
Priyanka Paygude et al., International Journal of Emerging Trends in Engineering Research, 8(5), May 2020, 2112 - 2117

2112

ABSTRACT

In software testing practice, regression testing is significant
type of testing, which is responsible for stability, quality,
reliability and functionality of existing application even after
doing the modifications in the application. Test case
prioritization (TCP) is one of the proved effective techniques
of regression testing that improves defect detection rate by
scheduling execution of the test cases (TCs). Scheduling the
execution of all TCs is very complex and time consuming task
and thus needs to introduce the use of optimization
algorithms. This paper implements a genetic optimization
algorithm (GA) to improve the TCP technique by ordering the
TCs with goal of maximum fault detection by minimal
execution of TCs. The effectiveness of implemented GA
optimization technique is measured using average percentage
of fault detection (APFD) metric. We analyzed implemented
GA approach to examine its effect on outcome by changing its
vital parameters such as crossover, mutation and convergence
criteria with the aim of increasing rate of fault detection. This
experiment is evaluated on public dataset with more than
1000 TCs. We tend to compare our work with random search
prioritization and hill climbing optimization algorithms. This
carried out experimental outcome clearly depict that GA
outperforms better than compared algorithms in solving TCP
problem by improving the performance of regression testing.

Key words: APFD, genetic algorithm, regression testing, test
case prioritization

1. INTRODUCTION

Generally, system in its development and maintenance phase
continuously undergoes modifications and thus system must
be tested before and after the changes are merged into the
main development part. Software undergoes continuous up
gradations due to ever changing customer requirements. As
software grows, the database of test cases grows
exponentially, that makes testing more complex. If the
software is not tested aptly then there is high risk [1, 2] of
defects retention in the system under test (SUT). Regression
testing plays a significant role in approving the quality and
reliability of the system undergoing continuous up gradation.
When software system is modified for its functionalities, it is
expected to retest all test cases for existing and newly added
functionalities before the release of product to the customer.

Regression testing is the final step that verifies and works as a
quality measure to confirm that changes made in the system
has not affected the previous correctly working functionalities
and the system is still stable as far as working is concerned.
This confirmation can be achieved by re executing all the
TCs. But, re-executing all TCs before each release is a costly
and time-consuming task as test suite grows exponentially
with addition or modification in system. This can be
controlled and made possible by introducing prioritization in
execution ordering of the TCs. Test case prioritization (TCP)
is widely adopted technique in software industry to reduce
efforts and effective execution of regression testing [3-6].
TCP orders the TCs of test suites by calculating priority based
on test suitability criteria such as early fault detection, critical
fault coverage, code coverage, requirement coverage etc.
In literature survey of TCP, there are many approaches
proposed, implemented and validated for addressing TCP
problem for effective regression testing. Many search
optimization algorithms such as genetic algorithm (GA),
particle swarm optimization (PSO), ant colony optimization
(ACO), simulated annealing (SA) and history-based approach
are widely research areas in TCP problem. It has been found
from the literature study that GA optimization technique is
mostly implemented and proved effective for TCP. But
limitation we observe from literature that many research
works have generated their own test suite manually and that
too with less than 100 TCs.
In this paper, we have applied and implemented GA for
solving the TCP problem in regression testing using history
based testing information. We have not only implemented
GA, but also tried to inspect the effect on outcome of GA on
changing its vital parameters- crossover, mutation. We
compared and analyzed the outcome of variations in
parameters on 4 large datasets. Evaluation of experiment is
carried out on the publicly available dataset bigfaultmatrix
having 1000+ test cases and 37 faults [27].For comparison,
we have considered Average Percentage of Fault Detection
(APFD) [4] metric which depicts the rate of fault detection on
execution of test suite. We compared the GA technique with
other algorithmic approaches, such as Random Search, Hill
Climbing (internal and external swap).
This paper is organized as follows. Section 2 discusses the
literature work in TCP using GA. Session 3 explains
regression testing and TCP concept. Implemented GA, its
algorithm and flow is explained in section 4. Section 5

