
Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7305

ABSTRACT

The main aim of artificial intelligence in software
engineering is to help teams to develop and test their code
more efficiently and effectively, to create higher quality
software at speed. Software Engineering is having various
phases to be followed. The phases are Plan, code, build, test,
release, deploy, operate and monitor. By implementing the
automated testing patterns, the testing automation will be
done for service-based AI systems. Software testing is the
process of evaluating the developed system to calculate the
quality of the final product or software, but the software
testing process is very costly and takes a lot of time through
the software development life cycle and manual software
testing becomes more and more difficult. Therefore, we just
need to decrease the testing time. Recently, smart testing is a
major factor in reducing the testing effort using machine
learning techniques. This paper aims to compare the main
features of different software testing techniques.

Key words: Artificial Intelligence, Automation,
Autonomous Testing, Continuous testing, DevOps,
integrated tools, Real-time, Source control, Test Driven.

1. INTRODUCTION

Artificial intelligence is the study of the fundamental limits of
computing. AI helps us to discover a new class of computing
problems [1]. If any new class of problem is identified, then it
acquires a name and the engineers understand the problem.
The tools will be implemented by the engineers for
addressing the problem. Many AI applications are extremely
difficult and time-consuming to build and it requires vigilant
analysis, modeling, system design, engineering, test, and
evaluation[2]. The skills in software engineering help to
build successful AI systems. Software engineering derives
efficient access to develop applications. It is providing an

organized set of past experiences [3]. These are arranged as
guidelines and methodologies. Generally, to implement a
smaller system requires programming. To implement a
bigger system like artificial intelligence systems should
follow the software engineering technics. By incorporating
the technics one can develop bigger software products and
achieve quality systems [4]. The purposes of AI systems are to
automate the services of systems to end-users. The advanced
software engineering culture like DevOps will provide the
ability of continuous communication between the
development teams and operations teams [5]. The
development team will build the system and deploy the
system over the cloud. Here I am going to analyze an
automated testing pattern for service-focused AI systems

2. LITERATURE REVIEW

Software testing is a process to check whether the actual
results match the expected results and to make sure that the
developed software is defect-free [6]. Software testing also
helps to identify errors and find missing requirements to the
actual requirements. It can be done in two ways in manually
and using automated tools

2.1 Manual Testing

Manual testing is a type of software testing in which test
engineers manually execute the test cases [7]. It is the most
primitive of all testing types. In this testing tester initiates
each test interacts with the system, reports, and evaluates the
test results. To satisfy the test results test engineers should
prepare and execute each test case properly.
How to Do Manual Testing:

A. Understanding the Requirements:
In order to do manual testing successfully, first, we need to
understand the requirements of the application. By
understanding the requirements, we will know what needs to
be tested and what classifies a bug.

Evolution of the Testing Strategies using Advanced
Automation and Artificial Intelligence in Software

Development
Satyanandaram Nandigam1, Smitha Chowdary Ch2

1Research Scholar, Department of CSE, Koneru Lakshmaiah Education Foundation , India,
satyanandaramn@gmail.com

2Associate Professor, Department of CSE, Koneru Lakshmaiah Education Foundation, India,
smithacsc@gmail.com

 ISSN 2347 - 3983
Volume 8. No. 10, October 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter1068102020.pdf

https://doi.org/10.30534/ijeter/2020/1068102020

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7306

B. Writing Test Cases:
 Once we understand the requirements, we can able to write
test cases. Test cases guide the test engineer to test modules
and different scenarios within the software. Writing good test
cases is makes executing the test cases easy and ensures
maximum test coverage.

C. Executing the Test Cases:
 Once the test cases are written then we can execute the test
cases manually and mark each test as “passed” or “failed”, or
“skipped”. While doing manual testing, it is very important
to write notes on what happens after the execution of a
particular test case.

D. Writing Good Bug Reports:
After testing is done, the tester is responsible for writing a
bug report. If a bug encounters the test engineer needs to
give information to the development team about the bug.
Writing good bug reports helps us to understand easily. A
good bug report should have a strong title, expected and
actual result, and any relevant attachments that will help the
development team understand the issue (screenshots, files,
etc...).

E. Report on the Test Results:
After running tests, we should know and write the results of
the tests. How many tests are run? How many tests are failed?
How many tests are skipped?

