Research Scholar, Department of Computer Engineering, Shri Govindram Seksaria Institute of Technology and Science,
Indore, India, ajmeragarvit06@gmail.com

2Professor, Department of Computer Engineering, Shri Govindram Seksaria Institute of Technology and Science,
Indore, India, urjita@rediffmail.com

3Assosciate Professor, of Computer Engineering, Shri Govindram Seksaria Institute of Technology and Science,
Indore, India, vandantewari@gmail.com

4Technical Lead Director, Advanz101 systems Pvt. Ltd., Corporate House, 309, B Block RNT Marg,
 Indore, India, sudarshan@advanz101.com

ABSTRACT

Microservice is an architectural style and a software
development methodology. Microservices are used as a
group of independent units with narrowly specified
responsibilities that interact through well-described REST
APIs. It is observed that the most challenging part in
developing any application using microservice architecture
is decomposing it into the correct level of granularity at
design and run time, which requires good skills and domain
knowledge. In this paper, some prominent topics in
microservices analysis, such as determining the size and
boundaries of microservices using various decomposition
approaches and extraction of microservices from large
monolithic applications have been discussed and analysed.
Work pertaining to essential quality metrics required for a
microservices-based system has also been surveyed. In this
survey paper, we have identified how these topics are
correlated and proposed some steps that might be beneficial
in the transformation of monolithic applications into
microservices.

 Key words: Microservice, Architecture, REST, API,
Decomposition, Monolithic, Metrics

1. INTRODUCTION
Service orientation, agile deployment and

implementation paradigms have most recently resulted in a
special flavor of software development called
microservices [1]. Microservice is the current trend in the
design, implementation, and production of software
services. A microservice implements a software and
systems architecture strategy that builds on the existing
modularization concept while also highlighting technical
borders [2]. As microservices are mainly modeled around
business domains, they elude the difficulties of traditional
tiered architectures. It also combines new technologies and
techniques that had appeared over the past decade, helping
them to alleviate the pitfalls of many Service-Oriented
Architecture (SOA) implementations [3].

Microservices may also be declared with several

functionality levels, and “the size of this functionality is
commonly referred to as its granularity” [4]. Though there

is lot of hype and increased interest in microservices
shown by the software industry, there is still a general lack
of formal methods to model microservices architecture
decisions, including the decision of optimal microservice
boundaries, and optimum level of microservice granularity
[5]. The aim is to obtain the most important division when
identifying model boundaries and granularity for
microservices for which a great skill and domain expertize
is required [6].

A widely used pattern for designing business

applications is the monolithic architecture pattern. For
small applications, it works fairly well: it is relatively easy
to design, test and deploy small monolithic applications.
For large applications, it makes more sense to use a
microservice architecture that breaks down the complex
functionalities into a series of services [7]. Extracting
microservices from monoliths is the next version of the
initial problem of decomposing software structures, and
has become a vital branch of software engineering
practice[8]. A banking domain experience report shows
how restructuring a monolithic architecture into
microservices will enhance software agility and enhance
scalability as each microservice becomes an independent
development, implementation, versioning, operations and
scaling entity [2]. Issues unique to monolithic systems can
be solved by migrating to microservice architecture. These
include reducing connectivity in framework and
increasing maintainability. Microservice Architecture is
becoming a more common alternative for addressing
current problems as it improves device maintainability and
speeds up the delivery of software products [9].

A survey is carried out to classify the key trending

areas of microservice research in this paper. The
literature review is divided into four sections: a) The
granularity of microservices, b) Identification of
microservices using decomposition techniques, c)
Extraction of microservices from the monolithic
application and, d) Essential quality metrics required for
the microservice-based system. Work related to
granularity is discussed in next section.

