
Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

347


ABSTRACT

Along with the enhance in computation as well as
information safe-keeping in cloud servers, the requirement
for a devoted computer hardware accelerator with regard to
encryption is arising to be able to decrease the processor work.
Highly efficient Advanced Encryption Standard (AES)
128-bit implementation, that could be utilized as an
accelerator. In this research paper resource optimization and
higher throughput were obtained. Memory segmentation is
actually carried out to be able to assign several ports for
simultaneous information accessibility. When algorithm is in
proceed and examined time delay and initiation time period of
various procedures, with regard to every crucial route delay, a
fresh multistage solitary initiation time period sub-pipelined
structure is suggested for making the initiation time period to
a single for smallest route latency. Consequently, almost all
operations in AES could be started within a single clock cycle
and also can easily accept input in each and every clock cycle.
The suggested approach while examined on latest Field
Programmable Gate Array (FPGA) XC7VX690T unit that
offers a throughput of 104.06 Gbps at a highest frequency of
813MHz and also 1.23-ns route delay. The useful resource
utilization is reduced whenever compared along with other
alternatives. The suggested method offers 30.74Mbps
efficiency on device, which usually was 27.13% much more
compared to the best efficiency documented in an earlier
research study.

Key words: Advanced Encryption Standard, Cryptography,
Field Programmable Gate Array, Resource Optimization,
Throughput.

1. INTRODUCTION

The algorithm formulated by Joan and Vincent in 2001.
It’s safe and secure in characteristics, versatility, and
simplicity of implementation [1,2] and it can be carried out in
software or hardware. The level that on which the software
program implementation can be improved is restricted by the
underlying equipment. Explicit hardware modifications
should not be carried out whenever the algorithm is applied to
software. These restrictions can be managed utilizing loop

unrolling, pipelining, parallelism, and so on. And this
hardware configuration can be easily done in Field
programmable gate arrays (FPGAs) [1,3,4]. As every area of
living begins transferring on the internet, generally there
arises the requirement for storage and protection of massive
amount of consumer information. Encryption and decryption
are generally a couple of major operations which requires
large amount of processing moment. Initially, almost all
cryptographic procedures were performed through the
processor itself, that restricted the overall functionality of the
program and also caused an improve in the power generation.

Devoted equipment emerged into existence for performing
encryption/decryption on servers. Effective implementation
of AES by managing resources and overall performance is
one particular problem that must be taken attention of. The
requirement for a higher speed encryption in the particular
form of accelerator in equipment came into image together
with the introduction of cloud computing. Encryption has
been utilized in cloud, whilst the information tends to be in
utilize and at rest. Full consumer virtual machine (VM)
encryption and decryption, traffic into and out of VMs whilst
operating, encryption as a service in cloud, and so on, needs
higher throughput with a lesser amount of resource utilization
[4-6]. Numerous cloud companies like Amazon, Google
Cloud, CloudLink, and CloudSigma use encryption,
information targeted traffic encryption, important safety, and
so on [8-13]. The encryption providers on cloud are mostly
dependent on time frame and space. The advancement of
accelerator on hardware FPGA can create the encryption a lot
more quickly, consume fewer resource, minimize the
processor work, as well as minimize the power to a significant
level. As FPGAs need significantly less frequency compared
to processor chip, heat production will probably be really less.
Whenever the primary processor requirements and more
rapid assistance for encryption, its lookups the bitstream
storage space for the specific equipment design. When the
equipment design is located, the related bitstream is packed
directly into attached FPGA. The application is actually then
operating over the equipment and gets the outcome back
again to primary processor. The bitstream or equipment
layout can be acquired from the equipment developer or
through third-party IP suppliers. In the suggested technique,
we personalize and improve the resources in FPGA,
enhancing the pipelining performance, and therefore, greater
throughput is accomplished with fewer number of resources.
Memory space dividing approach is utilized to permit reading

Advanced FPGA Implementation of AES Algorithm
Nitesh Kumar Dixit1

1Electrical Engineering Department, Bhartiya Institute of Engineering & Technology, Sikar, India
Nitesh20.dixit@gmail.com

 ISSN 2347 - 3983
Volume 9. No. 4, April 2021

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter02942021.pdf

https://doi.org/10.30534/ijeter/2021/02942021

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

348

through and composing of input and output information in
parallel, that enhances the pipelining. Based on the examined
parameters, a fresh multistage pipelining which tends to
make the initiation period of all procedures and the whole
system to be a single clock cycle is suggested of 813MHz
Clock Frequency. Merging of a couple of functions is
performed to prevent unwanted delay and unnecessary
resource utilization. Mapping as well as placement of
resources is carried out optimally, for this purpose AES-ECB
mode and AES-Counter mode both are utilized.