2.2 Continuous Testing using Automation

 Automation testing is software which is used to test
execution and the comparison of actual results with the
expected results [8]. Automation software has different test
data. Once the test case is automated, no human intervention
is required. The aim of Automation is to reduce the number of
test cases to be run manually and not to eliminate manual
testing altogether. We can automate unit testing, integration
testing, regression testing, black-box testing[9], etc.
How to Achieve Continuous Testing using automation:

A. Test Tool Selection:
Test tool selection depends on the technology the application
is built on.

B. Define the scope of Automation:
The scope of automation defines the area of our Application
under Test which will be automated. The following points
will help to determine the scope:
(i) Scenarios which have a large amount of data
 (ii) Common functionalities across the application
 (iii) The complexity of test cases
 (iv) Ability to use the same test cases for cross-browser
testing

C. Planning, Design, and Development:
In this phase, we create an automation strategy and plan. It
contains the following details

 (i) Automation tools selected
 (ii) Framework design and its features
 (iii) In-Scope and Out-of-scope items of automation
 (iv) Automation test bed preparation
 (v) Schedule and Timeline of scripting and execution
 (vi) Deliverables of Automation Testing

D. Test Execution:
In this phase, automation scripts are executed. These scripts
need test data as input before set to run.

E. Maintenance:
As new functionalities added to the application automation
scripts need to be added, reviewed, and maintained for each
release. Maintenance is mandatory to improve the
effectiveness of automation scripts.

2.3 Continuous testing using CI/CD

 Continuous Testing phase involving with Build and Test
phases [10] including Level 2 testing and Level 3 testing.
Under the Level 2 testing, feature tests for current sprint, user
stories tests will be prepared and the smoke tests will be
completed. CT teams will work on generating test automation
scripts from requirements. They will simulate test
environment and access test data on demand. To ensure
comprehensive cloud-based API testing, the open source
testing tools will be integrated. Built-in automated
application security testing will be activate over the cloud and
promote artifacts when tests pass by orchestrating and
automating the pipeline
How to do Continuous Testing:

A. Create Test Environment:
Create a test environment that means starting the testing
process.

B. Copy and anonymize production data to create test
data:

Production data is a copy of a database that has been masked.
In this, we are using this production data to create test
data[11].

C. Use service virtualization to test API:
API is a set of routines and tools for building software
applications. API virtualization is a process of using tools
that creates a virtual copy of our API, which mirrors all of the
specifications of our production API and using this virtual
copy in place of our production API for testing[12].

D. Parallel Performance:
Testing parallel testing is a software testing type, which
checks multiple sub-modules of application concurrently to
reduce the test time. In this, the tester runs two different
versions of software concurrently with the same input.

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7307

2.4. Autonomous Testing

Testing of software using Machine Learning and Artificial
Intelligence is called Autonomous testing[13] or smart
testing. Practical implementation of smart testing is done in 6
levels same as self-driven cars. In each level, we use
techniques to find bugs[14]

Figure.1. Levels of Autonomous testing

 Level 0: No autonomous
Here, the human is writing the test and verifying each
changing to the baseline.

Level 1: Assistance
The human is writing the test and verifying each change to
the baseline.AI is assisting in writing test code like in a
self-driven car[15] the human is still driving the car and the
AI is only assisting while the human is driving. In this phase,
AI can also check test pass or not but when the test fails it still
needs to notify the human to check whether the failure is real
one or happened because of the software after that human will
have to confirm that whether it is a bug or software problem.

Level 2: Partial Autonomous
The human is writing the test and verifying each change to
the baseline[16].AI is assisting the change verification by
grouping changes like in self-driven cars human is still
drives, but the AI takes care of acceleration and steering
while assuming that the human can take over on level 1.Level
2 AI will be able to group these changes and tell the human
that these are the same change, and they would like to please
confirm or reject all these changes as a group.

Level 3: Conditional Autonomous
Human is writing the test.AI is verifying each change to the
baseline like in a self-driven car where the car drives itself,
but only under certain conditions, and always under the
assumption that the human can take over when the AI notifies
it that it is incapable of responding to a certain situation. In
Level 2, if any failure or changes detected in the software still
needs to be verified by a human. Level 2 AI can help to
analyze the change, but cannot understand whether a page is
correct or not just by seeing at the page. It needs a baseline to
compare against, but Level 3 AI can do that and much more

because it can apply machine learning techniques to the page.
Now AI can look at pages and determine whether the page is
OK or not without human intervention, just by understanding
design and data rules and AI is looking hundreds of test
results and seeing how things change and submit a test to
humans to verify if such anomaly is detected.