Priyanka Paygude1, Dr. Shashank D. Joshi2, Dr. Manjusha Joshi3

1,2Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune, India, pspaygude@bvucoep.edu.in ,
sdjoshi@bvucoep.edu.in, 3SKNCOE, Vadgaon, Pune, India, manjushajoshi1@gmail.com

Fault Aware Test Case Prioritization in Regression Testing
using Genetic Algorithm

 ISSN 2347 - 3983
Volume 8. No. 5, May 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter104852020.pdf

https://doi.org/10.30534/ijeter/2020/104852020

Priyanka Paygude et al., International Journal of Emerging Trends in Engineering Research, 8(5), May 2020, 2112 - 2117

2113

discusses experimental evaluation. Section 6 describes
comparison of results of GA approach with other algorithms.
we have concluded our work in section 7.

2. LITERATURE SURVEY

This session surveys and discusses the previous papers
published for solving the TCP problem using optimization
algorithms [5]. Use of optimization techniques is widely
researched area for TCP due to its successful outcomes. We
have focused our survey study on the use of GA and its hybrid
combinations for addressing TCP problem. GA along with
many hybrid approaches are proposed and evaluated in
literature such as GA with Particle Swarm Optimization
(PSO), GA with Ant Colony Optimization (ACO), GA with
Greedy Algorithm, GA with Simulated Annealing (SA) [8,17]
etc.
The research work [10] proposed a multi-objective-based GA
approach for ordering the test cases using code coverage
parameters such as total statement coverage, total fault
exposing weight of each TC and total mutant coverage by the
TC. The technique is evaluated on classic problem of triangle
classifier with limited manually generated TCs and fault
matrix. The proposed GA-PSO hybrid technique [11] works
in two parts, first – the initial population is iterated for fitness
function yielding optimized set of population using genetic
evolutionary concept. In second part, initial results from GA
are given as input to PSO, where problem of converging at
local optima is resolved using global best. The results of
proposed techniques are significant but are based on static test
case- fault dataset. The work [12] presented a new
prioritization algorithm with the aim of uplifting the rate of
fault detection using history of fault detection by test cases
and severity of faults. Authors have compared their proposed
method with existing work [13]. The results evaluated of
static dataset of [13] prove the efficiency of proposed
technique. The hybrid combination of adaptive approach with
GA is suggested in [14], achieves the 100% statement
coverage. In first step, adaptive approach will calculate fault
detection capability of each test case and high rank TCs are
executed prior to other TCs. In second step, leftover TCs are
given as input to GA for generating optimized sequence. In
[15] authors have designed a Component-Based Software
testing prioritization framework using GA with Java decoding
technique to enhance the software quality by detecting faults
at the early stage of software development. In [16], authors
have developed an automation tool which is a hybrid
combination of Genetic Algorithm (GA) and Simulated
Annealing (SA) algorithm for TCP. Execution time and fault
detection rate are used as input parameters for calculating
fitness value. This tool evaluated on static test case fault
matrix shows promising results compared to traditional test
suite execution order.
It has been observed through carried literature survey that
very few papers have referred public datasets or tested
approach on real projects. Almost 90% of the studied papers
tried their approach on manually generated test suite that too
with less than 100 TCs. With observed limitations from
related work, we set the goal of implementing GA, assessing

its performance on big public datasets and observe effect on
GA by changing its implementation parameters.

3. REGRESSION TESTING AND TCP

Regression testing is the process of discovering and
confirming that modifications added in the application have
not adversely affected the existing working functionalities and
application still work as expected. Regression testing ensures
this by re-executing all or partial test cases. It assures that new
changes have not penetrated any defects in the previously
tested and working application [18-21]. Figure 1 shows, how
scope and efforts for regression testing increases
exponentially as system develops and undergoes
modifications. So, after doing changes or adding new
functionality in the system, the system is prone to introduce
new defects, thus regression testing is needed. Here testing is
carried out for modified and existing functionalities keeping
more attention on impacted functionalities.