2. LITERATURE REVIEW

Farashahi et al. [14] suggested a 2-slow retiming approach
that expands the c-slow retiming approach for the throughput
enhancement of AES algorithm. The c-slow retiming
approach enhances the pipelining by splitting the data
pathways and transferring the registers at particular locations
to enhance the structures. The 2-slow retiming approach
supersedes each and every register in c-slow retime approach
with a couple of registers. Information forwarding is utilized
to eliminate dependency mistakes in c-slow time approach.
This approach offered throughput of 86 Gbps at 671.524MHz.
An additional program is created along with fast AES design
and style utilizing LookUp Tables (LUTs), as well as it
provides additional safety for AES core [15]. A function
creator is employed to load the LUT material on the base of
the several variables of AES, that offers additional safety [15].

In the research by Liu et al. [16], in the beginning the
experts examined the logic detail of combinational circuits
employed in each and every of the AES procedures. To
decrease the logic depth equipment layout, a couple of phase
pipelining method and deep pipelining techniques were
employed. It might accomplish a throughput of 75.9 Gbps. A
fresh Key Expansion scheme which improved the
complexness up to 2 (N −1) had been also suggested. An
additional research [17] showed various techniques for
applying s-box of AES in numerous suggested styles. The
creators utilized loop unrolling for crucial route
customization and completely pipelined and sub-pipelined
methods, that permitted the improve in clock frequency and
decrease in crucial route. Optimum sub-pipeline register
quantity and locations were discovered by considering all
opportunities. Composite field and combinational logic
strategy for s-box execution are compared within the
foundation of area and throughput. To decrease the employed
area, Lee et al. [18] employed a sequence of continuous binary
matrix multiplication rather of Galois field (GF) (28)
calculation. Additionally, a four-step pipelined execution is
also offered. Together, a couple of techniques propose for
decrease in area along with for greater throughput. Benaissa
[19] introduced a couple of patterns for AES feedback mode
assistance. Initially layout allocated LUTs among pipeline
slashes to accomplish optimum throughput. Second style
concentrated on Key Expansion utilizing which key may be
transformed each and every clock cycle by appropriate
pipelining. The strategy offered in Hammad et al. [20] divides
and rearranges the functioning in AES to attain the best

possible area and throughput. The Mix Column procedure is
divided and rearranged along with Add Round Key
procedure. The throughput achieved of 39,053Mbps at clock
frequency 305.1MHz [20,21].

A combined-block strategy employing Key Expansion
design for improving the throughput and for minimizing the
power usage was introduced by Kalaiselvi [22]. In numerous
additional scientific studies [23-27], various degrees of
pipelined architectures were suggested. Granado et al. [28]
created a high-speed AES formula execution for Wi-FI
Protected Access 2 (WPA2) systems. It utilized powerful and
partial reconfiguration together with parallelism. The
particular program was demonstrated to provide a 24.922
Gbps of throughput. Glesner [29] introduced AES setup for
tiny gadgets that work at 50MHz in Offset Codebook (OCB)
as well as Electronic Code book (ECB) modes along with
accomplish a 493Mbps of throughput. Parhi [30] applied
s-box utilizing combinational logic to obtain optimum
throughput. Furthermore, a fresh Key Expansion program
was offered to function with various key lengths. It
accomplished an optimum 21.56 Gbps of throughput with
168.4MHz frequency. Kermani and Masoleh [31] suggested a
powerful approach to utilize s-box by reducing logic gates.
Greater output and decrease time delay for sub-key procedure
and equipment structures were offered. In the research by
Jamal [32], a coalesced modification system was
recommended through which various procedures were mixed
with each other. The s-box variable and Mix Column matrix
variables were additionally precomputed. Round keys had
been furthermore precomputed prior to encryption procedure
starts and were saved in RAM (RAM). The technique
provided a 5.3 Gbps of throughput in Virtex-7 unit with
456MHz frequency. Rashidi [33] suggested a minimal power
AES encryption regarding an image encryption application
which employs a four-stage pipelined structures. Oukili [34]
offered a pipelined structure for amalgamated field
implementation of s-box along with key extension
component. It could actually attain a optimum 108.69 Gbps
throughput over a Virtex-6 unit. Oukili [35] suggested
implementation of AES utilizing a 5-phase pipelined
structures for s-box and also a 7-phase pipelined key
extension. Furthermore, the side route attack is prevented by
covering up the s-box. The initial reason for working on the
suggested work was the necessity for higher -throughput AES
execution for cloud conditions where encryption is actually a
regular procedure. As the Xeon-FPGA system has been
introduced for information stores by Intel, the running energy
and versatility of FPGA need to be utilized for designing of a
higher-throughput, lower -area accelerator. Secondly, the
overall flexibility of FPGA equipment enables customized
multistage pipelining for particular issues. Finally, a harmony
among throughput and resources ought to be managed.
Incrementing the throughput outcomes in the increment of
resource usage in most the associated works. An effective
technique ought to generate higher throughput along with
fewer quantity of resources.

