
Humaira Ali et al., International Journal of Emerging Trends in Engineering Research, 9(5), May 2021, 580 – 586

580


ABSTRACT

In the era of new technology, we have huge amount of data to
deal with arranging the huge amount of data has remained a
big challenge. This research paper includes two types of
sorting algorithm, Heap Sort and Insertion Sort and also their
performance analysis on the basis of running time along with
their complexity. This paper includes the algorithms and their
implementation in Java programming language. For the
results of this research study, the comparison of these two
sorting algorithms with different type of the data at running
time such as Large, Average, and Small. In Large, data
pass100 integers in the array. For Average data pass 50
integers in the array and for Small data pass10 integers in the
array. It checks that, which sorting technique is efficient
according to the input data. Then identifies the efficiency of
these algorithms according to this data three cases used that is
Best, Average and Worst Case. The result of this analysis is
showing with the help of graphs to show that how much time
both algorithms take while given the desired output.

Key words: Array, Complexity, Heap Sort, Insertion Sort,
Performance, Sorting Algorithm.

1. INTRODUCTION

An algorithm can be used in both mathematical and computer
science field. The term sorting algorithm means arranging
data in a certain/sequential order [1]. Whereas, both Heap
Sort and Insertion Sort algorithms are comparison based
algorithms. Sorting algorithms are also classified as
complexity of the algorithm which includes (worst, average
and best case) according to the size of the input data, and
check the stability how much memory is used.

The efficiency of the algorithm depends upon the time and
space taken by the given data [2].

Sorting algorithm works as if the input is given like (7, 6, 4,
9, 2, 0, and 1) so it gives us output in sequential order (0, 1,
2, 4, 6, 7, and 9). For the analysis of best case numbers is
organized in sequential order and in average case number is
organized in unsystematic order, and in worst case number is
organized in reducing order.

So it is clear that sorting is important for managing data.
Due to their major role in managing data appropriately,
many algorithms have been discovered for example, bubble
sort, quick sort, merge sort, selection sort etc...

These all algorithms work for different domains. Some of
these algorithms are useful for sorting small data, some for
large and some for average data. However, depends on their
performance and time complexity in programming
languages like java[3]. An Insertion Sort performs with
order of n^2 and Heap Sort perform the order of nlogn [4].

 1.1 Insertion Sort Algorithm Working
As shown in figure 1 insertion sort divides the input data
into sorted and unsorted data and then compares the
unsorted part with the sorted data, if the data in the unsorted
part is less than sort that data is in its accurate position[5]
[6].

Figure 1: Insertion Sort Working Process

Performance Analysis of Heap Sort and Insertion

Sort Algorithm
Humaira Ali1, Haque Nawaz2, Abdullah Maitlo3, Inayatullah Soomro4

1 Department of Computer Science, Sindh Madressatul Islam University, Karachi, Sindh, Pakistan,
humaira.ali099@gmail.com

2 Department of Computer Science, Sindh Madressatul Islam University, Karachi, Sindh, Pakistan,
hnlashari@smiu.edu.pk

3Department of Computer Science, Shah Abdul Latif University, Khairpur Mirs, Sindh, Pakistan,
abdullah.maitlo@salu.edu.pk

4 Department of Mathematics, Shah Abdul Latif University, Khairpur Mirs, Sindh, Pakistan,
inayat.soomro@salu.edu.pk

 ISSN 2347 - 3983
Volume 9. No. 5, May 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter08952021.pdf

https://doi.org/10.30534/ijeter/2021/08952021

Humaira Ali et al., International Journal of Emerging Trends in Engineering Research, 9(5), May 2021, 580 – 586

581

1.2 Insertion Sort Algorithm
Take Var l, j ,tmp;

For l = 1 to the length of the array

Assign temp = a[l];

k = l;

While (j > 0 && a[j - 1] > tmp)

Do Assign a[j] = a[j - 1]

Assign j=j-1

A[j] = tmp;

End of while loop

End of for loop[7]

1.3 Heap Sort Algorithm
Heap Sort is an improved sort algorithm of selection sort [8].
This is performed on the heap data and heap is basically the
complete binary tree. There are 2 basic natures of heap that is
max and min [9]. In maxi heap the parental node is bigger
than its child and in mini heap the parental node is fewer than
its child [8]. Figure 2 shows the working process of heap sort.