Level 4: High Autonomous
Human is assisting in writing the test.AI is writing the test,
with human guidance like in a self-driven car AI totally takes
overall driving. Level 4 AI will able to understand pages by
visually looking at the pages as a human does. Once AI
understands the type of page (i.e. login page/profile page etc.)
by using techniques reinforcement learning, it can write tests
themselves

Level 5: Fully Autonomous
Human does nothing AI is writing the tests, without human
guidance. In this level, AI will be able to converse with the
product manager, understand the application, and fully tests
itself.
3. Evolution of the testing Strategies

Figure.2. Evolution of the testing strategies

3.1 Manual testing test plan:
Here I am having manual testing test plan template.
Generally the test plan has to prepare by test manager[17].

Figure.3. Sample Test case Template

Example Scenario: Based on the above template, below is an
example that showcases the concepts in a more
understandable way. Based on the above template, below is
an example that showcases the concepts in a more
understandable way

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7308

Table 1. Real-time Test case – Login – Positive test case.

Suppose you are testing the login functionality of any web application, say Facebook. Below are the test cases for the same:

Table 2. Real-time Sample Test case – Login – Negative test case

Test Scenario ID Login-1 Test Case ID Login-1A
Test Case
Description

Login – Positive test case Test Priority High

Pre-Requisite A valid user account Post-Requisite NA
Test Execution Steps:

S.N
o

Action Inputs Expected
Output

Actual
Output

Test
Browser

Test
Result

Test Comments

1 Launch
application

https://www.face
book.com/

Facebook
home

Facebook
home

IE -11 Pass [Satya 10/09/2020
11:44 AM]: Launch
successful

2 Enter correct
Email &
Password and
hit login
button

Email id :
test@xyz.com
Password:

Login
success

Login
success

IE -11 Pass [Satya 10/09/2020
11:45 AM]: Login
successful

Test Scenario ID Login-1 Test Case ID Login-1B
Test Case
Description

Login – Negative test
case

Test Priority High

Pre-Requisite NA Post-Requisite NA
Test Execution Steps:

S.No Action Inputs Expected
Output

Actual
Output

Test
Brows
er

Test
Result

Test
Comments

1 Launch
application

https://www.face
book.com/

Facebook home Facebook
home

IE -11 Pass Satya
10/09/2020
11:44 AM]:
Launch
successful

2 Enter
invalid
Email & any
Password
and hit
login button

Email id :
invalid@xyz.co
m
Password:

The email
address or phone
number that
you've entered
doesn't match
any account.
Sign up for an
account.

The email
address or
phone
number
that you've
entered
doesn't
match any
account.
Sign up for
an account.

IE -11 Pass [Satya
10/09/2020
11:45 AM]:
Invalid login
attempt
stopped

3 Enter valid
Email &
incorrect
Password
and hit
login button

Email id :
valid@xyz.com
Password:

The password
that you've
entered is
incorrect.
Forgotten
password?

The
password
that you've
entered is
incorrect.
Forgotten
password?

IE -11 Pass [Satya
10/09/2020
11:46 AM]:
Invalid login
attempt
stopped

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7309

3.2Real-timeAutomation testing test plan

This section is related to the automating the manual Smoke
and Regression test cases[18] for a customer. This plan
contains project specific Automation Test Plan information
which includes the following:
Scope of Automation: The manual Smoke and Regression
tests cases of Enrollment, Disease Management (DM) and
Device Management (DVM) will be automated.
Timeline: Deliverables and schedule
Test Strategy: Testing techniques, entry and exit criteria,
tools, test environment, test data
QA team: Organization, roles and responsibilities, training
requirements, inter-group coordination.
Automation Coverage:
Table 3. Real time Sample Test case - Automation Test Coverage

module.
Modules Yes/No

Enrollment Yes

Disease Management Yes

Device Management Yes

Smoke test cases yes

Traceability Matrix will be maintained by mapping
Requirements onto test scripts[19]: This will be used to track
Test Case to Test Script (one to one mapping).
Functional Requirements – Criticality Guidelines: The
criticality of each Test Script is defined by the Test Cases
steps.
Table 4. Real-time Sample Test case – Functional Requirements.
Sr.
No.

