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ABSTRACT 
 
Knowing rainforest environments is rendered challenging by 
distance, vegetation intensity, and coverage; however, 
knowing the complexity and sustainability of these landscapes 
is important for ecologists and conservationists. The airborne 
light detection and ranging (LiDAR) system has made 
dramatic improvements to forest data collection and 
management especially on the forest inventory aspect. LiDAR 
can reliably calculate tree-level characteristics such as crown 
scale and tree height as well as derived measures such as 
breast height diameter (DBH). To do this, an exact tree 
extraction method is needed inside LiDAR data. Within 
LiDAR data, tree extraction often starts by locating the 
treetops via local maxima (LM). Wide-ranging efforts have 
been developed to extract individual trees from LiDAR data 
by starting to localize treetops through LM within LiDAR 
data. Throughout this research, a demonstration of a new tree 
extraction framework inside LiDAR Point Cloud by 
incorporating a new tree extraction method using the 
bounding-box coordinates provided by deep learning-based 
object detection. Tree extraction inside the LiDAR point cloud 
using the bounding-box coordinates was successful and 
feasible. 
 
Key words: Georeferencing, Las Clipping, LiDAR, 
Mangrove, Orthophoto, Tree Extraction. 
 
1. INTRODUCTION 
 
Classification of the forest environment at an individual tree 
level is becoming a critical need for many applications in 
forest management and ecology [1]. Individual tree 
information is often useful to update forest inventories and 
predict growth and yield, or also to classify trees with strong 
biodiversity values [2]. 
 
Forest field inventory is a well-established method that relies 
on awareness of forest layout and distribution to support forest 
analysis, monitoring, and management [3]. Field inventories 
are performed in field plots, where tree information (e.g. 
 

 

crown size, height, and trunk diameter) is typically obtained 
through individual tree level measures (e.g. plot-level 
inventory) [4]. Forest inventory fieldwork, however, is 
laborious and costly because field calculations entail a great 
deal of time and energy, thereby reducing the number of field 
inventories that can be obtained [5]. Ever after field inventory 
began, efforts to increase the field inventory performance 
have begun. Countless methods, equipment, and procedures 
have been developed but development has been slow until 
essentially a laser-based measurement device named Light 
Detection and Ranging (LiDAR) has become available [6]. 
 
Airborne light detection and range technology (LiDAR) has 
made significant advancements in forest data acquisition and 
management during the past two decades through the delivery 
of product data at exceptional spatial and temporal resolutions 
[7]. However, reliable tree-level attributes such as tree height 
and crown size, as well as derivative estimates such as breast 
height diameter (DBH for trunk diameter) are needed; 
volume; and LiDAR results involve biomass, precise tree 
extraction approaches [8]. Tree extraction is an essential 
process for the correct measurement of individual attributes at 
tree level. 
 
Extensive efforts have been established to extract individual 
trees from LiDAR data by beginning to identify treetops from 
either the canopy height model (CHM) or LiDAR point clouds 
through local maxima (LM) [9]. Local maxima are used for 
crown segmentation, as reference points (or seed points). 
Since LM detection is vulnerable to commissioning (or 
incorrect detection), various methods tried to improve treetop 
recognition [10]. Which involves image filtering of fixed or 
variable dimension, multi-scale filtering, matching of models, 
stochastic geometry centered on specified point processes and 
the spatial contour form [11]. 
 
The tree crown extraction was generally accomplished after 
identification of the local maxima by implementing the 
watershed methods, fitting functions, wavelet analysis, region 
growing methods, graph-theoretical approach to tree crown 
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delineation, non-parametric approach, and a template 
matching to segmenting trees [12]. Thus, tree extraction in a 
LiDAR point cloud and calculation of all other properties of 
the tree structure is feasible. 
 
Nevertheless, the above-mentioned approaches indicate that 
there is no uniformly superior approach and that there are 
difficulties in extracting trees with overlapping tree crowns 
with varying heights and distribution with the diameter as the 
overlapping trees do not fulfill the principle of geometric 
restriction [13]. For illustration, crowns of the adjacent tree of 
identical heights and distribution of density can be wrongly 
identified as a single treetop. Instead, the local maxima non-
treetop may be incorrectly interpreted as treetops and may 
impact the tree structure attributes that are vulnerable to errors 
[14]. This should also be noted that errors arising during single 
tree extraction are duplicated in subsequent stages of the study 
of tree attributes, thus the removal or at least reduction of such 
inaccuracies is of considerable significance. 
 
Keeping in mind the difficult issues listed above, while most 
research extracts individual trees by identifying treetops from 
local maxima either from the CHM or from fragmented point 
clouds within the larger LiDAR point cloud, the study 
specifically addressed the individual tree extraction within the 
LiDAR point cloud through incorporating a different 
approach to detecting individual trees. In a Very High Spatial 
Resolution image (Orthophoto), which identified a specific 
tree genus, in particular, a deep learning technique for tree 
identification was used, using the boundary box coordinates 
of an identified tree from an orthophoto to extract the tree from 
a LiDAR point cloud. This makes it easier to measure the 
attributes of the tree structure starting from the treetop to its 
trunk. 
 
In this study, the researcher used from [15] 's study a pre-
detected specific genus of a tree within Orthophoto. [15] used 
a RetinaNet CNN architecture to analyze the Orthophoto to 
handle the density and diversity of trees found in forest 
canopies. Geographic information systems (GIS) were then 
used within LiDAR to extract trees. The researcher is hopeful 
from the combination of an Orthophoto and LiDAR Point 
Cloud that the study 's performance could turn out to be one 
of the tree LiDAR extraction standards in the future. 
 