Figure 2 - Heap Sort Working Process

1.4 Heap Sort Algorithm

mx-heapfy (b, j)

l left(j)

r right(j)

if l heap-size[b] and b[l] > b[j]

then largest j

if r heap-size[b] and b[r] > b[largest]

then largest r

if largest j

then exchange b[j] b[largestl]

max-heapfy(b, largest)[7]

2. LITERATURE REVIEW

According to V.P.Kulalvaimozhi et al, while comparing an
algorithm after executed, it uses the computer’s Central
Processing Unit (CPU) to perform operations and its memory
to hold the program and data. Researcher used different
sorting algorithms and then perform operations on all of them
[7][10]. The algorithm which they used for the efficiency of
the algorithms are bubble sort, insertion sort, shell sort,
binary tree sort, heap sort, quick sort, merge sort and radix
sort. In that analysis, the efficiency of the all algorithms were
determined by the number of comparison that each algorithm
do while running. Every algorithm has different number of
comparison so the efficiency of all the algorithms may vary as
it depends upon the algorithm used. Whereas, all these
algorithms were implemented in C++ language[7].

Matej Hul´ın, provide a comprehensive analysis of the
algorithms that include pseudo codes [11], discussion of
stability and space and time analysis in the worst, average and
best case. Their research is divided in different parts. In the
first Part, he described all the algorithms that use to perform
work on the algorithm’s, the description. It includes how the
algorithm works, there pseudo code, and the stability by
checking the time and how much the algorithm space takes
[2]. Researcher selected C++ to implement the sorting
algorithms. The working environment on which these
algorithms were tested. According to him the data that used
for finding the efficiency of the algorithms has different
sequences. Then all the algorithms were measured by
dividing them into different parts and included the results of
analysis in graphs[11].

Gaurav Kocher, Nikita Agrawal, provide a comparison based
sorting algorithms. Perform the analysis of these comparison
based algorithm for same number of data. Also mention that
each and every application has an algorithm and the
efficiency of the application can depend on these algorithms.

Humaira Ali et al., International Journal of Emerging Trends in Engineering Research, 9(5), May 2021, 580 – 586

582

Phase II
Comparison

 Phase II
 Check Complexity

 Phase I
 Implementation

Also perform the analysis on both the Central Processing Unit
(CPU) and Graphics Processing Unit GPU. They worked on
insertion sort, bubble sort, quick sort, and heap sort and
merge sort[10] [12]. They concluded that input in integer
takes less time as compare to strings. According to their
findings, selection sort and quick sort was not be used for
large types of data[13].

Dr. I. Lakshmi, perform analysis on four different types of
algorithm such as Quick sort, insertion sort, heap sort, merge
sort. Researcher analyzed the time complexity [14], [15]-[18]
The analysis of the study is to define which algorithm is useful
when we have a confusing set of data. The analysis is
depending upon best, average and worst case. In the analysis
researcher used C# environment and the data was randomly
used [10].

3. METHODOLOGY

This research paper includes 3 phase. The first phase includes
both the algorithms implemented in java language, in the
second phase finding the complexity of both algorithms is
explained and the third phase compare and analyze the result
of both algorithms and also implement them in java
programming

 The application both algorithm is implemented in java.
Moreover, in second phase pass different types of data and
check the complexity and showing the analysis with the help
of graph. The third phase check the running time of both
algorithms and then compare them on the basis of type of the
data. The overall process of this study work is mentioned in
three phases. Figure 3 represents the phases of study.

