
Monday Eze et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 2934 - 2939

2934



ABSTRACT

The necessity for contact tracing in the fight against
infectious diseases including pandemics like COVID 19
cannot be overemphasized. One of the obvious challenges is
how to device practical strategies for computational evolution
and construction of a homogenous network for contact
tracing. A second challenge is how to evolve practical tools
and algorithms for the visualization of contact network that
models transmission. This research evolves a new algorithm
which first, builds a new specialized data structure known as
PiVector, and then a corresponding contact network
visualization system. The resulting network could be used for
contact tracing of the transmission of infectious diseases.
This work practically demonstrates a programmatic and
data-driven approach to network evolution, construction and
visualization. This work was implemented using Python
Programing Language and other related data mining
technologies.

Key words: Homogenous, Contact Network, PiVector
Construction, Visualization, Python.

1. INTRODUCTION

Network Theory has found its application in several research
fields as well as diverse areas of human endeavours [1]. Some
of the application areas are social networks, biological
networks, semantic networks used in computational
linguistics, cognitive networks in neurosciences,
transportation networks, and telecommunication networks,
among others. Literature has shown that the evolutionary
foundation of all these networks is the mathematical graph
[2]. A graph is defined as a collection of vertices, which are
connected to each other through edges. In other words, each
edge of graph joins two vertices [3]. A network is an
instantiation of a graph, such that the nodes and edges have
specific identities. For instance, a social network comprises of
nodes as human beings, while the edges are the links or

relationships between those human beings [4]. Again, a road
network comprises of nodes as cities, while the edges are the
actual roads linking the cities [5]. Research has underlined
the necessity for efficient algorithms and programmatic
techniques for generating complex networks [6]. This current
work demonstrates how to achieve this goal, in a procedural
manner, beginning from the workflow stage, to the
implementation of the proposed algorithm.

Infectious diseases spread through human contacts [7], which
could be modelled as a network. In order to control the spread
of such diseases, it is very necessary to successfully locate the
infected persons, and all the yet-to-be-infected contacts, so
they could be isolated or treated as the case may be. This
activity is known as contact tracing [8]. The necessity for
contact tracing and its automation in the fight against
pandemics like COVID 19 [9] cannot be overemphasized.
Epidemiologists [10] cannot afford to depend on manual
contact tracing. Thus the need for this research, which is
geared at developing a new computational algorithm [11] for
network evolution and visualization. Tackling the challenges
of devising practical strategies for computational evolution
and construction of a homogenous network for contact tracing
are the major deliverables of this work. This research evolves
a new specialized data structure known as PiVector, then uses
it as input to construct the network for use in contact tracing
of infectious diseases transmission.

2. EVOLUTIONARY CONCEPTS

This section presents some evolutionary concepts [12] which
constitute the foundation of this research. In order to
effectively generate a computational network, it is necessary
to propose a requisite data structure [13]. As shown in Figure
1, the spread of a pandemic such as COVID-19 begins with
the establishment of a contact with an infected person (H1),
and then a successful transmission from the infected case to
another human being (H2).

A New Algorithm for Contact Trace Network Evolution

and Visualization

Monday Eze1, Chigozirim Ajaegbu2, Olusola Maitanmi3, Doris Nnakwuzie4
1Department of Computer Science, Babcock University, Nigeria. ezem@babcock.edu.ng

2Department of Computer Science, Babcock University, Nigeria. ajaegbuc@babcock.edu.ng
3Department of Software Engineering, Babcock University, Nigeria. maitanmio@babcock.edu.ng

4Dept. of Computer Science, Alex Ekwueme Federal University, Nigeria. okafordoris49@yahoo.com

 ISSN 2347 - 3983
Volume 8. No. 7, July 2020

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter09872020.pdf

https://doi.org/10.30534/ijeter/2020/09872020

Monday Eze et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 2934 - 2939

2935

Figure 1: Evolutionary Diagram of a Contact Network

In other words, the contacts leading to disease transmission
constitutes a homogenous contact network [14], with human
nodes, and edges as the transient contacts between such
human beings. Some of the deliverables of this work are a
contact network data structure, an overall workflow, and a
transmission network visualization which could be useful for
contact tracing. As shown in the evolutionary diagram,
colours could be used at the design level to designate infection
status. For instance, the infected node H1 is coloured RED
while the uninfected node H2 is GREEN.