Functional Requirement Criticality

1 Test Case steps less than 4 steps Low

2 Test Case steps less than 8 and
greater than 4 steps

Medium

3 Test Case steps greater than 8
steps

High

4 Data Base verification High

The Regression and Smoke test cases are in scope and rests of
the test cases which do not fall under regression are
considered to be out of scope

Assumptions: The plan is based on the following
assumptions which affect scope of testing:

 Application should be stable.
 The Manual Regression and Smoke test cases Test

Cases of Enrollment, Disease Management and
Device management will be automated.

 The requirements are complete, accurate and are
testable.

 Any change in the scope of the project will be done
after impact analysis and will be accompanied by
changes to the project schedule/plan.

 QTP (QuickTest Professional) HP product licenses
are available for 3 resources.

 VPN Connections are available for 3 resources.
 Environment setup and build deployment will be

taken care by respective team not by automation
team.

Test Deliverables and schedule: The following table lists
all the major QA deliverables with their due dates. A
deliverable may contain more than one document. Details
of schedule need to be defined

Table 5. Real-time Sample Test case – Test Deliverables and
schedule.

Deliverable Description Start Date End Date

Automation
Test Plan

This
describes the
overall test
approach
and strategy.

09-Sep-2020 09-Sep-2020

Automatabl
e Test Cases

Automatabl
e Test Cases

Test Scripts Test Scripts

Test Report Test Report

 Testing approach – Smoke Testing

Objective: Smoke testing is done by using automated
smoke test scripts to make sure the build is stable and
further testing cab be performed.

Entry Criteria:
 QA environment is setup with necessary hardware

and software
 Test scripts are designed and reviewed

Exit Criteria: The entire smoke test Scripts are passed
Test Suspension and Resumption Criteria: Testing will be
suspended if:

 Showstoppers or critical issues, which prevent
the testing of major functionality, are
encountered.

 The test scripts fail.
Special Considerations: Special considerations will be
noted here.

 Testing approach – UI/ Usability Testing
During the automation testing, Usability testing will not be

done by developers. .
 Testing approach – Functional Testing

During the Functional testing, the functional requirements
and specifications need to be tested by the teams.
 Testing approach – Regression Testing

Objective: Regression testing is performed to check that
the previous release is not affected by the changes made in
the current release. Regression testing is done by executing

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7310

the test Scripts from each release, which is a subset of the
functional test cases for each release.

Entry Criteria
 Application is successfully installed
 Test Scripts are ready to be executed.
 Smoke test is successful
 Defects in previous release have been addressed

according to the functional requirements.
 Developer release notes are provide with scope of

testing, known issues, list of defects fixed,
information about other parts which might have
been affected by the defect fixes.

Exit Criteria
 No critical and high severity defects are open
 All known issues are documented (with workaround,

if necessary)
Test Suspension and Resumption Criteria: Testing will be
suspended if:

 Showstoppers or critical issues, which prevent the
testing of major functionality, are encountered.

 Functionality is unstable, i.e., too many
non-reproducible defects are encountered.

 Testing will be resumed when the showstoppers are
fixed.

Special Considerations:
Special considerations will be noted here.

Test Automation Prerequisites: Automation team would be
using Integrated Test Automation[20] Framework (ITAF)
which has the below Key features

Key features of ITAF

 Reduces redundancy and increases reuse
 Reduces time to develop automation suite
 Robust and highly scalable
 Requires minimum maintenance
 Highly portable
 Supports Keyword and Data driven approach
 Grouped by function categories
 Extensible across domains
 Can be used by non-technical users to execute tests

and monitor results without tool proficiency
 Facilitates customized reporting
 Functions, suites, applications
 Delivered through web, e-mail and other formats

The main execution of the application test starts from driver
script. Driver script invokes QTP and loads Library files
(Business, Generic and test scripts) which are mapped to it.
Test data is invoked as and when the data is required to the
script and test results are stored in test results folder

Figure. 4. Real time Integrated Test Automation Framework (ITAF)

ITAF consists of the below folder structure which would be
used as it is.
 Script Folder: QTP script that drives the application

testing
 Environment File in Text format: The component's path is

saved in this file which is in turn called from driver script
 Library in Vbs format: These are external “VBS” files that

are added to the resources tab of the QTP test settings. This
file will contain public functions of specific Business
scenarios and Generic scenarios that can be reused across
the test scripts. These library files would be stored in the
folder “Library”

 Object Repository: When you create a test or component,
all the information about the objects in your test or
component is stored in an object repository. You can view
and modify this information in the Object Repository
dialog box

 Data table: To retrieve test data required by the test scripts
most popularly used Data tables are Excel data tables

 Recovery and Exceptional Handling: Recovery Scenarios
are used to recover from failures or any unexpected events.
On Error Resume is used in the functions for exceptional
handling.