Figure 3: Phases of Study

These all three process consists on different methods and
gives a result to move forward in the next step, and then find
according to the graph that which is the best algorithm.
Moreover, Figure 4 shows the working mechanism of both
sorting algorithms.

Figure 4: Flowchart shows Working Mechanism of both Sorting

Algorithms

4. IMPLEMENTATION AND RESULT ANALYSIS

The analysis of this study is divided into three min phses.in
the first phase the implementation is done in java language, in
second phase check the complexity by using three strategies
that include best, average and worst case. In the last phase the
comparison of both heap sort and insertion sort is done.

4.1 Phase I (Implementation):
Both the algorithms insertion sort and heap sort is
implemented in java programming language. And the data is
based on arrays. In both algorithms three types of data is
tested that is (Small, Average and large data) that is the
length of the array. These three types of data set are tested on
three cases best, average and worst case. Table 1 presents data
size.

Table 1: Data Set Size

Data Array Size
Small 10

Average 50
Large 100

Humaira Ali et al., International Journal of Emerging Trends in Engineering Research, 9(5), May 2021, 580 – 586

583

Small Data

0.0575

0.057

0.0565
Time in Seconds

Time in Seconds 0.056

0.055
5 Insertion Sort Heap Sort

 Large Data
0.062

0.061

0.06

0.059

0.058

0.057

0.056

Time in Seconds

Time in Seconds

Insertion Sort Heap Sort

4.2 Phase II (Check Complexity):

In this phase, the complexity can be check in three ways:

1. Best Case
2. Average Case
3. Worst Case

So according to these cases in best case the data in array is
arranged in sequential order, in average case the data in array
is arranged in random order and in worst case the data in
array is arranged in decreasing order.

Analysis for Best Case:

The running time is depending on these input data. The
running time of all these three cases is different in both
insertion sort and heap sort. Some data can take too much
time and some data take less time. So according to the
running time check the complexity of these algorithms that
which algorithm is efficient for which type of data. Figure 5
presents small data in best case, Figure 6 presents average
data in best case, and Figure 7 presents large data in best case.

Figure 5: Represent Small Data In Best Case.

Figure 6: Represent Average Data In Best Case.

Figure 7: Represent Large Data In Best Case.

In best case the insertion sort performance is good for small
and average data and for large data the performance of heap
sort is best.

Analysis for Average Case:

In the analysis of average case the data that is tested is in
unsystematic form. The analysis can be performing on large,
small and average set of data. Figure 8 presents small data in
average case, Figure 9 presents average data in average case,
and Figure 10 presents large data in average case.

Figure 8: Represent Small Data In Average Case.

Figure 9: Represent Large Data In Average Case.

Average Data
0.06

0.059
0.058
0.057
0.056
0.055
0.054

0.053

Time in Seconds

Time in Seconds

Insertion Sort Heap Sort

Small Data
0.0582
0.058
0.0578
0.0576
0.0574
0.0572
0.057
0.0568
0.0566

Time in Seconds

Time in Seconds

Insertion Sort Heap Sort

Large Data
0.0635

0.063

0.0625
Time in Seconds

Time in Seconds

0.062

0.0615
Insertion Sort Heap Sort

Humaira Ali et al., International Journal of Emerging Trends in Engineering Research, 9(5), May 2021, 580 – 586

584

Small Data
0.08

0.06

0.04
Time in Seconds

Time in Seconds

0.02

0
Insertion Sort Heap Sort

0.066
0.064
0.062

0.06
0.058
0.056
0.054
0.052

0.05

Best Case

Average Case

Worst Case

Insertion Heap

Figure 10: Represent Large Data In Average Case.

In average case the insertion sort works best for all types of
data as compared to heap sort.

Analysis for Worst Case:

In the analysis of worst case the data that is tested is in
decreasing form. The analysis can be performing on large,
small and average set of data. Figure 11 presents small data in
worst case, Figure 12 presents average data in worst case, and
Figure 13 presents large data in worst case.

Figure 11: Represent Small Data In Worst Case.

Figure 12: Represent Average Data In Worst Case.