 ISSN 2347 - 3983
Volume 9. No. 8, August 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter10982021.pdf

https://doi.org/10.30534/ijeter/2021/10982021

Garvit Jain et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1091 – 1096

1092

2. GRANULARITY OF MICROSERVICES
 Granularity refers to the size of a microservice, and it is
important since microservice granularity affects the quality
of service (QoS) [10]. Gouigoux, J.P., et. al., suggested that
“granularity should be driven by the balance between the
costs of Quality Assurance and the cost of deployment”
[11]. A number of researchers have discussed the issue of
determining the right size of the microservices however it is
still an open issue [2], [12], [13]. Several factors affect the
decision process for microservice granularity, these are

1) the manner in which a microservice interacts with
other microservices.

2) mechanism to publish or bind to the API Gateway
protocol

3) communication of microservices with the database
[14].

According to Sam Newman, domain-driven design is the
core basis for all granularity-based decisions, in which
microservices are separated according to the application
domain [3]. Different levels of granularity also has
different impact on efficiency level and utilization of
resources for the same workload [15].

Hassan, et al., proposed architecture-centric modeling

with the concept of “aspects” for microservices which
expressively capture microservitization scenarios with
distinct QoS trade- offs. The research is demonstrated on
an “online movie subscription based system”. Analysis has
been performed using the characteristics of the ADL
classification framework. The results indicate that
microservice environments promote analysis, mobility and
location awareness which are important in adapting
granularity of quality-driven microservices [5].

Bounded Context (BC) pattern that adopts a Domain

Driven Design pattern known as Context Mapping, is used
for modeling and determining the domain model
boundaries of microservices [6]. Merson, et al., have
discussed five different microservice design scenarios
around Domain Driven Design aggregrates, Bounded
Context (BC), domain events, and other strategies for inter-
BC. Domain Driven Design comes with several advantages
(a) Domain Driven Design (DDD)can help with defining
microservices. (b) DDD key concepts are bounded context,
aggregate, and entity. (c) A service can have the scope of
an aggregate. (d) A microservice can have the scope of a
bounded context (e) DDD can use domain events for inter-
microservice interaction. (f) DDD can help to define the
size of microservice not the Line of code (LOC) size, the
size in terms of functional scope [16],[17].

Vera-Rivera, et al., suggested a genetic algorithm based

Backlog model for Microservice and described a
Granularity metric to determine the size of microservices.
The approach used Domain Driven Design (DDD), and
quasi-experiment for evaluation. The model showed better
coupling and coherence, less microservices-related

activities. It also enabled higher average calls from one
microservice to another and a lower value for Granularity
Metric. The drawback of the approach was that it resulted
into coarse-grained microservices [18]. It has been
observed that researchers have proposed several models for
determining the correct size, similarities and boundaries of
microservices at design and runtime.
In next section,the work carried out for identification of
microservices by different researcher is reviewed.

3. IDENTIFICATION OF MICROSERVICES
 Identifying microservices from large applications by
decomposing it into suitable components using
appropriate methods is another challenge in software
engineering. Microservices are an autonomous unit which
can be easily scaled, deployed, reuse and maintain without
affecting other services. If a large application is
decomposed into microservices, improvement can be seen
in the quality of application and time of implementation.

Baresi, et al., explained the concept of Open API
specification to identify semantic similarity based on the
available functionality. It was found that about 80 percent
cases obtained correct granularity and cohesiveness of
microservices. The drawback of the method is that input
artifacts may be mapped into very few definitions of
shared vocabulary, resulting in a degradation of coarse-
grained microservices [19].

Tyszberowicz, et al., introduced an approach to

describe microservices depending upon specification of
the use cases and functional decomposition. A KAMP
tool was used to maintain the software for evaluating
research on a CoCoME (Common Component Modeling
Example) case study. The method ensured high coherence
and low-coupling decomposition identical to manual
design and within a much shorter time span [20].

Gysel, et al., proposed a systematic, consistent

strategy to service decomposition based on sixteen
coupling criteria extracted from literature and market
practice which enabled loose coupling and better cohesion
within services [21].

Abdullah, M., et al., suggested a black-box based

decomposition technique to identify URL partitions
through mining application logs and unsupervised
machine learning. The method showed better
performance, coherence and scalability of the auto-micro
service compared to manual and monolithic approach.
Though, advanced auto-scaling techniques were still not
sufficient to achieve acceptable performance of device
[22].