 Criteria for Inclusion of Test Cases in Automation[21]
• Application is successfully installed.
• Smoke testing is successful.
• Test scripts are ready to be executed.

 Entry Criteria:
• No critical and high severity defects are open in the
functionality related to automated scripts.
• All applicable parameter data are in place.

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7311

 Test Suspension and Resumption Criteria: Testing will be
suspended if:

• Showstoppers or critical issues, which prevent the testing
of major functionality, are encountered.
• The test scripts fail.
Special Considerations: If any special considerations need to
be added here

3.3 Continuous testing test plan

The continuous testing plan[22] contains project-specific
Quality Assurance Test Plan (QATP) information for prepare
and conduct system & regression testing which includes the
following:
Scope of testing: Sanity& regression test cases will be
automated along with manual testing for all the requirements
Source of Information and Timeline: Define sources of
information used to prepare the plan deliverables and
schedule
Test Strategy: Testing techniques, entry and exit criteria,
tools, test environment, test data
QA team: Organization, roles and responsibilities, training
requirements, inter-group coordination
Text execution: Test metrics, Test Report, and Defect
management

Objectives: Quality objectives of the Testing are to ensure
complete validation of the business and application
requirements

 Verify application requirements are complete and
accurate

 Perform detailed test planning
 Identify testing standards and procedures that will be

used on the project
 Prepare and document test scenarios and test cases
 Regression testing to validate that unchanged

functionality has not been affected by changes
 Manage defect tracking process
 Provide testing execution and summary reports

Reference Documents:
 HLD: define a path for High-level design
 LLD: define a path for Low-level design
 Wireframe: define a path for wireframes
 Business Requirement: define a path for business

requirements
Real time Automation Framework: An Automation
Framework is an integrated platform which hosts various
hardware and software tools, resources and services. It
enables efficient design and development of automated test
scripts and analysis of issues for the system under test[23].

Figure. 5. Real time Automation Framework – Conceptual View

Scope of Continuous testing: The high-level modules that
will be tested are

• Operations
• Maintenance
• Quality Analysis
• Inquiry
• Configuration
• Utilities
• Reports
• Administration

These modules are derived from the basic workflow of the
system. Apart from these modules, Inbound and Outbound
interface files will be tested. Capacity planning, performance
tuning, network configurations, code changes, and Database
procedure changes are considered as out of scope.
Continuous testing – Test Approach: After the Project
Increment (PI) planning, the Product Owner (PO) will
develop feature files[24] for each story in the respective
sprints and will be handed over to QA team. QA teams will
prepare the manual test cases and share them with the
respective PO. Once the manual scripts validations are done,
the QA team starts preparing the skeleton for the automation
test scripts [25] based on the availability of wireframes.
Meanwhile, the development teams will develop and
diagnostics the code in the process of unit testing before
deploying to the test environment. For every new build sanity
test job will be automatically triggered into integrated tools
like Jenkins and based on sanity results QA teams will decide
whether to accept or reject the build. Once the build is
accepted, QA teams will test the deployed stories and report
the bugs in version and will be tracked till closure[26].
Version tool will be used for logging and tracking the defects
rose as part of functional testing and tracked to closure.
Regression test cases will be identified by QA teams and
end-to-end (E2E) automation will be done. Once the testing is
done in the test environment the same E2E testing will be
carried out in stage.
Different types of testings’ covered in Continuous testing:
Sanity Testing: Sanity testing will be done by using automated
test scripts[27] to check the health of the application to make

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7312

sure the build is stable, sanity testing will be performed after
each build same will be integrated to CI/CD pipeline.
System Testing/InSprint testing: system testing will be done
during InSprint[28] once user stories are deployed in the test
environment and sanity is pass to make sure all the user
stories are developed as per requirements if any deviation
found defects will be logged in Version and tracked till
closure.
Regression Testing: Regression testing will be conducted
before every release to make sure current sprint development
didn’t affect existing functionality. Regression test cases will
be identified during manual test design and the same will be
automated before adding those to the existing regression
suite.
Performance Testing: Ensuring that no performance
degradation is witnessed com-pared to the SLA’s or relative
to the previous iteration of performance testing [29]carried
out. Measure, record, and summarize all performance
measurements (both successful and unsuccessful) that occur
during testing. Collation of all results will be analyzed and
used as part of the detailed performance test exit report.

