
Wilson Philips et al., International Journal of Emerging Trends in Engineering Research, 9(6), June 2021, 627 – 632

627

ABSTRACT

When dealing with large amounts of data, various sorting
algorithms will be tested and searched for which algorithm is
the most efficient. Many factors determine the level of
performance of the sorting algorithm, such as time and size
complexity, stability, accuracy, clarity, effectiveness, and so
on. MinFinder is a newly discovered sorting algorithm by
finding the smallest value in each iteration while the program
is running. In this paper, the MinFinder algorithm will be
tested on the structure of data arrays, vectors and linked lists
to compare the speed of completion time. Based on the results
of experiments on data with n amount of 10 power of 3, 10
power of 4, and 10 power of 5, it can be concluded that the
best application of MinFinder is in the array, with the
processing time needed 2X faster than other data structures.
Vector and Linked Lists have weaknesses when accessing
elements at each iteration, which makes them slower than
arrays.

Key words: Linked List, MinFinder, Sorting, Time and Size
Complexity, Vector.

1. INTRODUCTION

Sorting is a technique used to arrange data that is not
sequential, from the smallest to the largest value, or vice versa
[1]. When the data has been sequenced, the process of finding
data will be easier to do. Many conventional sorting
algorithms can be applied to sort data, such as Bubble Sort,
Selection Sort, and Insertion Sort [2][3]. However, when
implemented in large amounts of data, the algorithms take a
long time to sort the data [4]. One of the newest sorting
algorithms found is MinFinder.

The MinFinder algorithm is designed to find the smallest
value in each iteration sorting an array or list and place it to
the forefront by sliding the elements to the right. Additional
memory is not required to perform the MinFinder algorithm
and this algorithm is relatively stable because it does not
change the position of the same element. The time complexity
of the MinFinder algorithm is O(n^2), and the size complexity
is O(1) [5].

2. OVERVIEW SORTING ALGORITHMS

There are two types of sorting algorithms in general,
namely internal and external sorting. Internal sorting is done
by storing all the elements that will be sorted in main
memory, such as Bubble Sort, Selection Sort and Insertion
Sort [6]. While external sorting is done by accommodating
some portion of the elements in the secondary memory which
is then transferred to the memory, then the results of the
sorting will be stored in the secondary memory again [7].
Examples of external sorting algorithms are Merge Sort and
Quick Sort. In designing a sorting algorithm, there are several
properties that must be met [8], including:
• Input: The algorithm must have an input value of a

defined set.
• Output: The algorithm produces output values that are

defined as the solution of the problem to be achieved using
the input provided.

• Definiteness: The steps of the sorting algorithm must be as
detailed as possible to sort the elements.

• Correctness: The algorithm must produce output in the
correct order, according to each given set of input
elements.

• Finiteness: The algorithm must produce the desired output
after a few calculated steps.

• Effectiveness: The algorithm should be designed
considering the amount of time required.

• Generality: The algorithm must be able to be applied to
every given problem, not only for certain sets

The MinFinder algorithm is included in the type of internal
sorting algorithm, which does not require extra memory to do
the sorting process [9]. Algorithm MinFinder can be done by
finding the value of the smallest element of a list or array,
then placed in the leading position, by shifting other elements
to the right. In the sample case, the data need to sort
descending, then the element that is placed at the front is the
biggest element. Then in the second iteration, the smallest
element will be searched for and then placed in the second
leading position using the same method [4]. In Figure1 shown
MinFinder pseudocode sorting algorithm.

Analysis of MinFinder Algorithm on Large Data Amounts

Wilson Philips1, Wirawan Istiono2
1Universitas Multimedia Nusantara, Indonesia, wilson4@student.umn.ac.id

2Universitas Multimedia Nusantara, Indonesia, wirawan.istiono@ umn.ac.id

 ISSN 2347 - 3983
Volume 9. No. 6, June 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter04962021.pdf

https://doi.org/10.30534/ijeter/2021/04962021

Wilson Philips et al., International Journal of Emerging Trends in Engineering Research, 9(6), June 2021, 627 – 632

628

L = A.length – 1,
NextIterPoint =0,
PositionOfMinValue = 0
Finder:
minValue = A[positionOfMinValue]
for i = positionOfMinValue + 1 to L
 if minValue > A[i]
 minValue = A[i]
 positionOfMinValue = i
 if i != L
 goto step2
 if I = L
 for j = positionOfMinValue to NextIterPoint
 A[j] = A[j-1]
 A[NextIterPoint] = minValue
 NextIterPoint++
 positionOfMinValue = NextIterPoint
 goto step2
 print(A)