Figure 1: Scope and efforts for regression testing

Regression Test Selection (RTS), Regression Test
Minimization (RTM) and Test Case Prioritization (TCP) [3]
are the approaches considered for regression testing of the
application. RTS and RTM select the test cases from test suite
based on experience of tester and thus by elimination TCs, it
raise the possibility of defects retention in the system. TCP is
the most adopted technique, which works without elimination
of test cases it schedule the execution order of test cases by
achieving certain objectives such as early fault detection,
maximum fault coverage, core functionalities [22-24]. In
broad way, TCP techniques are classified into coverage based,
fault based, requirement based, risk based etc. Test case
prioritization approach is to derive the execution order of the
test cases based on various criteria or properties such as
statement / branch/ code coverage data, fault detection ability,
execution time.

4. IMPLEMENTATION OF GENETIC ALGORITHM

Genetic Algorithm is an evolutionary algorithm used to solve
the combinatorial optimization problems which are usually
computationally very expensive to solve. The base of genetic
algorithm is the biological concept of evolution and the
survival of the fittest [26]. This algorithm is much more
powerful and efficient than exhaustive search algorithm as it
provides good and robust solution rated against fitness
criteria. It is used for solving optimization problems where
objective is to find optimum value i.e. finding maximum

Priyanka Paygude et al., International Journal of Emerging Trends in Engineering Research, 8(5), May 2020, 2112 - 2117

2114

(global maxima) or minimum (global minima) value. Genetic
algorithm is a population based probabilistic search and
optimization technique, which works based on mechanism of
natural genetics and natural evaluation. Fitness function
evaluates how much a given solution is close to optimality.
We have implemented GA to solve TCP problem, for which
we have considered population of chromosome where each
chromosome is a possible sequence of test cases selected from
test suite. This TCP problem is ordering of TCs and is discrete
in nature. The process begins with initial population
generation. We have used permutation encoding to encode the
chromosome. Here, we have considered population size as
200 and is randomly generated from the test suite. Each
chromosome from population evaluates for fitness score by
applying fitness function i.e. Average Percentage of Fault
Detection (APFD). The fitness value i.e. APFD is the number
of faults detected by chromosome by running minimal test
suite. The termination criteria considered for stopping the
iterations is the number of generations. While termination or
converge criteria is not matched, chromosomes undergoes
tournament selection. Randomly any two individual
chromosomes are selected, which further undergoes for single
point crossover where point of crossover is chosen randomly.
Mutation phase will randomly mutate the bits of chromosome
to generate better children for next generation. We have run
the experiment for variations of crossover and mutation
probability rates. The detail results are discussed in next
section. The survivor selection is performed based on fitness
score above probability value 0.75. Generated offspring
continuously iterate till the convergence criteria is not met.
Figure 2 shows flowchart of GA implementation.

Algorithm:

Input: Test Cases from BigFaultMatrix Test suite, TS
Output: Ordered test suite, TS’

START
 initialize population from BigFaultMatrix data file
 Encoding of population
 find fitness of population (APFD)
 while (termination criteria is not reached) do
 parent tournament selection
 crossover with probability pc
 mutation with probability pm
 decode and fitness calculation ft
 survivor selection
 find best
 return best
END

Figure 2: Flowchart of proposed GA approach

5. EXPERIMENTAL EVALUATION

We have executed the experiment on the public dataset
available on Github [27] by the title BigFaultMatrix. This is a
big dataset which is a fault matrix consisting of 1000 test
cases and 38 faults made available for software testing
research purpose. The data stored in matrix is of binary
format, where 1 indicates faults covered and 0 indicates faults
not covered by respective test case. We are considering this as
our 1st case study. We did variations in the dataset by
randomly flipping bits and generated 3 more case studies.
APFD metric is considered as fitness function and is applied
to compute the score of fault detection rate [28]. APFD
measures the total number of faults detected by the prioritized
test case order. We have executed GA on each case study for
different variations of crossover rate, mutation rate and
number of generations to converge as mentioned in the table
1. The results are plotted using bar chart for deliberating
variations. In graph, the x-axis represents the variation rate
and the y-axis represents respective APFD values calculated.