Figure 13: Represent Large Data In Worst Case.

4. 3 Phase III (Comparison):

In this phase the comparison of heap and insertion sort is
performed by using the best, average and worst case on small,
large and average data set. Figure 14 presents the comparison
of insertion and heap sort on small data set. Figure 15 presents
the comparison of insertion and heap sort on average data set, and
Figure 16 presents the comparison of insertion and heap sort on
large data set.

Figure 14: Represent The Comprison of Insertion and Heap Sort

on Small Data Set.

Figure 15: Represent The Comprison of Insertion and Heap Sort

on Average Data Set.

Average Data
0.063

0.062

0.061

0.06

Time in Seconds
Time in Seconds

0.059

0.058

0.057

Insertion Sort Heap Sort

Large Data 0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Time in Seconds

Time in Seconds

Insertion Sort Heap Sort

0.0585

0.058

0.0575

0.057

0.0565

0.056

0.0555

0.055

Best Case

Average Case

Worst Case

Insertion Heap

Average Data

 0.065

0.064

 0.063
Time in Seconds

Time in Seconds

0.062

0.0615

Insertion Sort Heap Sort

Humaira Ali et al., International Journal of Emerging Trends in Engineering Research, 9(5), May 2021, 580 – 586

585

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0

Best Case

Average Case

Worst Case

Insertion Heap

Figure 16: Represent The Comprison of Insertion and Heap Sort

on Large Data Set.

5. RESULTS DISCUSSION

The analysis of this study is divided into three main phases. In
the first phase the implementation is done in java language, in
second phase check the complexity by using three strategies
that include best, average and worst case. In the last phase the
comparison of both heap sort and insertion sort is done.

Now, according to the analysis the result of the running time
that insertion sort takes in small data set is less than the heap
sort, and in average data the insertion sort work best but in
worst case heap the performance of heap sort is better and in
large data the performance of heap sort is good rather than
insertion sort.

According to these conditions it is clear that insertion sort
takes less time in best and average case for small and average
data. But for large data the performance of heap sort is good,
so for large data use heap sort algorithm to save our time and
complete the tasks with in minimum time.

6. CONCLUSION

In the above analysis and comparison of both insertion sort
and heap sort the insertion sort has fast running time for
small and average data and for large data insertion sort takes
too much time so according to this analysis insertion sort is
use for small and average data. Heap sort takes less time
than insertion sort in average and large data for both in
average and worst case and it has smaller difference in
running time for large data set so heap sort is best for large
data in every case. The time complexity of insertion sort in
best case is O (n) because compare each element if it is not
sorted then put in the correct position. And for worst and
average case the complexity is O () because when the
input no in ‘n’so take n comparison+ n no of movements.
Then write this 2(n) that is 2(1+2+3…+n) so the sum of
natural nois equal to 2n (n+1)/2 now the remaining value is

n (n+1) so highest order is O (). The complexity of heap
sort is O (n log n) for all the cases. Because the time
complexity of building a heap is O (n) and n-1 call heapify
that takes O (logn) and the complete time complexity is O (n
log n).

REFERENCES

[1] P. K. Chhatwani, “Insertion Sort with its

Enhancement,” Int. J. Comput. Sci. Mob. Comput., vol.
3, no. 3, pp. 801–806, 2014.

[2] E. S. Al-jaloud, H. A. Al-aqel, and G. H. Badr,
“Comparative Performance Evaluation of Heap-Sort and
Quick-Sort Algorithms,” Int. J. Comput. Acad. Res., vol.
3, no. 2, pp. 39–57, 2014.

[3] S. Grover, “Performance Analysis of Heap, Merge, and
Insertion Sort,” in The 20th Winona Computer Science
Undergraduate Research Symposium, 2019, pp. 18–22.

[4] M. A. Bender, M. Farach-Colton, and M. A.
Mosteiro,“Insertion Sort is O(n log n),” Theory Comput
Syst, vol. 39, no. 3, pp. 391–397, Jun. 2006, doi:
10.1007/s00224-005-1237-z.