3. SYSTEM WORKFLOW

The system workflow [15] for this research is in two parts.
These are the PiVector Generation and the System
Implementation workflows respectively. The first generates
the PiVector, which is an input into the second workflow that
drives the actual system implementation [16]. Both will be
explained in details.

3.1 PiVector Generation Workflow

The PiVector Generation workflow is shown in Figure 2. As
indicated in the figure, there are eight chronological steps,
numbered from 1 to 8, necessary for generating the digitized
dataset [17] called PiVector.

Figure 2: The PiVector Generation Workflow

The workflow begins with a manual or human intensive
Contact Trace Operation. Just like any contact tracing [18] in
epidemiological researches, this activity involves attempting
to identity persons who have made contacts with infected
individuals [19]. The outcome of contact tracing is
transformed into a digital register known as binary database
(BinaryDB). The evolution of BinaryDB from manual contact
tracing operation is a bi-directional [20] transition shown in
the workflow diagram using a two-way arrow. This is
because, the human component of contact tracing and
corresponding update of the binary data [21] is a continuous
process, as long as the infection and corresponding network
continue to exist. In its simplest form, the BinaryDB is a
binary square matrix structure. For instance, the BinaryDB in
Figure 3, used in this work consists of a 15 by 15 square
matrix extracted through human contact tracing. The rows
and columns are formed using the tuple {H1, H2, H3, H4, H5,
...H15}, which represent the human nodes involved in
network contacts. It follows that for any integer x and y within
the range of number of network nodes, if any two network
nodes Hx and Hy were in contact, then their intersection in
the BinaryDB is marked with value “1”, else it is marked with
value of “0”. The third step in the workflow involves
scrapping the TLBR (top left – bottom right) diagonal of the
BinaryDB. Scrapping the TLBR diagonal is an optimization
step taken to reduce unnecessary memory overheads [22].

Figure 3: The BinaryDB for a 15x15 Contact Network

The reason for scrapping is because all the entries in the
TLBR diagonal represent contacts between nodes [23] and
themselves, such that the equation 1 always holds:

The outcome of the scrapping operation is that the entire
contents of the TLBR diagonal [24] are changed from “1” to

Monday Eze et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 2934 - 2939

2936

“*” as shown in Figure 4, a result which is termed the
FB-Matrix (First Broken Matrix). The next step in the
workflow is the formation of SB-Matrix (Second Broken
Matrix). This is achieved through a Symmetric Cut Operation
which discards the Lower Left side of the BinaryDB. The
reason is that a typical BinaryDB is symmetric [25], and as
such the following equation always holds:

for every Hx, Hy, and integers x and y.

Two illustrations of the concept of symmetric equivalence
have been clearly shown in Figure 4 by circling the entries
H4xH8 and H8xH4 respectively in the BinaryDB.

Figure 4: A Sample 15 x 15 FB-Matrix

The SB-Matrix is shown in Figure 5. The SB-Matrix is used
as input to the Pi-Vector Generator, which gives rise to the
PiVector, a special optimized data structure [26] used as final
input for the actual construction of the contact network.

Figure 5: A Sample 15 x 15 SB-Matrix

3.1.1 The PiVector Generation

It is important to discuss what PiVector is all about, how it is
generated, and why it is very optimal. The term PiVector is
derived from the word “Pipe” for symbol “|”. The PiVector
generator scans through the SB-Matrix, and selects all the
entries that indicate contacts between nodes. These are the
cell entries having binary values as “1”. All such nodes are
collated, and used to build a new row vector [27] such that the
entries in the vector comprise of a concatenation of nodes
using pipe symbols on a row by row basis, until the entire
SB-Matrix entries are fully traversed [28]. In other words, the
first two items in the PiVector will be PiVector (1) = “H1|H2”
and PiVector(2)= “H1|H5” respectively. The resulting
PiVector shown in Figure 6 is a row vector having 25
elements, generated from the full traversal of the SB-Matrix.