Zhang, Y., et al., developed an AMI genetic algorithm-

based approach to optimize the identification of
microservices and achieve high-cohesion-low-coupling
and load balance of CPU and memory consumption while
taking into account both functional and non-functional

Garvit Jain et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1091 – 1096

1093

metrics. The work was evaluated on JPetStore a Legacy
ERP System using Kieker Monitoring Framework and
Java Visual VM. The result has shown that non-functional
indicators affected the microservice recognition outcome
and the AMI approach [23].

De Alwis, et al., suggested two fundamental fields of

microservice functional splitting. The first is based on
subtypes of artifacts (structural properties) and second
was functional splitting based on common fragments of
program execution (behavioral properties).The result
showed that the strategies used were appropriate for
migrating legacy systems to high-cohesion and low-
coupling microservices and allowed greater scalability,
availability, performance, and reliability [24].

Jin, et al., proposed a Functional oriented Service

Candidate Identification (FoSCI) model to distinguish
service candidates from a monolithic system. A search-
based functional atom grouping algorithm was used for
research. The model was compared with six widely-used
open-source projects and three existing methods. The
results showed that FoSCI overtakes existing methods [25].

Stojanovic, et al., discussed how microservices may be

defined using structural framework analysis. It defined
guidelines for identifying the domain and data storage for
each microservice. The concept of primitive functions, data
streams, data storage and interfaces has been used along
with the data dictionary, the hierarchical set of data flow
diagrams and the specification of the primary functions
[26].

A microservice identification method that decomposes a

system using clustering technique for identification of
cohesive, loosely coupled, and fine-grained microservices
from a single business process, or a set of processes is also
available [27].

The researchers noted that identifying microservices

from a monolithic application is a difficult process and
requires a good level of understanding and domain
expertise. Also, from the recent researches it is observed
that various decomposition techniques like clustering, open
API specification, function splitting based on artifacts, use
cases, and functional decomposition have been used to
identify high-cohesion and low-coupling-based
microservices from a monolithic application.

4. EXTRACTION OF MICROSERVICES
FROM MONOLITHIC APPLICATION
Microservice is booming today and most technology

industries are switching from monolithic application to
microservice-based system. Industries prefer microservice-
based systems as this are efficient, scalable, versatile and
easy to maintain. Decomposition and identification plays
an important role in shifting from a monolithic application
to a microservice-based system.

Mazlami, et al., introduced a formal microservice

extraction model in the refactoring and migration scenario
to provide algorithmic recommendations of microservice
candidates. The efficiency and consistency of the approach
has been tested on 21 Java, Ruby, and Python open-source
projects. All efficiency experiments have displayed
satisfying performance levels for different situations. The
study shows that the strategy limits the team size of the
microservice to one quarter or less of the monolithic team
size. Also, model depends upon strategies and graph for
computing classes as an single unit that restricts the
flexibility when refactored monolithic application [28].

A purified data flow-driven mechanism to test the

microservice-orientated decomposition process has been
proposed by Chen, et al.. It has been shown that all the
effects of the decomposition and its process are rational,
objective and understandable [29]. Al-Debagy, and
Martinek, proposed an approach to identify API to
sementically identical microservices. The approach is
evaluated on Money transfer and Kanban Board
Applications using affinity propagation algorithm and fast
Text model. While using cohesion and complexity metrics
the result shows that the algorithm may be useful in
development of software architectures and developers in
transition from monolithic design to microservices [30].

Taibi, and Systa, adopted a data-driven approach

focused on process mining performed on log files
gathered at runtime to classify microservice candidates.
Approach was demonstrated on Industrial case study using
DISCO tool. The method facilitated the search for
alternative decomposition methods and offered a
collection of measures to determine decomposition
efficiency. The system may be beneficial for firms in
detecting software problems which the architect did not
find manually, to increase the decomposition standard of
any monolithic method [31].