Table 6. Real-time Performance Testing Check List
Smoke Testing Yes
UI Testing Yes
Functional Testing Yes
Regression Testing Yes
Test Automation Yes
Performance Testing Yes

 Continuous Testing - Test Deliverables

 Test Plan
 Manual Test Cases
 Automation Test Scripts
 Defect/Enhancement Logs
 Test Reports
 Final Performance closure document

Table 7. Real-time Continuous Test Environment – Tools to be used
No Purpose Tool
1 Source code Management GitHub
2 Test Script Development and

Execution
Selenium, Java,
BDD, Eclipse,
Jenkins, Maven,
Extent reports,
Jenkins

3 Performance Testing Load Runner

Real Time Test Metrics and Defect Management:
 Test Metrics: The following test metrics will be used to

monitor test progress and product quality[30]. The metrics
must be correlated to gain more understanding. The
metrics will form part of project QA sheet.

Table 8. Real-time Test Metrics table
Metric Name Description
Time to find a defect Time spent on testing/total

number of defects found during
that time

Severity Index Weighted average of defects
logged

Defect Age Time to fix the defect

Defects to Remarks
Ratio

Number of defects against the
number of remarks

 Test Reporting:

 Manual test cases will be shared in Excel
 Automation test cases will be shared as Behavior

Driven Development (BDD) feature files
 Automation test results will be shared
 Weekly and Daily test results will be shared to

respective stake holders
 Final performance closure document will be shared

 Defect Management:
 Versions will be used as defect management tool in

current project[31]
 QA team will report all the deviations from the use

cases and the validation and verification issues
into the defect management system

 Defect logged by QA team and then assigned to
development team for further investigation,
whole team is responsible to track defect till
closure.

 Guidelines for entering defects:
 Defect title should be clear and convey the issue
 Defect description should explain all the details

about the defects
 Steps to reproduce should be included in the

description along with actual and expected
behavior.

 Proper screen shots should be attached while
logging the defects

 QA team need to select priority as per the
guidelines

 QA team need to select severity as per the
guidelines

 QA team should assign to developer if it is inSprint
and regression defects should assigned to
common bucket and scrum masters will assign
those to developers based on availability

 QA team and Developers should follow defined bug
life cycle and update the defect information in
versions

 QA team need to attach proper screenshots after
retesting the defect

 Priority and Severity guidelines: Defects are classified
on two scales. Those are severity scale and priority

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7313

scale[32].
 Severity Scale: The severity scale indicates the impact of a

failure caused by a fault. QA engineer responsible for
entering the defect and he will decide the severity. It can be
classified into the following:

Table 9. Real-time Priority and Severity guidelines
Severity Guidelines
Critical System Crash

Defects that have the potential to destabilize
the system

Missing major functionality
Any defect that prevents execution of test

cases
High Erroneous functionality

Loss or corrupted data transformation
Unexpected functional behavior
Wrong/missing features in functionality
Major non-conformance to GUI standards
Workaround exists but it is complicated

Medium Errors in the display of graphics and
content

Unexpected functional behavior which are
not showstoppers

Minor non-conformance to GUI standards
Defect in code, but simple workaround

exists
Low Cosmetic errors

Defect causes minimal or unnoticeable
problems

 Priority Scale: The priority scale indicates the urgency to

fix a fault. Priority is decided by the project manager or an
individual or a group appointed by him/her. Guidelines for
priority are listed below:

Table 10. Real-time Priority scale Guidelines
Priority Guidelines
High Resolve immediately
Medium Resolve Pre-Release
Low Desired but not urgent

Advantages of Autonomous Testing

• Accelerating manual testing and the overall process.
• Automation of the testing process.
• Eliminating more bugs
• Reduced ignore bugs probability.
• Forecasting client requirements.