Figure 6: A Sample PiVector

3.1.2 Optimization Calculation

The use of PiVector as a data structure for storing binary data
for network generation has a number of benefits, especially in
the area of storage optimization [29]. The percentage gain in
storage space can be calculated by comparing the size of the
final dataset with the original BinaryDB, for instance:

Storage space of PiVector = 25 (the count of number of rows).
Storage space of BinaryDB = 225 (that is 15 x15).
Storage Gain = (225-25) = 200
Optimization % = (200/225) * 100 = 88.9%

3.2 System Implementation Workflow

The detailed system implementation workflow of this
research is shown in Figure 7. The programming language
used is Python, though it could be re-implemented in other
high level languages with minimal modifications. The system
implementation workflow is numbered chronologically from
Step 1 to Step 7 as shown. Step 1 is called the Node Colour
Specification [30]. This involves the specification of the
colours of the network nodes. As earlier mentioned and
demonstrated in the evolutionary diagram in Figure 1, the two
predefined colours for the network nodes in this research are
RED for identifying the infected nodes, and GREEN for the
rest of the nodes that have come in contact with the infected,
but they themselves are yet to be infected.

Monday Eze et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 2934 - 2939

2937

Figure 7: System Implementation Workflow

Step 2 which is the Module Importation constitutes the second
step in the system implementation. The two major external
modules that were brought into Python environment using the
import statements are networkx [31] and matplotlib.pyplot
[32] respectively. These two modules are key to graphics
design and plotting in Python. After importing necessary
external modules, Step 3 in the chronology of implementation
is to initialize the network. This is achieved through a generic
assignment statement shown in equation 3.

where G is the graph identifier, nx is an alias linked to
networkx importation statement, and Graph () is a graph
initialization function.

In Step 4, system accepts the PiVector, earlier generated in
the first workflow. This is followed by Step 5, which is a series
of loop controlled dataset processing operations [33]. For
each of the items in the PiVector data structure, the pipe “|”
symbol that is used to separate data items are first replaced
with empty symbols (characters). For instance, a typical piped
item such as [A|B] is transformed as shown in equation 4:

where A and B are data items or identifiers, representing
the nodes of a network under construction

The separated nodes such as A and B above are then used to
populate the two item array called xData. The first item is
pushed into xData [0] while the second one is pushed into
xData [1] as shown in assignment statement in equation 5:

Thereafter, the contents of xData are used to extend the edges
and the nodes of the contact network under construction. The
system looping runs until all the contents of the PiVector are
accessed and processed accordingly. Step 6 known as Colour
Marking involves the actual marking of the nodal colours
earlier specified. The source code for colouration for selected
network nodes is shown in Figure 8.

Figure 8: Node Colour Marking Code

The last computational step known as Network Draw and
Display involves the actual drawing and visual display of the
generated network object [34]. Network drawing and display
is achieved using the lines of code in Figure 9. The network
draw invocation call statement used three important
arguments. These are the Graph Object, the node colour and
the node size. On the other hands, the network display
statement is a non-argument statement.

Figure 9: Network Drawing and Display Code

4. SYSTEM OUTPUT

The contact network generated as output of the system run is
shown in Figure 10. As shown, there are a total of 15 human
nodes under contact tracing. It can be deduced that a total of
four nodes have already been infected by the disease. These
are nodes H1, H8, H12 and H15. It is important to state that
the node labelling in this research is very flexible. For
instance, in this experimental run, the node labels were
designated simplistically as Hx where x is an integer.
However, this choice is not static, rather, it is possible to
design node labels to take the exact names of the human
nodes, example Alex, Daniel, Farad, Papa, and so on. It is
also possible to use a form of real life unique identifications
such as National ID or even Phone Numbers of the human
nodes. In fact, car registration numbers [35] such as AB112X,
YA655G, NU514P could also be used.

Monday Eze et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 2934 - 2939

2938

Figure 10: System Output

The system output forms a key visual resource for infectious
disease contact tracing. For instance, it is very easy to deduce
from the generated network that the human nodes H9, H5 and
H3 are not yet infected, but have all come in contact with H12
which is currently the index case. Another important point is
the symmetricity of the system runs and outputs. This implies
that it is possible to generate multiple outcomes, which are
symmetric in node arrangements, though the visual outlooks
may appear different. In other words, rather than a single
static output, the same network gets displayed in different
graphical orientations [36] of nodes arrangements.

5. CONCLUSION

This research has demonstrated the implementation of
contact networks evolution and visualization from the
scratch. The outcome of this research could be a valuable tool
in epidemiology research, especially in the area of contact
tracing during pandemics such as COVID-19. The two major
workflows used in this study were presented in unambiguous
manner in such a way that other researchers could
re-implement this work in future researches. The evolution
and application of PiVector as a new data structure were
explained, and mathematical calculation based on
percentages was used to show how its usage could optimize
storage space. Other deliverables of this work are the first
broken matrix (FB-Matrix) and second broken matrix
(SB-Matrix) respectively, whose importance and usages have
been earlier explained. Future extension of this work will
focus on inculcating of artificial intelligence-based search
[37] into the process of contact tracing in a disease network.