Figure 1: MinFinder Pseudocode Algorithm

As shown in Figure 1, the step MinFinder Algorithm first step
is initialize variables A [n], L = A.length () - 1, NextIterPoint
= 0, PositionOfMinValue = 0; and after that enter a
branching control to jump to a specific place and select the
current element that holds the smallest value, then enter the
MinValue variable; And after that iterates until the index on
the array is smaller or equal to the length of the array, starting
at the current MinValue position. After that, check each
element in the array with MinValue, whether the MinValue
value is greater or smaller than the current element. If the
current MinValue element is greater than the element to the
current index, then change the MinValue value to the value of
that element and its position, to check the rest of the elements
afterwards. MinValue = A [i]; PositionOfMinValue = i; Then
check whether the current index is the last index of an array.
If the current index is not the last index, then repeat to step 2.
And then check whether the index of the element is now the
last index of an array, to ensure the value of MinValue has
been compared to all elements in the array. If true, then move
the elements from the array one position to the right from the
first element to the position of the smallest element, then the
smallest element will be moved to the first position in the
array. A[k] = A [k-1] where k = PositionOfMinValue to
IterationPoint. And the last step, update the IterationPoint
value and position of MinValue and then repeat to step 2,
until all elements in the array have been sorted.

3. RESEARCH METHODOLOGY

In this study, the MinFinder algorithm will be tested on 3
different data structures, including arrays, vectors, and linked
lists [10]. These three data structures are often found in
computer science and each has advantages and
disadvantages.
Array has the advantage of fast data access, because it can

directly access the desired index. For data input, the array
must be defined in advance how much data will be inputted,
because the number of indexes in the array is static. Arrays do
not have shift operations to shift a row of elements to the right
or left, so that only the values of the elements can be
overwritten.

Vector is a dynamic array, where the number of indexes will
follow the amount of data inputted. Inputting data on the
vector does not need to be defined in advance how much data
[11]. Vector can be found in C ++, which has been optimized
for application rather than arrays. STL operations on C ++ are
used to access and change vector contents [12]. This operation
makes it easy for data to be changed at certain locations,
which is more practical to use than using arrays.

Linked List is a linear data structure, where each element will
be allocated to heap memory. In a linked list, an element is
like a struct, which has more than 1 member variable in it.
Accessing this linked list cannot be done directly, it must go
through head, tail, or other pointer variables that point to
elements in the linked list [10]. The complexity of creating
linked lists is more complicated than arrays and vectors, but
changing the order of elements in linked lists is easier [13].

Seeing the advantages and disadvantages, we will examine
how the application of the MinFinder algorithm with large
amounts of data, namely 10 ^ 3, 10 ^ 4, and 10 ^ 5 the amount
of data. Testing this algorithm is done using C language, for
arrays and linked lists. For vectors, testing will be done using
the C ++ language. The computer processor used in this test is
Intel i7-7200 with 4GB of RAM memory.

4. IMPLEMENTATION
The MinFinder pseudocode algorithm previously described,
will be implemented in 3 data structures, namely: array,
vector, and linked list. Data inputting is done through a file
containing a row of random numbers to be sorted. The
numbers will be entered into the data structure and sorted
using the MinFinder algorithm. After the sorting process has
been performed, the output of the data that has been
sequentially will be displayed. There are 5 variables used in
implementing this MinFinder algorithm, among others.
• minValue: integer variable that holds the smallest value of

one iteration in the array array.
• PositionOfMinValue: integer variable that holds the

position of minValue.
• L: integer variable that contains the value of the last index

in the array that is n-1, with n the amount of data.
• NextIterPoint: Integer variable that functions as a limit

starting from iteration, so that the smallest data that has
been moved forward, is not compared.

• Finder: label used for repeating markers of commands
when called the go to function.

Wilson Philips et al., International Journal of Emerging Trends in Engineering Research, 9(6), June 2021, 627 – 632

629

To clarify the function of each variable, you can see the
illustration of the MinFinder algorithm in Figure 2.

Figure 2: Illustration of Iteration on MinFinder

NextIterPoint is marked with a pink box,
PositionOfMinValue and minValue are marked with a blue
box. minValue will be checked for each element behind
NextIterPoint which is marked with an orange box. If an
element whose value is smaller than minValue is found, the
value of minValue will be updated, and the iteration will
continue from the latest PositionOfMinValue.