Table 1:GA Parameters Variations
Parameters Variations
Crossover Rate 0.6 0.7 0.8 0.9

Mutation Rate 0.1 0.2 0.3 0.4

Number of Generations 3 6 9 12

The initial parameters for Genetic algorithm are set for
population size 200 and chromosome size 50. With these
parameters, GA was executed on four case studies with
different crossover rate i.e. 0.6, 0.7, 0.8 and 0.9. Following
figure 3 to 5 are the results of case studies with variations in
crossover rate. Figure 6 is the result of APFD values against
the variation in mutation rates for case study 1 by keeping
fixed crossover rate 0.5. Number of generations is the
parameter considered as convergence criteria to stop GA
iterations. Figures 7 to 10 shows the variations of converging

Priyanka Paygude et al., International Journal of Emerging Trends in Engineering Research, 8(5), May 2020, 2112 - 2117

2115

GA iterations with different mutation rates. The result depicts
that, GA results best with parameter values as crossover rate
0.8 and mutation rate 0.2. Also, from the experiment we can
conclude that for considered dataset, there is almost no change
after 12th number of generations. So, this we have considered
as convergence criteria for GA iterations.

Figure 3: APFD measure with crossover variations- case study 1

Figure 4:APFD measure with crossover variations- case study 2

Figure 5: APFD measure with crossover variations- case study 3

Figure 6: APFD measure with crossover variations- case study 4

Figure 7: APFD measure with mutation variations- case study 1

Figure 8:Variation in no. of generation - case study 1

Figure 9: Variation in no. of generation - case study 2

Figure 10: Variation in no. of generation - case study 3

Priyanka Paygude et al., International Journal of Emerging Trends in Engineering Research, 8(5), May 2020, 2112 - 2117

2116

Figure 11: Variation in no. of generation - case study 4

6. COMPARISON AND RESULT DISCUSSION
From previous section results the best value of APFD was
chosen to compare the GA technique with other algorithmic
approaches, such as Random Search, Hill Climbing (internal
and external swap). Following are the parametric values for
the experiment we carried out so that we can carry out the
algorithmic comparison over APFD values.
The proposed and compared techniques are assessed for
showing its effectiveness in scheduling the test cases in order
to maximize rate of fault detection (APFD). We compared and
analyzed the outcomes of our proposed algorithm with other
algorithm on the same dataset and found that GA outperforms
the compared techniques. Following table 2 summarizes our
results.

Table 2: Comparative Results of algorithm
Name of Algorithm APFD
Random Search 0.5425
HC Internal Swap 0.5258
HC External Swap 0.5307
Genetic Algorithm 0.7053

From above table 2 it shows that Genetic algorithm gives
maximum APFD i.e. 70% and outperforms compared to other
algorithms like Random Search (54%), HC Internal Swap
(52%) and HC External Swap (53%). The same had been
depicted in following figure 12.

Figure 12: Comparison of algorithms based on APFD measure

7. CONCLUSION
We have conducted an empirical study with the motive of
examining genetic algorithm performance for scheduling of
test cases with the goal of early fault detection and to check
effectiveness of GA on variations of its vital parameters.
Previous empirical studies have proved that genetic algorithm
works better in ordering the test cases but were tested on test
suite having test cases not more 100 and many times
generated fault matrix is manual. Here, we have implemented
and tested the GA approach on TCP problem on more than
1000 TCs.
The first motive of study was to check effect GA for its
performance on changing its vital parameters- crossover rate,
mutation rate and number of generations for stopping GA
iteration. We examine these variations on four big fault
matrices as input datasets. The experimental outcome shows
that GA performs more impressive when crossover rate set to
0.8 and rate of mutation set to 0.2.
Comparing GA performance with other algorithms was
second motive of study. This study results clearly depicts GA
efficiency is much better than compared random and hill
climbing algorithms.
In future, we have planned to execute proposed algorithm on
real time projects. Here, we have only considered only fault
detection rate as single objective to calculate APFD. Future
scope of this research work is to do the hybridization of GA
with other suitable algorithm and also to adapt it for multi
objective TCP parameters in order to improve GA
effectiveness.