Whilst examining all the associated works, the pipelining
effectiveness is enhanced by managing the phases by

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

349

allocating registers at suitable positions or by establishing the
clock period to the time from the optimum time-taking
procedure. These options will eliminate stalls. However, the
optimum frequency that could be utilized cannot be improved
above a particular limit as every pipelining phase needs a
certain amount of time for finalization. In the suggested
technique, we minimize this moment by memory space
dividing and by implementing individual initiation interval
sub-pipelining for every procedure right after the latency for a
greater frequency is examined.

The primary efforts of the document are mentioned listed
below:
• Memories partitioning is carried out, that enables reading
and writing several input and output bits.
• Once examining the latencies of all segments, fresh
multistage sub-pipelined structures are suggested for every
module, that would make the initiation time period of all
segments to a single for minimum feasible route delay. This
may permit it in order to improve the frequency instead
compared to establishing it to harmony the pipelining, that is
applied in associated research works. The segments, that
collectively requires latency of a single clock cycle, are
usually joined to eliminate unwanted delays and assets.

Figure 1: AES Algorithm
3. DESCRIPTION OF AES

AES is a symmetric blockchain encryption algorithm, its
specified input length is 128 bits and key length is
128/119/256 bits in cycles of 10/12/14 depending on key

length. The introduction of the AES has embraced the power
of security, flexibility and efficiency. The AES basically
contains four types of explicit text functions, namely Byte
Swap (Byte Replacement), Shift Rows, Column Mix and
Round Key Addition. The imported text is separated by 4 × 4
footnotes. The byte replacement function replaces each item
in the status table with an item in the s-box. The S-box is
made of GF (8) designed to protect against all attacks. Move
lines the function moves the lines to the left without the first
line. The Mix Column replaces each item in the status bar at
a price based on all the values in this column. Adding a round
key enables the XOR function of each case with a round key
made up of a key combination function [36-39]. The
performance of the NPP as a whole is shown in the figure. 1.
Repeated use of the four functions and internal calculation
creates AES safety features, namely randomization,
confusion and distribution [40]. The AES installation pipes
for each section are shown in the figure. 2. After each cycle,
registers were added to maintain intermediate results and
avoid multiple text conflicts.

4. PROPOSED METHOD

In the recommended structures, we evaluate establishing an
effective method to enhance pipelining. One particular
bottleneck happens throughout the entry of input information
and key coming from memory space. The input information’s
are saved within BRAMs or LUTs within FPGA, that
continues to be utilized by various procedures at various
pipelining phases. In order to minimize the accessibility time
and to create pipelining much more effective, the memory
space wherever inputs are saved could be partitioned directly
into various banks. Partitioning the memory space into
various banks enables assigning of extra slots to it for creating
the accessibility parallel and therefore growing the
effectiveness of pipelining [41]. Within the suggested
technique, plain text and key saving memories are divided
into several banks, that permits accessing the material inside
a single clock cycle. Additionally, the layout is designed to
create the initiation period of all operations so that it can
easily take input in each and every clock cycle and generate
outcomes in each and every clock cycle as soon as the pipeline
is complete. This could be achieved by creating the input to be
examine parallel and sub-pipelining every operation of AES
by including registers at suitable positions to stability the
pipeline. Furthermore, a much better style ought to balance
among the resources utilized and the throughput
accomplished. Increasing throughput along with a huge
quantity of resources reduces the performance of the design.
Figure 4 demonstrates the general layout of the suggested
technique. The particular input Plain text and key memory
space are partitioned to permit reading and transferring of
input details for processing within just a single clock period.
As Shift Rows never take any extra clock cycle, it is combined
with Substitute Byte, that is mentioned in earlier. The crucial

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

350

route is separated into several parts through allocating
registers at suitable placements, permitting better pipelining.