Carvalho, et al. analyzed the criteria for the extraction

of microservices architecture with 15 experts. This survey
is based on seven criterias specified in the article by
researchers or practitioners. Specialists on microservice
migration participated in the survey. Participants found
modularity – i.e. coupling, cohesion, and reuse – criteria
to be more appropriate. Author feels that existing
methods, tools, and decisions on microservice extractions
are reliable and inaccurate due to lack of synthesized
information about the relevant criteria and their trade-offs
[32].

Escobar, et al. introduced a model-centered approach to

analyze and show existing configurations and relations
between the business and the data layer in JEE (SISINFO)
and marketplace applications using static code analysis.
The results show that the understanding is significantly
strengthened by the diagrams, and the modularization is
the first step towards the application’s automated
modernization. The approach uses a static analysis, hence
authors were unable to identify dependencies between the
business and data layers that are not specified through

Garvit Jain et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1091 – 1096

1094

Java-annotations [33].

In the surveyed literature, various extraction techniques

have been discussed with their pros and cons. It is
observed that the extraction techniques used can
efficiently modularize applications into microservices by

1) maintaining loose coupling and high cohesion
2) reusing components
3) reducing team size
4) can be useful in detecting early software bugs.
In next section, the work carried out by different

researcher for essential quality metrics required for
microservices is presented.

5. ESSENTIAL QUALITY METRICS FOR
MICROSERVICE BASED SYSTEM

 All software organizations are conscious about quality
attributes and metrics. In this section, the essential quality
metrics are discussed. Bogner, et al., discussed the
importance of the size, complexity, cohesion and coupling
metrics which are helpful at the time of designing
microservices [1]. Tugrul et al., discussed determination of
quality of the applications while creating appropriate
products based on the microservice architecture. Service
size, coordination of inter-services and bad practices have
been considered to quantify micro-services by also
counting resources and consumers. A static analyser has
been built to measure a ticket-selling application. The
author argued that automatic quality software management
was necessary to control software, identify bugs and bad
smells by running advanced policies [34].

Candela, et al. conducted two studies aiming at the
objective and subjective exploration of the components by
the coupling and software modularization. The result
showed that the modularization of open source software
was far from optimal in terms of both architectural and
logical cohesion/coupling. Subjectively, 83 percent of
developer findings claimed that only high cohesion and low
coupling recommenders may not be enough to suggest re-
modularization solutions [35].

In another work, empirical study to investigate the

interactions between various cohesion and coupling
metrics in object- oriented system has been presented. It
was observed that the relationship between cohesion and
coupling is inversely associated with each other [36].

Li, et al. suggested a decision-making criteria and

methods for the resolution of microservice granularity
from the maintainability perspective. The results show that
the maintenance metric of each microservice has
dramatically enhanced the scalability and maintenance of
the system [37].

Rud, et al. suggested metrics that can be used to assess

complexity, performance and reliability of compound

services and service oriented systems. For implementation,
web service metadata and WS-BPEL has been used to
automatically assess the quality of distributed business
process both at design time and run time [38].

Cojocaru, et al. proposed a set of quality criteria based

on two meta-criteria: meaningfulness in the decomposition
context and feasibility of implementation. These quality
criteria were applied on both Microservice Architecture
and Service Oriented Architecture. They proposed that the
quality of microservices derived from the semi-automatic
application may be useful to provide a complete solution
for migrating monolithic applications to Microservice
Architecture [39].

Hirzalla, proposed a SOA metrics framework which

included both service level and SOA-wide metrics to
measure design and runtime qualities of a SOA solution.
The SOA-wide metrics predicted the overall complexity,
agility and health status of SOA solutions, while service
level metrics focused on the fundamental building blocks
of SOA i.e. services [40].

From the reviewed literature it was observed that metrics

such as maintenance, coupling, cohesion, complexity are
widely used for enhancing the quality of microservices in
terms of maintainability, scalability, availability, reliability
and performance. Authors have also suggested several
other criteria to measure the quality of application such as
meaningfulness in the decomposition context, feasibility
of implementation, calculation of service size, coordination
of inter-services, and bad practices.