[5] C. C. Lwin, N. Z. Moe, and P. N. Wai, “A Study of
Comparison for Sorting Algorithms Based on Data
Sequences,” Univ. J. Creat. Innov. Res., vol. 01, no. 01,
p. 4, 2020.

[6] M. A. Bender, M. Farach-Colton, and M. A. Mosteiro,
“Insertion Sort is O(n log n),” Theory Comput. Syst., vol.
39, no. 3, pp. 391–397, Jun. 2006.

[7] V. P. Kulalvaimozhi, M. Muthulakshmi, R. Mariselvi,
G. S. Devi, C. Rajalakshmi, and C. Durai, “Performance
analysis of sorting algorithm,” Int. J. Comput. Sci. Mob.
Comput., vol. 4, no. 1, pp. 291–306, 2015.

[8] V. Sharma, S. Singh, and D. K. S. Kahlon,
“Performance Study of Improved Heap Sort Algorithm
and Other Sorting Algorithms on Different Platforms,”
Int. J. Comput. Sci. Netw. Secur., vol. 8, no. 4, pp.
101–105, 2008.

[9] Z.-G. Zhu, “Analysis and Research of Sorting Algorithm
in Data Structure Based on C Language,” J. Phys. Conf.
Ser., vol. 1544, no. 2020, pp. 1–5, May 2020, doi:
10.1088/1742-6596/1544/1/012002.

[10] D. I. Lakshmi, “Performance Analysis of Four Different
Types of Sorting Algorithms using Different
Languages,” International Journal of Trend in Scientific
Research and Development, vol. Volume-2, no. Issue-2,
Jan. 2018.

[11] M. Hulín, “Performance analysis of Sorting
Algorithms,” Thesis, Masaryk University Faculty of
Informatics, Pole-Ponava, Czechia, 2017.

[12] R. Schaffer and R. Sedgewick, “The Analysis of
Heapsort,” Journal of Algorithms, vol. 15, no. 1, pp.
76–100, Jul. 1993, doi: 10.1006/jagm.1993.1031.

[13] P. Prajapati, N. Bhatt, and N. Bhatt, “Performance
Comparison of Different Sorting Algorithms,” p. 3,
2017.

Humaira Ali et al., International Journal of Emerging Trends in Engineering Research, 9(5), May 2021, 580 – 586

586

[14] R. Schaffer and R. Sedgewick, “The Analysis of
Heapsort,” Journal of Algorithms, vol. 15, no. 1, pp.
76–100, Jul. 1993, doi: 10.1006/jagm.1993.1031.

[15] I. Ali, H. Nawaz, I. Khan, A. Maitlo, M. Ameen, and M.
Malook, “Performance Comparison between Merge and
Quick Sort Algorithms in Data Structure,” International
Journal of Advanced Computer Science and
Applications, vol. 9, no. 11, 2018, doi:
10.14569/IJACSA.2018.091127.

 [16] S. M. Aqib, H. Nawaz, and S. M. Butt, “Analysis of
Merge Sort and Bubble Sort in Python, PHP, JavaScript,
and C language,” International Journal of Advanced
Trends in Computer Science and Engineering, vol. 10,
no. 2, pp. 680–686, Apr. 2021, doi:
10.30534/ijatcse/2021/311022021.

[17] M. A. Hingoro and H. Nawaz, “A Comparative Analysis
of Search Engine Ranking Algorithms,” International
Journal of Advanced Trends in Computer Science and
Engineering, vol. 10, no. 2, pp. 1247–1252, Apr. 2021,
doi: 10.30534/ijatcse/2021/1081022021.

[18] F. A. Agha and H. Nawaz, “Comparison of Bubble and
Insertion Sort in Rust and Python Language,” IJATCSE,
vol. 10, no. 2, pp. 1020–1025, Apr. 2021, doi:
10.30534/ijatcse/2021/761022021.