2. DATASETS AND MATERIALS 

2.1 Software 
Using Inertial Explorer, the three UAV sensor data — GNSS, 
LiDAR, and IMU — were post-processed. The trajectory of 
GNSS was carried out to generate a Smoothed Best Estimate 
of Trajectory (SBET) using the IMU information. The SBET 
was then used to create a calculated and georeferenced point 
cloud, along with the LiDAR field data. 
 
A point cloud analysis software, TerraScan has been used to 
describe the cluster of measured objects. R and Geographic 

Information Systems (GIS) ArcGIS software has been used 
for the extraction (LiDAR). 
 

2.2 Hardware 
Figure 1 shows the hardware used by the study such as LiDAR 
sensor, camera, and Unmanned Aerial Vehicle (UAV) or 
Drone. 
• LiDAR Sensor. Phoenix AL3-32, a lightweight integrated 
LIDAR device that comprises an IMU, a GNSS processor, a 
laser scanner, and a micro-computer. 
• Camera. To create Orthophoto, a 16 Megapixel high-
resolution RGB camera with an ISO scale of 100~25600 was 
used to capture aerial photography. 
• Unmanned Aerial Vehicle (UAV) or Drone. The study 
used a DJI Matrice 600, a multi-rotor UAV with a full weight 
of 15.1 kg for take-off. 
 

 
Figure 1: Hardware Setup 

 
2.3Data 
The Field of Interest (FOI) is based in Palnab of Virac, 
Catanduanes, Philippines. The key data used in the study are 
the LiDAR and Orthophoto. During the same survey, it was 
taken that got the LiDAR data. The field of interest was 
segmented into sections. Figure 2 shows the FOI and mapping 
sites. 
 

 
Figure 2: Field of Interest in Virac, Catanduanes, Philippines 
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3.  METHODOLOGY 

 
Figure 3: The methodology of Tree Extraction 

 
3.1GCS Transformation 
Transformation of the Geographic Coordinates Systems 
(GCS) for both orthophoto and LiDAR was used to suit the 
coordinate systems of the data as seen in Table 1. Without the 
matching of the LiDAR data and Orthophoto, difficulties and 
inaccuracies will occur in any analysis and mapping when 
performing on an incompatible data. 

 
Table 1: GCS Transformation of Data 

 
 
3.2 Georeferencing 
When integrating data from various sources (e.g. LiDAR and 
Orthophoto) in GIS analysis, they must be properly matched 
with the support of geo-referencing. Because the raster output 
from the data consists of pixels, no position information is 
processed, so we cannot view, query, and analyze it with other 
geographic data unless it is geo-referenced as seen in Figure 
4. 

 

Figure 4: Georeferenced LiDAR and Orthophoto 
 
3.3 Pre-Detected Tree within Orthophoto 
In this analysis, the researcher used a pre-detected specific 
genus of a tree within Orthophoto from [15]'s study. Using 
RetinaNet CNN architecture, the Orthophoto was analyzed to 
tackle the height and variety of the trees used in forest 
canopies.The same study has been used by [16] – [18] that 
uses the power of machine vision deep learning. 

 
Figure 5: Pre-Detected Tree using the work of [15] 

 
3.4 Export Tree’s Pixel Coordinates to CSV 
The CSV generated has a format of id,x1,y1,x2,y2 as shown 
in figure 6. 
 

 
Figure 6: Exported CSV Pixel Coordinates 

 
3.5 Pixel to Longitude-Latitude Conversion 
After getting the pixel values, the study must get the 
equivalent longitude, latitude coordinates to crop these at the 
TIF images as shown in Figure 7. 

 
Figure 7: Conversion Algorithm 
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3.6 Shapefile Creation 

 
Figure 8: Creating the Shapefile Algorithm 

 
After converting the pixel values, the study used the converted 
coordinates from the detected trees in a longitude-latitude 
format to create a shapefile. Figure 8 shows the shapefile 
creation algorithm using ArcGIS. Figure 9 below shows the 
shapefile output. 
 

 
Figure 9: Shapefile Output on Orthophoto and LiDAR 

 
3.7 Results of Extracted Tree from LiDAR Data 
The shapefile was then used to extract all the LiDAR points 
associated with the detected trees using R as shown as an 
algorithm in Figure 10. Figure 9 also shows the LiDAR point 
cloud. Figure 11 shows the extracted LiDAR trees of each 
detected object from Figure 5. 
 

 
Figure 10: Tree Extraction Algorithm 

 

 

 

 

 

 

 

 

 

 
Figure 11: Extracted LiDAR Trees 
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4.  CONCLUSION 
 
Rather than locating tree-tops utilizing local maxima (LM) for 
extraction inside LiDAR, the research established and proved 
a new approach to extracting a tree. The study implemented a 
new technique utilizing the coordinates of deep learning entity 
detection boundary boxes in a high-resolution image 
(orthophoto), then the analysis used the coordinates of the 
observed objects to extract them from the LiDAR point cloud. 
Trees were extracted by using the bounding box coordinates 
and proved its effectiveness as a new approach. Tree 
extraction within the LiDAR point cloud was successful, as 
shown in Figure 11. From the combination of an Orthophoto 
and LiDAR Point Cloud, the researcher is optimistic that the 
success of the study could turn out to be one of the LiDAR 
tree extraction benchmarks in the future. 
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