6. CONCLUSION
In this paper, the earlier research carried out on

prominent issues on microservices have been surveyed.
Available work has been categorized into four sections
such as

1) granularity of microservices
2) identification of microservices using decomposition

techniques
3) extracting microservices from monolithic

application
4) essential quality metrics needed for microservice

based system.

Microservice Ambient approach is useful for
determining optimal level of granularity at design time
and it also supports run time analysis. As Microservice
Backlog genetic algorithm has lower granularity metrics,
lesser average calls and higher cohesion value for
identifying microservices as compared to Service cutter,
MITIA, AMI algorithm, and DDD. DDD is found to be
the best decomposition approach but has some critical
failure points which are overcome by Microservice
Backlog genetic algorithm.

Garvit Jain et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1091 – 1096

1095

Domain Driven approach has potential for providing
decomposition solution but they are not validated by
expert and are not yet established in practice. MITIA and
evaluation metric algorithm may be useful for software
architects and developers to help them transition from
monolithic design to micro-services.

To maintain the quality of the microservice-based

system, advanced software policies and metrics are
required. It is observed that high cohesion and low
coupling has inverse relationship. Other metrics like
product, complexity etc. are also required for designing
and re-modularizing the software system.

The researchers followed a common methodology for

migrating any monolithic application to a microservice-
based system which is defined step by step as follows

1) Identify the number of microservices that can be
extracted by decomposing the application.

2) Use a decomposition technique to extract out the
identified microservices.

3) Calculate the granularity and other quality metrics
for each microservice, as size and quality metrics
are useful in assessing the aspects of microservice-
based applications.

Since Microservices are being adopted very fast,
research is still in progress in different related field.

REFERENCES
[1]Justus Bogner, Stefan Wagner, and Alfred

Zimmermann: “Automatically measuring the
maintainability of service- and microservice-based
systems.” In: Proceedings of the 27th International
Workshop on Software Measurement and 12th
International Conference on Software Process and
Product Measurement on - IWSM Mensura 2017,
Association for Computing Machinery, New York,
NY, USA, pp. 107–115,2017.

[2]P. Jamshidi, C. Pahl, N. C. Mendonc,a, J. Lewis, and
S. Tilkov, “Mi- croservices: The journey so far and
challenges ahead,” IEEE Software, vol. 35, no. 3,
pp. 24–35, 2018.

[3]S. Newman, “Building microservices: designing fine-
grained systems,” O’Reilly Media, Inc., 2015.

[4]D. Shadija, M. Rezai, R. Hill, Microservices:
Granularity vs. Perfor- mance. In UCC 2017
Companion - Companion Proceedings of the 10th
International Conference on Utility and Cloud
Computing. Association for Computing Machinery,
Inc. 2017. pp. 215-220.

 [5]S. Hassan, N. Ali, and R. Bahsoon,
“Microserviceambients: An archi- tectural meta-
modelling approach for microservice granularity,” in
Proc. ICSA 2017. IEEE, pp. 1–10, April 2017.

[6]Identify domain-model boundaries for each
microservice. Accessed on: Jan 25, 2021. Available
at: https://docs.microsoft.com/en-
us/dotnet/architecture/microservices/architect-

microservice-container-applications/identify-
microservice-domain-model-boundaries

[7]C. Richardson , Microservices: Decomposing
Applications for Deployability and
Scalability, 2014 Available:
https://www.infoq.com/articles/microservices-intro
(2014),Accessedon: Jan 25,2021.

[8]G. Mazlami, “Algorithmic extraction of microservices
from monolithic code bases,” Master Thesis, Software
Evolution and Architecture Lab, Department of
Informatics, University of Zurich, 2017.

[9]P. Di Francesco, P. Lago and I. Malavolta, “Migrating
Towards Microservice Architectures: An Industrial

[10]F. Rademacher, S. Sachweh, and A. Zundorf,
“Differences between model-driven development of
service-oriented and microservicear- chitecture,” in
Int. Conf. on Software Architecture Workshop Proc.
(ICSAW).IEEE, 2017.

[11]J.-P. Gouigoux and D. Tamzalit, “From monolith to
microservices: Lessons learned on an industrial
migration to a web oriented architec- ture,” in 2017
IEEE International Conference on Software
Architecture Workshops (ICSAW). IEEE, pp. 62–
65,2017.