REFERENCES

[1] Seong Ho Sung, Pattan Zinna Khan, Quantitative and

Qualitative Approach for IT Risk Assessment,
Asia-pacific Journal of Convergent Research
Interchange, SoCoRI, Vol.1, No.1, pp. 29-35, March
2015
https://doi.org/10.21742/apjcri.2015.03.04

[2] Gowtham Kumar Pullagujju, Risk Utilization in
Quantitative Approach, Asia-pacific Journal of
Convergent Research Interchange, SoCoRI, Vol.1, No.1,
pp. 21-27, March 2015
https://doi.org/10.21742/apjcri.2015.03.03

[3] Yoo, Shin, and Mark Harman. Regression testing
minimization, selection and prioritization: a
survey. Software Testing, Verification and
Reliability vol. 22, no. 2, pp. 67-120, 2012.

[4] Han Moi Sim, D. Sai Teja Reddy, Survey on Test Case
Prioritization and Measuring Test Cases Using
APFD, Asia-pacific Journal of Convergent Research
Interchange, SoCoRI, Vol.1, No.2, pp. 11-17, June 2015.
https://doi.org/10.21742/apjcri.2015.06.02

[5] Singh, Yogesh, et al. Systematic literature review on
regression test prioritization
techniques Informatica Vol.36, no. 4, 2012.

[6] G. Chandrika, Study on Software Reliability and
Reliability Testing, Asia-pacific Journal of Convergent
Research Interchange, SoCoRI, Vol.1, No.1, pp. 7-20,
March 2015

0.5425 0.5258 0.5307
0.7053

0

0.2

0.4

0.6

0.8

Random
Search

HC Internal
Swap

HC External
Swap

Genetic
Algorithm

AP
FD

Algorithm

Algorithm Comparison

Priyanka Paygude et al., International Journal of Emerging Trends in Engineering Research, 8(5), May 2020, 2112 - 2117

2117

[7] Dong Ju Kim, P. Lakshmi Manjusha, Assessment of
Risks in Management Factors, Asia-pacific Journal of
Convergent Research Interchange, SoCoRI, Vol.1, no.2, ,
pp. 1-10, June 2015
https://doi.org/10.21742/apjcri.2015.06.01

[8] Su Min Shin, Sk. Uroosa, Predicting Software
Reliability Using Particle SWARM Optimization
Technique, Asia-pacific Journal of Convergent Research
Interchange, SoCoRI, Vol.1, No.3, pp. 17-30, September
2015

[9] Amol K. Kadam, S.D. Joshi, Debnath Bhattacharyya and
Hye-Jin Kim.Diagnosis of Software using Testing
Time and Testing Coverage. International Journal of
Hybrid Information Technology. Vol. 9. No. 9. Sep. 2016
https://doi.org/10.14257/ijhit.2016.9.9.08

[10] Mishra, Deepti Bala, Namita Panda, Rajashree Mishra,
and Arup Abhinna Acharya. Total fault exposing
potential based test case prioritization using genetic
algorithm. International Journal of Information
Technology, pp. 1-5, 2018.

[11] Saraswat, Pavi, and Abhishek Singhal. A hybrid
approach for test case prioritization and optimization
using meta-heuristics techniques. In Information
Processing (IICIP), 2016 1st India International
Conference on, pp. 1-6. IEEE, 2016.