After the iteration reaches L, it indicates that no more
elements need to be checked for the smallest value at that
position, and the minValue is moved forward after
NextIterPoint. The iteration will then continue from
NextIterPoint + 1 to NextIterPoint with the same value as L,
which indicates all data has been sorted.

In Figure 4, you can see the MinFinder algorithm consists of 3
iterations. First is the iteration from NextIterPoint to L. This
iteration will run as long as the value of i is smaller or equal to
L. If the value of i is greater than L, then the iteration will
stop, which indicates all data has been sorted. The second
iteration can be seen, namely the shift process performed on
the element located between NextIterPoint and
PositionOfMinValue to the right and move minValue to the
NextIterPoint position. Whereas the third iteration, is the goto
call which makes the iteration ends and is repeated when
there is a value smaller than minValue and i is in the L
position

while(true) {
 for(..; …; …) {
 if(condition1)
 break;
 }
 if(condition2)
 break;
}

Figure 3: The goto command if replaced into looping
As shown in Figure 3, it can be seen if the use of goto is
equivalent to looping with a combination of breaks. Using too
much goto can cause spaghetti code, where the flow of control

of the program will be complicated to follow. However, in
MinFinder, using goto is appropriate because it is not
excessive, and is more practical to use to get out of nested
loops.
Finder:
minValue = A[positionOfMinValue];
for(i = positionOfMinValue + 1; i<=L; i++)
{
 if (minValue > A[i]) {
 minValue = A[i];
 positionOfMinValue = I;
 if (i != L) goto Finder;
 }
 if (i = L) {
 for(j = positionOfMinValue; j>= NextIterPoint; j--) {
 A[j] = A[j-1];
 }
 A[NextIterPoint] = minValue;
 NextIterPoint++;
 positionOfMinValue = NextIterPoint;
 goto Finder;
 }
}

Figure 4: Implementation of MinFinder on Array

MinFinder implementation in arrays and vectors does not
have significant differences. The difference lies in the use of
indexes on dynamic vectors rather than static arrays [12]. The
dynamic vector initializer can be seen according to Figure 5.

Figure 5: Vector Initialization

Inputting data on vectors is done using the push_back()
function. This function is similar to the push() function on the
stack. In contrast to arrays, push_back() on a vector does not
need to define the location of the index, because data will
automatically be entered at the very back of the index. The
push_back() function can be seen in Figure 6.

Figure 6: Inputting data on the Vector

In Figure 7 shown the significant difference that can be seen
is when i is equal to L, which means i has reached the last
position on the element to be checked in a loop. When that
happens, the data between minValue and NextIterPoint will
be shifted to the right, using the insert() function. The begin()
function states the position at the first index. minValue will be
entered in the begin() + NextIterPoint position. Then, the data
element at the begin position + PositionOfMinValue + 1 will
be removed from the vector. Because insert() is done first
instead of erase (), then the index to be deleted must be added
by 1 first.

Wilson Philips et al., International Journal of Emerging Trends in Engineering Research, 9(6), June 2021, 627 – 632

630

Finder:
minValue = v[positionOfMinValue];
for(i = positionOfMinValue + 1; i<=L; i++)
{
 if (minValue > A[i]) {
 minValue = A[i];
 positionOfMinValue = I;
 if (i != L) goto Finder;
 }
 if (i = L) {
 v.insert(v.begin() + NextInterPoint, minValue);
 v.erase(v.begin() + positionOfMinValue + 1);
 NextIterPoint++;
 positionOfMinValue = NextIterPoint;
 goto Finder;
 }
}

Figure 7: Implementation of MinFinder on Vector

For implementing MinFinder on a Linked List, it will be
easier to use if done on a Double Linked List because it has 2
pointers next and prev which will make it easier to move the
minValue to the next NextIterPoint. In a Linked List, struct
elements must be defined in a new node to be allocated first,
before compiling into a Linked List. Defining a struct data
type consists of an integer value, pointer next, and prev.

After defining the struct node in the Linked List and its
arrangement, the MinFinder sorting process is then
performed. In this Double Linked List, there is a pointer head
that points to the front most list, and a tail that points to the
rear list. To prevent errors at run time because they point to
null, the looping process is limited to n-1 data. So that after
the looping process is completed, a comparison will be made
once again between the n-1 and n data, as can be seen in
Figure 8.