[12]S. Hassan, R. Bahsoon, and R. Kazman, ”Microservice
transition and its granularity problem: A systematic
mapping study”. Software: Practice and Experience,
2019.

[13]Mohammad Sadegh Hamzehloui, Shamsul Sahibuddin,
and Ardavan Ashabi, ”A Study on the Most Prominent
Areas of Research in Microservices,” International
Journal of Machine Learning and Computing, vol.
9,no.2,pp.242-247,2019.

[14]I. J. Munezero, D. Mukasa, B. Kanagwa and J.
Balikuddembe, ”Partitioning Microservices: A
Domain Engineering Approach,” 2018 IEEE/ACM
Symposium on Software Engineering in Africa
(SEiA), Gothenburg, Sweden, 2018, pp. 43-49.

 [15]O. Mustafa and J. Marx G ´omez, “Optimizing
economics of microservices by planning for granularity
level,” in Proceedings of the ProWeb 2017
Programming Technology for the Future Web, Brussels
Belgium, April 2017.

[16]P. Merson and J. Yoder, “ Modeling
Microserviceswith DDD”. Presentation at SATURN
2019. Available at
saturn2019.sched.com/event/LY5d/modelling-
microservices-with-ddd. May2019.

[17]P. Merson and J. Yoder, ”Modeling Microservices with
DDD”, IEEE International Conference on Software
Architecture Companion (ICSAC), Salvador, Brazil,
2020, pp. 7-8.

[18]F.H. Vera-Rivera, E.G. Puerto-Cuadros, H. Astudillo,
C.M. Gaona- Cuevas, “Microservices Backlog - A
Model of Granularity Specification and Microservice
Identification.” In: Wang Q., Xia Y., Seshadri S.,
Zhang LJ. (eds) Services Computing – SCC 2020.
SCC 2020. Lecture Notes in Computer Science, vol.
12409, Springer, Cham (2020).

[19]L. Baresi, M. Garriga, A. De Renzis:
Microservicesidentification through interface

Garvit Jain et al., International Journal of Emerging Trends in Engineering Research, 9(8), August 2021, 1091 – 1096

1096

analysis. In: De Paoli, F., Schulte, S., Broch Johnsen,
E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 19–33,
Springer, Cham (2017).

[20]S. Tyszberowicz, R. Heinrich, B. Liu, Z. Liu:
Identifying microservices using functional
decomposition. In: Feng,X., Müller-Olm, M.,Yang, Z.
(eds.) SETTA 2018. LNCS, vol. 10998, pp. 50–65,
Springer, Cham (2018).

[21]M. Gysel, L. Kolbener, W. Giersche, and O.
Zimmermann: Service cutter: a systematic approach
to service decomposition. In: Aiello, M., Johnsen,
E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016.
LNCS, vol.9846,pp.185–200,Springer,Cham(2016).

[22]M. Abdullah, W. Iqbal, and A. Erradi, “Unsupervised
learning approach for web application auto-
decomposition into microservices,” Journal of
Systems and Software, vol. 151, pp. 243 – 257, 2019.

[23]Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao,
”Automated Mi- croservice Identification in Legacy
Systems with Functional and Non-Functional
Metrics.” in 2020 IEEE International Conference on
Software Architecture, (ICSA), pp. 135-145, 2020.

[24]De Alwis, A.A.C., Barros, A., Polyvyanyy, A., Fidge,
C.: Function- splitting heuristics for discovery of
microservices in enterprise systems. In:Pahl,C.,
Vukovic,M., Yin,J.,Yu,Q.(eds.) ICSOC2018. LNCS,
vol. 11236, pp. 37–53. Springer, Cham (2018).

[25]Jin, W., Liu, T., Cai, Y.,Kazman, R., Mo, R., Zheng,
Q.: Service candidate identification from monolithic
systems based on execution
traces.IEEETrans.Softw.Eng.(2019).