Figure 2: The implementation of AES pipelined

Figure 3: Suggested Cycle for Advanced Encryption Standard

The procedures are sub-pipelined within every procedure
so that it might obtain input and move it to the subsequent
phase of pipeline at every clock period. Which indicates the
initiation period of every procedure and sub-operations is
decreased to Just one. Substitute Byte is actually the initial
pipeline step that scans information from the partitioned
memory space, procedures it, and provides it to register for
the following phase. Shift Rows, Mix Column, and Add
Round Key get input information through register for
handling, and therefore, each can go through information in a
single clock period.
 Add Round Key is definitely the final pipeline phase which
reads information through register and key through memory
space. The key storage space is additionally partitioned to
permit parallel accessibility. Following this, Add Round Key
creates data back again to input information memory that is
previously partitioned. The significant factors which
determine the performance of pipelining tend to be latency
[41]. Latency of an instruction is identified as the quantity of
clock cycles it requires to finish execution, which is, the
number of process between an instruction required to
procedure the information and to create the result accessible
for the following instruction. Initiation time period specifies
how frequently input could be provided to an instruction,
which is, the quantity of cycles among giving a couple of
directions of the exact same type. Initiation period establishes
the throughput of the layout. If the latency is too higher,
initiation time period will turn out to be higher and the
quantity of stalls will improve. A fine pipelined pattern ought
to have reduce latency for every functional unit as well as
input should be provided at every clock period. If the latency
of the procedure (with regard to the suggested pattern, we
utilized procedure rather of instruction) cannot reduce, it
ought to be sub-pipelined. A sub-pipelined style raises the
pipelining performance as every procedure is separated

directly into sub-operations, that enables information to be
traversed by means of every substages and inhibits stalling
[41,42]. The latency values with regard to various route time
delay as well as frequencies noticed for the suggested method
are demonstrated in Table 1. Various frequencies are chosen
dependent on the delay essential for every sub-operation.
With regard to the route 4.91 ns time delay, the latency of
almost all procedures is Zero along with memory space
partition. Nevertheless, for which route delay, the highest
frequency value which can be utilized is restricted to 203
MHz. Whilst reducing the route delay, the latency of
procedures begins to improve. The optimum frequency which
could be accomplished is together with 1.23 ns route delay
and well-balanced resources and time period. At this path
delay i.e. 1.23 ns, as the latency of Key Expansion and Mix
Column are 4 and 3, correspondingly, the initiation time
period will be 5 for Key Expansion and Mix Column.
Similarly, with regard to time delay of 2.6 ns, the initiation
time period regarding Mix Column is going to be 2 and for
Key Expansion is going to be 3. In conventional technique,
the clock interval is established to the longest latency
procedure, that decreases the throughput, losing time
unnecessarily with regard to the procedures that usually do
not require that a lot of time period.

Table 1: Latency values V/s Frequencies
S.
No.

Path
Dela
y (ns)

Freq.
(MHz
)

Latency
Substitute
Byte
Shift
Rows

Mix
Column

Add
Round
Key

Key
Expansio
n

1 1.231 813.1 0 3 0 4

2 2.60 357.1 0 1 0 2

3 2.840 352.1 0 0 0 2

4 4.910 203.1 0 0 0 0

The solution is applying sub-pipeline within every

procedure. The associated works state that managing the
pipelining raises throughput. We have followed a different
strategy. To produce excellent pipelining, the initiation time
period of all procedures should be Just one. Whenever the
initiation time period of all procedure becomes One, it may
obtain input at every single clock cycle. The objective is
accomplished in the perform by sub-pipelining each
procedure by having registers at suitable positions. In some
other scientific studies [14,16-18], the sub-pipelining is
transported out by just managing the pipelining not targeted
at producing the initiation interval to Just one.
5. IMPLEMENTATION AND RESULTS

The suggested structure is tested, simulated, and applied
various FPGAs-XC5VLX85, XC7VX690T, and
XC6VLX240T systems. We have utilized Xilinx ISE Suite
for the execution [43-45]. The best possible resource
utilization for maximum frequency is considered in this
research work. Initially, memory segmentation is carried out
and examined the latency necessity for various procedures.