Finder:
i = positionOfMinValue -> next;
while(i != NULL && nextIterPoint -> next != tail) {
 if (positionOfMinValue -> value > i -> value) {
 positionOfMinValue = i;
 if (i != tail) goto Finder;
 }
 if (i == tail) {
 if(positionOfMinValue != head &&
 positionOfMinValue != tail &&
 positionOfMinValue != nextIterPoint) {
 i = i -> next;
 } else if (positionOfMinValue == tail &&
 positionOfMinValue != nextIterPoint) {
 nextIterPoint = positionOfMinValue;
 nextIterPoint = nextIterPoint -> next;
 positionOfMinValue = nextIterPoint;
 goto Finder;
 }
}

Figure 8: Implementation of MinFinder on Linked List

When i is equal to tail, there are 2 conditions if-statements, if
PositionOfMinValue is in the middle of the head and tail, and
PositionOfMinValue does not refer to NextIterPoint. As can
be seen in Figure 9, the conditions for inserting when
NextIterPoint are in the head and do not have different
treatment. First the next from before PositionOfMinValue is
connected to the next from PositionOfMinValue to break the
chain. Then prev from next PositionOfMinValue will be
associated with prev PositionOfMinValue. The
PositionOfMinValue node will be connected to the front of
the head if NextIterPoint is still in its initial position, namely
in the head. If not, then PositionOfMinValue is associated
with the position in front of the head. The same is true if
PositionOfMinValue is on the tail.

positionOfMinValue -> prev -> next = positionOfMinValue -> next;
if(nextIterPoint == head) {
 positionOfMinValue->next = nextIterPoint;
 positionOfMinValue->prev->next->prev = positionOfMinValue
– prev;
 positionOfMinValue->prev = NULL;
 nextIterPoint->prev = positionOfMinValue;

head = positionOfMinValue;
} else {
 positionOfMinValue->next = nextIterPoint;
 positionOfMinValue->prev->next->prev =
positionOfMinValue->prev;
 positionOfMinValue->next->prev = positionOfMinValue;
}
 Figure 9: Moving the minValue node to NextIterPoint

5. RESULT
After making the code has been completed, the experiment
will be carried out. In the trial data that will be tested there are
3 cases, namely data amounting to n = 10 ^ 3, 10 ^ 4, and 10
^ 5. Each test will be carried out 10 times, then the average
time will be searched. The sorting process that occurs will
have a different working time speed, which depends on the
data structure. The following are the results of the test which
can be seen in the Table 1.

Table 1: The MinFinder Experiment at n = 10^3
i-th trial Array Vector Linked List

1 0,4690 1,0470 0,5470
2 0,4840 1,0870 0,5310
3 0,5000 0,6560 0,3910
4 0,5470 1,0620 0,5160
5 0,5000 0,8750 0,5160
6 0,4220 1,0620 0,4840
7 0,2810 1,0310 0,5940
8 0,5620 0,7190 0,2500
9 0,5160 0,7190 0,5160

Wilson Philips et al., International Journal of Emerging Trends in Engineering Research, 9(6), June 2021, 627 – 632

631

10 0,5160 1,0470 0,5160
Average 0,4797 0,9035 0,4861

In experiments using data n = 10 ^ 3, it can be seen that the
use of arrays and linked lists is 1.8X faster than using vectors.
Linked lists and arrays have a fairly thin difference of 0.0064
seconds, where there are almost no significant differences.
The use of arrays is fairly fast and practically superior here.

Table 2: The MinFinder Experiment at n = 10^4
i-th trial Array Vector Linked List

1 1,2190 2,4100 1,3060
2 1,2310 2,5000 1,3320
3 1,2420 2,4120 1,3600
4 1,2790 2,4370 1,3610
5 1,2420 4,8600 1,2970
6 1,2180 2,4150 1,3150
7 1,1920 2,3850 1,2680
8 1,2680 2,4670 1,2440
9 1,2920 2,4610 1,2970
10 1,2240 2,4620 1,2860

Average 1,2407 2,6809 1,3066

As can be seen in Table 2, in the second experiment using
data n = 10 ^ 4, it can be seen that the use of arrays still
outperforms this test. Vector is still the test with the longest
time which takes 2X longer than arrays and linked lists. Array
and linked list have a little time difference too, which is equal
to 0.659 seconds