REFERENCES
1. G. Rivera , The use of Actor-Network Theory and a

Practice-Based Approach to understand online
community participation, A PhD Thesis, Information
School The University of Sheffield, May 2013

2. O. Mason and M. Verwoerd, Graph Theory and
Networks in Biology, Hamilton Institute, National
University of Ireland Maynooth, Co. Kildare, Ireland,
January 17, 2007

3. DA. Costa, FA. Rodrigues, G. Travieso, and V. Boas,
"Characterization of complex networks: A survey of
measurements", Advances in Physics, Vol. 56, No. 1,
Feb. 2007, 167–242
https://doi.org/10.1080/00018730601170527

4. P.B. Brandtzaeg, Social Networking Sites: Their Users
and Social Implications — A Longitudinal Study,
Journal of Computer-Mediated Communication
17(4):467–488. · August 2012

5. W. Krupowicz, K. Sobolewska, and M. Burinskiene,
Modern Trends in Road Network Development in
Rural Areas, Baltic Journal of Road and Bridge
Engineering 12(1):48-56 · Feb. 2017
https://doi.org/10.3846/bjrbe.2017.06

6. M. J. McGuffin, Simple Algorithms for Network
Visualization: A Tutorial, Tsingua Science and
Technology, Vol. 17, No. 4, August 2012, pp1-16

7. L. Steele, E. Orefuwa and P. Dickmann. Drivers of
earlier infectious disease outbreak detection: a
systematic literature review. International Journal of
Infectious Diseases, Vol 53, 2016, 15-20
https://doi.org/10.1016/j.ijid.2016.10.005

8. A. Greiner, K. Angelo, A. McCollum, K. Mirkovic, R.
Arthur and F. Angulo. Addressing contact tracing
Challenges – critical to halting Ebola virus disease
transmission. International Journal of Infectious
Diseases 41, 2015, 53-55

9. M. Adnan, S. Khan, A. Kazmi, N. Bashir and R.
Siddque. Covid 19 Infection: Origin, transmission
and characteristics of human coronaviruses. Journal
of Advanced Research Vol 24, July 2020, 91-98.

10. J. Goncalves, E. Duarte, L. Jensen and L. Posenato.
Epidemiology and Health Services: 25 years in
review. Epidemiol. Serv. Saude, Brasilia, Vol. 24 (4),
2017, 1-16.

11. P. Vinista and M.M. Joe. A Novel Modified Sobel
Algorithm for Better Edge Detection of Various
Images. International Journal of Emerging Trends in
Engineering Research (IJETER). Vol. 7, Issue 3, March
2019, 25-31

12. B. Francesco. Evolutionary Computation Methods and
their Applications in Statistics. Statistica. 67, 2013,
201-224.

13. T.T. Nguyen, V.A. Dahl, and J.A. Brentzen.
Cache-mesh, a Dynamics Data Structure for
Performance Optimization. Procedia Engineering,
203, 2017, 193-205.

Monday Eze et al., International Journal of Emerging Trends in Engineering Research, 8(7), July 2020, 2934 - 2939

2939

https://doi.org/10.1016/j.proeng.2017.09.807
14. H. Valenzuela-Garcia, J.L. Molina, M.J. Lubbers, A.

Garcia-Macias, J. Pampalona and J. Lerner. On
Heterogeneous and Homogeneous Networks in a
Multilayered Reality: Clashing Interests in the
Ethnic Enclave, Societies 2014, 4, 85-104.

15. H.A. Reijers, I. Vanderfeesten and W.M.P. van der Aalst.
The effectiveness of workflow management systems:
A longitudinal study. International Journal of
Information Management. 36(1), 2016, 126-141.

16. R.A. Aditya, D.P. Gushman, R.M. Fatchur, A.N.
Freedrikson, B.P. Ari and Y. Ruldeviyani. Master Data
Management Maturity Assessment: A Case Study of
Pasar Rebo Public Hospital. International Journal of
Emerging Trends in Engineering Research (IJETER).
Vol. 7, Issue 5, 15-20. 2019

17. K. Verbert, N. Manouselis, H. Drachsler and E. Duval.
Dataset-Driven Research to Support Learning and
Knowledge Analytics. Educational Technology &
Society, 15 (3), 2012, 133-148.