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

351

The input and key keeping memories as well as the s-box
memory space were segmented in order to enable
simultaneous accessibility. The latency distinction noticed
prior to and right after memory segmentation is demonstrated
in Fig. 4 i.e. 1.23 ns. The other parameter values are
demonstrated in Table 2. Table 2 demonstrates the latencies
for various route delay and the initiation time period
accomplished using suggested approaches. It is observed that
the implementation is completely pipelined as well as
balanced and tends to make the initiation interval of all
procedures to be Just one. With regard to a route delay of 1.23
ns, Mix Column latency is 3. By utilizing three-phase
pipelining, the initiation time period is decreased through 4 to
1, that enhances the pipelining and also throughput. For Key
Expansion latency is 4 and the initiation time period is 1. We
chose the route delay of 1.23 ns for acquiring optimum
throughput. It is observed that a highest frequency of 813MHz
was accomplished along with the initiation time period of
each and every procedure kept as Just one clock period.
Various sub-pipelining methods with various frequencies are
examined and discovered that 1.23-ns route delay
implementation provides maximum throughput along with a
bit more resources in the type of registers compared to other
route delays. Providing several inputs to the layout enables

performance of procedures in pipelined way along with an
initiation time period of A single, as demonstrated in Fig. 6.
The actual design is demonstrated in Fig. 5. Figure 6 exhibits
the simulation overall performance view of performing a
couple of input texts along with 1.23-ns route delay. Every
cell signifies a single clock cycle [40]. It is observed that
Substitute Byte and Shift Rows are carried out inside just one
clock cycle. The initiation time period of almost all
procedures is Just one, and it is used again within just a single
clock cycle. Mix Column is using four clock time cycle and
Key Expansion is using five clock time cycles in working
procedures in a pipelined approach together with an initiation
period of 1, that will not include any kind of delay. We have
utilized several resources of the similar type to prevent
structural threat. For clearness, we have demonstrated only a
couple of inputs in Fig. 6. Because outcome of this,
throughout every clock cycle, the actual input traverses
through one phase to another with 813MHz without having
leading to any delay for following input. The latency of the
entire system doesn't influence the processing speed and
performance can be determined as presented [14,17,35].
Quantity of outcome bits for the technique is 128-bits. Crucial
route delay can be determined as clock time period ×
initiation time period. As the initiation time period of general
program is 1, the latency will not impact the throughput of the
program. So, the crucial route delay is going to be 1.23 ns.
The suggested system accomplishes a throughput of 104.06
Gbps. The general latency of the encryption is 58-time clock
periods for 128-bit input information. The comparison at
optimum frequency which can be accomplished, and the
related throughput and resources utilized in several
associated works with our suggested work in Table 3. Whilst
considering various units, it is discovered that Virtex5 utilizes

65-nm technologies; Virtex-6 utilizes 40-nm technologies;
and Virtex-7 utilizes 28-nm technologies. The optimum
frequency which can be provided is restricted by the type of
unit Therefore, generally there will be a smaller variance in
essential route delay. The cloud machine will be utilizing
most recent Virtex-7 unit, and therefore, the layout of the
suggested work had been focused to develop structures that is
suitable for changing to greater frequency.

Figure 4: Latency requirement for 1.23-ns path delay at
different memory partition

Table 2: Statistics of initiation interval and Latencies of pipelining

operations for different path delays

Figure 5. Suggested technique with multiple input texts

Figure 6: Performance analysis of two input text execution with
1.23-ns path delay

.

S.
No.

Path
Delay
(ns)

Freq.
(MHz)