[12] Nayak, Soumen, Chiranjeev Kumar, and Sachin Tripathi.
Effectiveness of prioritization of test cases based on
Faults. In Recent Advances in Information Technology
(RAIT), 2016 3rd International Conference on, pp.
657-662. IEEE, 2016.

[13] R. Kavitha and N. Sureshkumar. Test case prioritization
for regression testing based on severity of fault.
International Journal of Computer Science and
Engineering (IJCSE), vol. 02, no. 05, pp. 1462-1466,
2010.

[14] Walia, Rajanroop, and Harpreet K. Bajaj. Performance
Analysis of Hybrid Approach Comprising Genetic
Algorithm and Adaptive Approach on Test Case
Prioritization. International Journal of Computer
Applications, Vol. 155, no. 8, 2016.
https://doi.org/10.5120/ijca2016912403

[15] Mahajan, Surendra, Shashank D. Joshi, and V. Khanaa.
ComponentBased Software System Test Case
Prioritization with Genetic AlgorithmDecoding
Technique using Java Platform. International
Conference on Computing Communication Control and
Automation (ICCUBEA). IEEE, pp. 847-851, 2015.
https://doi.org/10.1109/ICCUBEA.2015.169

[16] Maheswari, R. Uma, and D. Jeya Mala. Combined
genetic and simulated annealing approach for test
case prioritization. Indian Journal of Science and
Technology vol. 8, no. 35, 2015

[17] Jin Wang, Yu Gao, Wei Liu, Arun Kumar Sangaiah,
Hye-Jin Kim, An Improved Routing Schema with
Special Clustering using PSO Algorithm for
Heterogeneous Wireless Sensor Network, Sensors,
vol.19, no.3, Feb. 2019

[18] Catal, Cagatay, and Deepti Mishra. Test case
prioritization: a systematic mapping study. Software
Quality Journal, Vol. 21, no.3, pp: 445-478, 2013
https://doi.org/10.1007/s11219-012-9181-z

[19] Kumar, Amit, and Karambir Singh. A Literature Survey
on test case prioritization. Compusoft, Vol. 3, no. 5,
2014.

[20] Kiran, R. Surya. A literature survey on TCP-test case
prioritization using the RT-regression
techniques. Global Journal of Research In
Engineering, 2015.

[21] Hao, Dan, Lu Zhang, and Hong Mei. Test-case
prioritization: achievements and challenges. Frontiers
of Computer Science, Vol. 10, no. 5 pp. 769-777, 2016.

[22] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., &
Tumeng, R. Test case prioritization approaches in
regression testing: A systematic literature
review. Information and Software Technology, Vol. 93,
pp. 74-93, 2018.

[23] Mukherjee, Rajendrani, and K. Sridhar Patnaik. A survey
on different approaches for software test case
prioritization. Journal of King Saud
University-Computer and Information Sciences, 2018.
https://doi.org/10.1016/j.jksuci.2018.09.005

[24] Saraswat, Pavi, Abhishek Singhal, and Abhay Bansal. A
Review of Test Case Prioritization and Optimization
Techniques. Software Engineering. Springer, Singapore,
pp. 507-516, 2019.

[25] Jin Wang, Jiayi Cao, R. Simon Sherratt, Jong Hyuk Park,
An improved ant colony optimization-based
approach with mobile sink for wireless sensor
networks, Journal of Supercomputing,Vol. 74, No.12,
pp.6633-6645, Dec. 2018.
https://doi.org/10.1007/s11227-017-2115-6

[26] J.H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology. Control, and Artificial Intelligence, U
Michigan Press, 1975

[27] https://github.com/dathpo/Test_Case_Prioritisation_-_G
enetic_Algorithm/blob/master/bigfaultmatrix.txt

[28] Elbaum, S.G., Malishevsky, A.G., Rothermel, G., Test
case prioritization: a family of empirical studies. IEEE
Transaction on Software Engineering, vol. 28, no.2,
pp.159–182, 2002.
https://doi.org/10.1109/32.988497