18. A. Greinera and F. Angulod. Addressing contact
tracing challenges - critical to halting Ebola virus
disease transmission. Introductory Journal of Infectious
Diseases, Vol 41, 2015, 53-55.
https://doi.org/10.1016/j.ijid.2015.10.025

19. P. Gastanaduy and U. Parashar. Efficient Transmission
of viral gastroenteritis in Dutch households. The
Lancet Inf. Disease . Vol. 20, Issue 5, 2020, 519-520.

20. R. Holte, A. Felner, G. Sharon, N. Sturtevant and J.
Chen. MM: A Bidirectional Algorithm that is
guaranteed to meet the middle. Artificial Intelligence.
Nov. 2017, Vol. 252, 232-266

21. K. J. Karvanen, J. Vartiainen Juha, A. Timofeev and P.
Jukka. Experimental Designs for Binary Data in
Switching Measurements on Superconducting
Josephson Junctions. Journal of the Royal Statistical
Society Series C. Vol.56, 2007, 167-181.

22. S. S. Ganapati. Practical Low Overhead enforcement
of memory Safety for C Programs. A PhD Dissertation
in Computer and Information Sciences, University of
Pennsylvania, 2012.

23. R. Kaur and N. Sharma. A Node Authentication
Mechanism to Enhance the Security in VANETs.
International Journal of Emerging Trends in
Engineering Research (IJETER). Vol. 1, Issue 2, 16-22,
July 2015

24. A. Amir, G. Jeriko and M. Jusmawati. A method for
calculating the sum of diagonal and anti-diagonal of
power matrices without explicitly calculating its
matrices. Journal of Physics: Conference Series. 1277,
2019, 1-9
https://doi.org/10.1088/1742-6596/1277/1/012038

25. B. Barnes, E. Harris, C. Abaitey and A. Amponsah.
Construction of Symmetric Matrices using the Odd
and Even Matrices. Asian Journal of Mathematics and
Computer Research. Vol. 25(4), 2018, 219-225.

26. R. Trichet, and B. Francois. Dataset Optimization for
Real-Time Pedestrian Detection. IEEE Access 2017,
1-8

27. P. Turney and P. Pantel. From Frequency to Meaning:
Vector Space Frequency Models of Semantics. Journal
of Artificial Intelligence Res. 37, 2010, 141-188.

28. J. Hernandez, D. Garcia and F. Rabbani. Tree Traversal
to achieve e Generalization for Data Identification.
International Journal of Open Information Technologies.
2018. Vol 6, No. 11, pp7-15

29. G. Saida, and E. El-Horbaty. An Optimization
Methodology for Container Handling using Genetic
Algorithm. Procedia Computer Science, 2015. Vol 65.
662-671.

30. A. Narayan, V. Bharti and M.L Garg. An Algorithm
based on Heap of Binary Search Tree to solve Graph
Coloring Problem. International Journal of Recent
Technology and Engineering. 2019. Vol 8, issue 2.
3920-3924.
https://doi.org/10.35940/ijrte.B1793.078219

31. M. Tsvetovat and A. Kouznetsov. Social Network
Analysis for Startups, O’Reilly Publishers, 2011,
Sebastopol.

32. M. Zuhair and S. Kadry. Python for Graph and
Network Analysis. Springer International Publishing.
Cham, Switzerland 2017.

33. I. Cetin. Students' Understanding of Loops and Nested
Loops in Computer Programming: An APOS Theory
Perspective. Canadian Journal of Science, Mathematics
and Technology Education. 2015. Vol 15, Issue 2,
155-170.

34. T. Le and C. Lin. Bin-Picking for Planar Objects
Based on Deep Learning Networks: A Case Study of
USB Packs. Sensors. 2019. 19(16). 3602.

35. O. Fidelia and O. Ogochukwu. A framework for unified
vehicle clearance and registration. COOU Journal.of
Physical Sciences, 2019, 2(8). 7-12

36. K. Nomura and M. Kainosho. Graphical Analysis of
the Relative Orientation of Molecular Alignment
Tensors for a Protein Dissolved in Two Different
Anisotropic Media. Journal of Magnetic Resonance.
2002, Vol 154, No. 1, 146-153.
https://doi.org/10.1006/jmre.2001.2470

37. B. Bonet and H. Geffner. Planning as Heuristic
Search. Artificial Intelligence, 2001, 129 (1), 5-33
https://doi.org/10.1016/S0004-3702(01)00108-4