Interval Latency

Sub
Byte
Shift
Row
s

Mix
Colum
n

Ad
d
Ke
y

Key
Ex

Sub
Byte
Shift
Row
s

Mix
Colum
n

Add
Key

Key
Ex

1 1.23
1

813 1 1 1 1 0 3 0 4

2 2.6 357 1 1 1 1 0 1 0 2

3 2.84 352 1 1 1 1 0 0 0 2

4 4.91 203 1 1 1 1 0 0 0 0

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

352

Table 3: Comparison studies of related works to the suggested design

The minimal critical route delay that can be accomplished for
the suggested program on XC6VLX240T unit is 1.35 ns and
this for XC5VLX85 unit is 1.42 ns that is demonstrated in
Table 3. A great program must have a stability among the
throughput and resource usage. The suggested system will be
able to accomplish a greater throughput along with less
reference by very carefully enhancing the source program
code as well as resource suitable placement. As
sub-pipelining of the style is carried out after examining the

latency for greater frequency and route delay, improved
throughput by appropriate managing might be accomplished.
In this article by Farashahi et al. [14], the 2-slow time
retiming approach obtained an optimum 82.47 Gbps
throughput. Liu et al. [16] might get an optimum 75.92 Gbps
throughput along with 593MHz clock frequency. The
suggested system accomplished of 90.4 Gbps throughput was
Virtex-5 unit, Virtex-6 throughput was 94.81 Gbps, and
Virtex-7 throughput was 104.06 Gbps.

Ref Platform Frequency
(MHz)

No. of
Bits

Path Delay
(ns)

Slices Throughput
(Gpbs)

Efficiency
(Mbps)

[19] XC3S4000-5 240.900 128 - 20720 30.1120 1.4100

XC2V8000-5 222.800 128 - 31674 27.8500 0.9100

[20] XC2V6000 305.100 128 - 10662 38.1300 3.6630

[22] XC5VLX30 277.400 128 3.6182 - 0.2700 -

[18] XC5VLX330 555.000 128 3.1300 - 3.8000 -

[26] XC7Z020-2CLG484 239.648 128 - - 5.7510 -

[23] XC7VX690T 516.800 128 - 3436 66.1000 19.2000

[24] XC5VLX50T 90.440 128 - - 11.5700 7.0000

[30] XCV1000 e-8bg560 168.400 128 - 11022 21.5600 1.9560

[28] XC2V6000-6 194.700 128 5.1360 3576 24.9220 6.9000

[16] XC7VX690T 593.000 128 1.6000 4339 75.9200 17.5000

XC6VLX240T 573.000 128 1.7000 3900 73.3900 18.8100

XC5VSX240T 439.170 128 2.2000 4444 56.2100 12.6500

XC5VLX110T 403.390 128 2.4000 4445 51.6300 11.6200

XC4VLX160 454.550 128 2.1000 38511 58.1800 1.5100

[14] XC5VLX85 433.060 128 - 3557 55.4320 15.5800

XC5VLX85 528.370 128 - 3557 67.6310 19.0100

XC5VLX85 671.524 128 - 3557 86.0000 24.1800

[17] XC5VLX85 553.710 128 1.8000 10733 70.8700 6.6000

XC5VLX85 554.785 128 1.8000 10352 71.0100 6.8500

XC5VLX85 644.330 128 1.5000 28592 82.4700 2.8800

XC6VLX240T 764.059 128 1.3000 10760 97.8000 9.0800

XC6VLX240T 803.988 128 1.2000 28520 102.9100 3.6000

[32] Virtex 7 456.000 128 2.1900 2444 5.3000 2.1700

[33] Stratix II 475.000 128 2.1000 808
Registers

0.6025 -

[34] XC5VLX85 638.162 128 1.5600 7385 81.6800 11.0600

XC6VLX240T 849.185 128 1.1700 6361 108.6900 17.0800

[35] XC6VLX240T 732.279 128 1.3000 5759 93.7300 16.2700

XC6VLX240T 457.582 128 2.1000 9531 58.5700 6.1400

Our Deign XC5VLX85 704.700 128 1.4200 2940 90.4000 30.7400

XC6VLX240T 740.700 128 1.3500 2537 94.8100 37.3700

XC7VX690T 813.000 128 1.2300 2617 104.0600 39.7000

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

353

It is observed that actually if the suggested technique
accomplishes fewer throughput compared to which in the
research works completed by Bri [34] and Sharifian [17] on
FPGA Virtex-6, the resource usage of the suggested technique
is significantly much less, that results in greater efficiency.
The suggested system is 27.13% effective when evaluating
with the greatest performance demonstrated in the study
doneon on FPGA Virtex 5 by Farashahi et al. [14]. The
performance of the suggested work is identified to be far
better than those reported in evaluation dependent on
implementation of comparable units such as Virtex-6 as well
as Virtex-5. The AES core is built-in utilizing
higher-performance PCIe 3.0 user interface. Figure 7
indicates the highest frequencies attained by various earlier
proposals and the suggested approach on different FPGA
Units. For convenience, we have chosen only the earlier
works displaying best efficiency. It is observed that the
suggested work can accomplish highest throughput on
Virtex-7 on 813MHz. Figure 8 displays the evaluation among
throughput of associated works and the suggested work on
various FPGA Units. Also, the evaluation of resource usages
is demonstrated in Figure 9.