 [26]Stojanovic, T. D., Lazarevic, S. D., Milic, M., &
Antovic, I. (2020). Identifying microservices using
structured system analysis. 2020 24th International
Conference on Information Technology (IT) (2020).

[27]M. J. Amiri, ”Object-Aware Identification of
Microservices,” 2018 IEEE International Conference
on Services Computing (SCC), 2018, pp. 253- 256

[28]G. Mazlami, J. Cito, and P. Leitner, “Extraction of
microservices from monolithic software architectures,”
In: 2017 IEEE InternationalConfer- ence on Web
Services (ICWS). IEEE (2017), pp. 524–531, 2017.

[29]R. Chen, S. Li, and Z. Li, ”From monolith to
microservices: a dataflow- driven approach.” In: 2017
24th Asia-Pacific Software Engineering Conference,
(APSEC) (2017), pp. 466–475, 2017.

[30]O. Al-Debagy and P. Martinek, ”Extracting
Microservices’ Candidates from Monolithic
Applications: Interface Analysis and Evaluation
Metrics Approach”.In: 2020 IEEE 15th International
Conference of System of Systems Engineering,
(SoSE) (2020), pp. 289-294, 2020.

 [31]Taibi,D., Systa,K., “From monolithic systems to
microservices: A decomposition framework based on
processmining,” in Proceedings of the9th International
Conference onCloud Computing and Services percent
Science - Volume 1: CLOSER, INSTICC. SciTePress,
pp. 153–164,2019.

 [32]L. Carvalho, A. Garcia, W. K. G. Assuno, R. de Mello
and M.J. de Lima, ”Analysis of the criteria adopted in
industry to extract microservices”, Proceedings of the
Joint7th International Workshop on Conducting

Empirical Studies in Industry and 6th International
Workshop on Software Engineering Research and
Industrial Practice ser.CESSER- IP ‘19, pp.22-29,2019.

 [33]D.Escobar, D.Cá rdenas, R.Amarillo, E.Castro,
K.Garcés, C.Parra, and R.Casallas, “Towards the
understanding and evolution of monolithic
applications as microservices”, in 2016 XLII Latin
American Computing percent Conference (CLEI)
,pp.1–11,Oct2016.

[34]Tugrul Asik, “Policy Enforcement upon Software
Based on Microservice Architecture. ”IEEE
computer society(2017),pp.283–287,2017.

[35]I. Candela, G. Bavota, B. Russo and R. Oliveto:
“Using cohesion and coupling for software
remodularization: is it enough?” ACM Trans.
Softw. Eng. Methodol., vol. 25, no. 3, pp. 1–28,
2016.

[36]S. A. Miquirice and R. S. Wazlawick, ”Relationship
between cohesion and coupling metrics for object-
oriented systems” in Information and Software
Technologies, Cham: Springer International
Publishing, pp. 424-436,2018.

[37] Li, Y., Wang, C.-Z., Li, Y., & Su, J. (2020).
Granularity Decision of Microservice Splitting in
View of Maintainability and Its Innovation Effect in
Government Data Sharing. Discrete Dynamics in
Nature and Society, 2020, 1–11(2020).

 [38] Rud, D., Schmietendorf, A., Dumke, R.R.: Product
Metrics for Service- Oriented Infrastructure. In:
International Workshop on Software Mea-
surement/Metrikon 2006(2006).

[39]M. Cojocaru, A. Uta and A. Oprescu, ”Attributes
Assessing the Quality of Microservices
Automatically Decomposed from Monolithic
Applications,” 2019 18th International Symposium
on Parallel and Distributed
Computing(ISPDC),2019,pp.84-93(2019).

[40] Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A
metrics suite for evaluating flexibility and
complexity in service oriented architectures. In:
Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008.
LNCS, vol. 5472, pp. 41–52. Springer, Heidelberg
(2009).

[41] Rizki, M., Fajar, A. N., & Retnowardhani, A. (2020).
Microservices architecture design: Proposed for
online healthcare. International Journal of Emerging
Trends in Engineering Research, 8(4), 1040–1046.
https://doi.org/10.30534/ijeter/2020/14842020