5. CONCLUSION
Here I have identified the research scope in autonomous
testing for real time IOT based application[33]. While using

machine learning and artificial intelligence in autonomous
testing, the huge amount of data and systems involved is
greater than the data needed for automation. It aggregates the
data that will be dynamic which practiced from the machine
learning algorithms.

REFERENCES

1. M. Pouse, "Artificial Intelligence," 09 09 2020. [Online].

Available:
https://en.wikipedia.org/wiki/Artificial_intelligence.
[Accessed 19 09 2020].

2. K Chaitanya, et al. “A Formal and Enriched Framework
for Testing Distributed Embedded Systems.”
International Journal of Emerging Trends in
Engineering Research, no. 9, The World Academy of
Research in Science and Engineering, Sept. 2020, pp.
6389–96. Crossref,
doi:10.30534/ijeter/2020/238892020.

3. F. L. Bauer, "Software and Software Engineering,"
SIAM, vol. 15, no. 2, pp. 469-480, 2006.

4. S. N, "Key Metrics Identification of Distinct Process
Models to develop an IOT based systems," IJRTE, vol. 8,
no. 4, pp. 9661-9666, 2019.

5. P. GACZKOWSKI, "Bridging Gaps: The Importance of
DevOps Communication," Developers, [Online].
Available:
https://www.toptal.com/devops/bridging-gaps-devops-c
ommunication. [Accessed 2020 8 10].

6. D. Solutions, "Software Testing," DroIT Solutions, Pune,
2018.

7. A. Choudary, "Manual Testing Complete Guide:
Everything You Need To Know," Edureka, 28 Nov 2019.
[Online]. Available:
https://www.edureka.co/blog/what-is-manual-testing/.
[Accessed 10 8 2020].

8. Panda B.S., Suman R.S., Hemanth A., Kumar D.H.
(2019), ‘Model-based automation in testing of web
applications’, International Journal of Innovative
Technology and Exploring Engineering, 8(7),
PP.3056-3062.

9. Jammalamadaka K., Parveen N. (2019), ‘Holistic
research of software testing and challenges’,
International Journal of Innovative Technology and
Exploring Engineering, 8(0), PP.1506-1521

10. A. Eran Kinsbruner, " Manual Testing vs. Automated
Testing.," Perfecto., 13 August 2019. [Online].
Available:
https://www.perfecto.io/blog/automated-testing-vs-man
ual-testing-vs-continuous-testing. [Accessed 01 Sep
2020]..

11. “Effective Automated Testing Strategies for Release
Pipelines | CloudBees Docs.” CloudBees Docs,
https://docs.cloudbees.com/docs/cloudbees-cd/latest/pip
elines/leverag-test-data-mgmt. Accessed 27 Sept. 2020.

Satyanandaram Nandigam et al., International Journal of Emerging Trends in Engineering Research, 8(10), October 2020, 7305 - 7314

7314

12. “Continuous Test Data - DATPROF.” DATPROF, 11
May 2020,
https://www.datprof.com/solutions/continuous-test-data/
.

13. Philip Koopman, and Michael Wagner. “Challenges in
Autonomous Vehicle Testing and Validation .” 2016
SAE World Congress, 2016 SAE World Congress, Jan.
2016, doi:2016-01-0128 / 16AE-0265.

14. J. M. Zhang, M. Harman, L. Ma and Y. Liu, "Machine
Learning Testing: Survey, Landscapes and Horizons,"
in IEEE Transactions on Software Engineering, doi:
10.1109/TSE.2019.2962027.

15. Gil Tayar. “Not Only Cars: The Six Levels of
Autonomous Testing - Automated Visual Testing |
Applitools.” Automated Visual Testing | Applitools, 24
Oct. 2017,
https://applitools.com/blog/not-only-cars-the-six-levels-
of-autonomous/.

16. “The 6 Levels of Vehicle Autonomy Explained |
Synopsys Automotive.” Synopsys | EDA Tools,
Semiconductor IP and Application Security Solutions,
Synopsys, Inc,
https://www.synopsys.com/automotive/autonomous-driv
ing-levels.html. Accessed 28 Sept. 2020.

17. Bhat, Gururaj. “Sample Software Test Plan Template
with Format and Contents.” Software Testing Help - Free
Software Testing & Development Courses,
https://www.softwaretestinghelp.com/test-plan-template
/. Accessed 28 Sept. 2020.