Table 3: The MinFinder Experiment at n = 10^5
i-th trial Array Vector Linked List

1 25,1220 39,8810 40,4350
2 24,9720 39,8250 40,4320
3 24,8530 47,3150 40,0600
4 24,9360 39,3870 40,6060
5 25,0620 38,9320 42,1510
6 25,1250 42,9710 43,2060
7 24,9570 39,0970 42,6490
8 24,9520 40,4180 45,1760
9 25,2140 39,0900 39,9970
10 25,0910 39,4910 40,0530

Average 25,0284 40,6407 41,4765

In experiments using data n = 10 ^ 5 that can be seen in Table
3, there are differences in results from before. Linked List is
the longest of the three data structures. Arrays remain in the
fastest position to complete sorting. The difference in speed

by using a 1.6X array is faster than vector and linked lists.
The difference between vector and linked list, which is equal
to 0.8358 seconds.

6. CONCLUSION
Based on testing that has been done, it can be concluded that
the array with amount of data less than or equal to 10 power of
5 is the best data structure. Arrays require an average of 1.8X
faster than vectors and linked lists in the application of the
MinFinder algorithm. Vector and linked list can be used
when wanting to create dynamic arrays, but if the data gets
bigger the performance of both will decrease due to slower
data access, than arrays that can directly access their indexes.

ACKNOWLEDGEMENT

Thank you to the Universitas Multimedia Nusantara,
Indonesia which has become a place for researchers to
develop this journal research. Hopefully, this research can
make a major contribution to the advancement of technology
in Indonesia.

REFERENCES
1. M. Shabaz and A. Kumar, “SA sorting: A novel sorting

technique for large-scale data,” Journal of Computer
Networks and Communications, vol. 2019, 2019.

2. B. Subbarayudu, L. Lalitha Gayatri, P. Sai Nidhi, P.
Ramesh, R. Gangadhar Reddy, and C. Kishor Kumar
Reddy, “Comparative analysis on sorting and searching
algorithms,” International Journal of Civil Engineering
and Technology, vol. 8, no. 8, pp. 955–978, 2017.

3. M. J. Mundra and B. L. Pal, “Minimizing Execution
Time of Bubble Sort Algorithm,” vol. 4, no. 9, pp.
173–181, 2015.

4. W. I. Kevin Hendy, “Efficiency Analysis of Binary
Search and Quadratic Search in Big and Small Data,”
COMPUTATIONAL SCIENCE AND TECHNIQUES,
vol. 7, no. 1, pp. 605–615, 2020.

5. M. S. Rana, M. A. Hossin, S. M. H. Mahmud, H. Jahan,
A. K. M. Z. Satter, and T. Bhuiyan, “MinFinder: A New
Approach in Sorting Algorithm,” Procedia Computer
Science, vol. 154, pp. 130–136, 2018.

6. B. K. Joshi, Data Structures and Algorithms in C. New
Delhi: Tata Mcgraw Hill Education Private Limited,
2010.

7. V. Andiyani and W. Istiono, “Analysis of Fibonacci
Numbers Calculations Using Static Programming and
Dynamic Programming Algorithms to Get Optimal Time
Efficiency,” International Journal of Open Information
Technologies, vol. 8, no. 12, pp. 19–22, 2020.

8. B. Harvey, “Algorithms and Data Structures,” Computer
Science Logo Style, vol. 1, no. August 2004, p. 212,
2019.

Wilson Philips et al., International Journal of Emerging Trends in Engineering Research, 9(6), June 2021, 627 – 632

632

9. F. Franek, “Memory as a Programming Concept in C and
C++,” Memory as a Programming Concept in C and
C++, p. 12, 2004.

10. R. Acevedo-Avila, M. Gonzalez-Mendoza, and A.
Garcia-Garcia, “A linked list-based algorithm for blob
detection on embedded vision-based sensors,” Sensors
(Switzerland), vol. 16, no. 6, 2016.

11. Z. Rustam and N. P. A. A. Ariantari, “Comparison
between support vector machine and fuzzy Kernel
C-Means as classifiers for intrusion detection system
using chi-square feature selection,” AIP Conference
Proceedings, vol. 2023, 2018.

12. G. M. Seed, An Introduction to Object-Oriented
Programming in C++, vol. 49, no. 0. Springer-Verlag
London, 2001.

13. J. Katajainen, “Worst-case-efficient dynamic arrays in
practice,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 9685, no. 1, pp.
167–183, 2016.