18. smita. “How to Select Correct Test Cases for Automation
Testing (and Ultimately Achieve a Positive Automation
ROI).” Software Testing Help - Free Software Testing &
Development Courses,
https://www.softwaretestinghelp.com/manual-to-automa
tion-testing-process-challenges/. Accessed 28 Sept.
2020.

19. Shilpa. “4 Simple Steps to Create Requirement
Traceability Matrix (RTM) - Free Sample to Download |
Opencodez.” Opencodez, 8 Feb. 2017,
https://www.opencodez.com/software-testing/create-req
uirement-traceability-matrix-rtm-free-sample-download
.htm.

20. Kirsten Aebersold. “Test Automation Frameworks.”
Smartbear.Com, SmartBear Test complete,
https://smartbear.com/learn/automated-testing/test-auto
mation-frameworks/. Accessed 28 Sept. 2020.

21. Flemström, D., Potena, P., Sundmark, D. et al.
Similarity-based prioritization of test case automation.
Software Qual J 26, 1421–1449 (2018).
https://doi.org/10.1007/s11219-017-9401-7

22. Tom Alexander. “DevOps Testing Strategy: Benefits,
Best Practices & Tools.” Test Management Tools | Jira
Test Case Management Software | Zephyr, SmartBear
Software, 30 Apr. 2018,
https://www.getzephyr.com/insights/developing-devops-
testing-strategy-benefits-best-practices-tools.

23. Raju, Devendra. “Selenium Automation Framework
Example | Selenium Easy.” Selenium Easy, Selenium
Easy, 11 May 2014,
https://www.seleniumeasy.com/selenium-tutorials/seleni
um-automation-framework-example.

24. “DevOps - Scaled Agile Framework.” Scaled Agile
Framework, Scaled Agile, 20 Jan. 2019,
https://www.scaledagileframework.com/devops/.

25. Sasi Bhanu J., Baswaraj D., Bigul S.D., Sastry J.K.R.
(2019), ‘Generating test cases for testing embedded
systems using combinatorial techniques and neural
networks based learning model’, International Journal of
Emerging Trends in Engineering Research, 7(11),
PP.417-429

26. Alexander Granada Murdoch, and Ahmad Nurul Fajar.
“Designing Security Testing Systems Integration Using
Service Oriented Architecture.” International Journal of
Emerging Trends in Engineering Research, no. 9, The
World Academy of Research in Science and
Engineering, Sept. 2020, pp. 6389–96. Crossref,
doi:10.30534/ijeter/2020/238892020.

27. Vijay Kumar. “Smoke Testing vs Sanity Testing vs
Regression Testing Explained.” Testsigma Blog, 7 Feb.
2020,
https://testsigma.com/blog/smoke-testing-vs-sanity-testi
ng-vs-regression-testing-explained/.

28. Scot Noftz. “5 Steps to Succeed at In-Sprint Test
Automation - SPR.” SPR, 29 May 2019,
https://spr.com/5-steps-to-succeed-at-in-sprint-test-auto
mation/.

29. “Performance Testing - The Complete Guide - Neotys.”
Neotys, http://www.facebook.com/Neotys,
https://www.neotys.com/insights/performance-testing.
Accessed 29 Sept. 2020.

30. Subramanian, Santosh. “Software Testing Metrics
Driving Testing Services Performance.”
Whitepaper_Software-Testing-Metrics, Mphasis,
https://www.mphasis.com/content/dam/mphasis-com/gl
obal/en/downloads/WhitePapers/Whitepaper_Software-
Testing-Metrics.pdf. Accessed 29 Sept. 2020.

31. Swati Seela, and Ryan Yackel. “64 Essential Testing
Metrics for Measuring Quality Assurance Success |
Tricentis.” Tricentis, Tricentis, 27 Jan. 2016,
https://www.tricentis.com/blog/64-essential-testing-met
rics-for-measuring-quality-assurance-success/.

32. Kirandeep Kaur. “Bug Severity vs Priority In Testing
With Examples.” LambdaTest, Lambda Test, 8 Apr.
2019,
https://www.lambdatest.com/blog/bug-severity-vs-priori
ty-in-testing-with-examples/.

33. Pandit D.P., Pattanaik S.R. (2019), ‘Software
engineering oriented approach for iot applications: Need
of the day’, International Journal of Recent Technology
and Engineering, 7(6), PP.886-895