Figure 7: Comparative study of frequencies carried out on different
FPGAs.

Figure 8: Comparison of throughputs achieved by different
designs on different FPGAs.

The suggested technique is demonstrated to generate
maximum throughput other than the style demonstrated by
Bri [34] and Sharifian [17] on Virtex-6 unit. While whenever
examining the resource usage, it is observed that the
suggested technique is much more efficient than all additional

approaches. Whilst putting it completely, the efficiency for
the suggested model was observed to be 30.74Mbps,
37.37Mbps and 39.7Mbps on Virtx-5 Unit, Virtx-6 Unit and
Virtex-7 FPGAs Unit, respectively (Fig. 10). Figure 11
demonstrates the evaluation of percent boost in efficiency of
our suggested program when evaluating along with the best
implementations on various boards.

Figure 9: Comparison of number of slices (resource usage) used by
different designs on different FPGAs.

Figure 10: Comparison of efficiency of different designs on
different FPGAs.

Figure 11: Efficiency attained by the suggested design
implementations on different FPGA boards.

It is observed that actually if the suggested technique
accomplishes fewer throughput compared to which in the research
works completed by Bri [34] and Sharifian [17] on FPGA Virtex-6,
the resource usage of the suggested technique is significantly much

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

354

less, that results in greater efficiency. The suggested system is
27.13% effective when evaluating with the greatest performance
demonstrated in the study doneon on FPGA Virtex 5 by Farashahi et
al. [14]. The performance of the suggested work is identified to be far
better than those reported in evaluation dependent on
implementation of comparable units such as Virtex-6 as well as
Virtex-5. The AES core is built-in utilizing higher-performance
PCIe 3.0 user interface. Figure 8 indicates the highest frequencies
attained by various earlier proposals and the suggested approach on
different FPGA Units. For convenience, we have chosen only the
earlier works displaying best efficiency. It is observed that the
suggested work can accomplish highest throughput on Virtex-7 on
813MHz. Figure 9 displays the evaluation among throughput of
associated works and the suggested work on various FPGA Units.
Also, the evaluation of resource usages is demonstrated in Fig. 10.
The suggested technique is demonstrated to generate maximum
throughput other than the style demonstrated by Bri [34] and
Sharifian [17] on Virtex-6 unit. While whenever examining the
resource usage, it is observed that the suggested technique is much
more efficient than all additional approaches. Whilst putting it
completely, the efficiency for the suggested model was observed to
be 30.74Mbps, 37.37Mbps and 39.7Mbps on Virtx-5 Unit, Virtx-6
Unit and Virtex-7 FPGAs Unit, respectively (Fig. 11). Figure 12
demonstrates the evaluation of percent boost in efficiency of our
suggested program when evaluating along with the best
implementations on various boards.
Along with less area usage and higher throughput, the suggested
AES accelerator is much better suitable for cloud application
wherever encryption/decryption of huge amount of information is
being managed. As FPGA resources are contributed as support on
cloud, resource consumption of AES accelerator is of the same
significance as throughput. Along with a throughput of 104.06 Gbps
and area consumption of 2617 slices, it might meet the both speed
necessity and optimum utilization of distributed assets in cloud. In
brief, the suggested model could accomplish a much better efficiency
of 39.7Mbps, 37.37Mbps, and 30.74Mbps on Virtex-7, Virtex-6 and
Virtex-5FPGAs unit respectively.

6. CONCLUSION

A much better implementation of AES accelerator along with
excellent multi-phase sub-pipelined design for a route time
delay of 1.23 ns in XC7VX690T unit is suggested. The
suggested technique could be utilized for applications
wherever higher throughput is needed. Through memory
space segmentation, sub-pipelining, pipelining, unrolling,
and function-merging, the suggested approach outperforms
all techniques reviewed in other research works. Examining
the effect of higher frequency on functionality latency and
memory space accessibility latency, we might layout a much
more effective sub-pipelining approach. As the initiation time
period of all procedures and the whole technique is A single,
generally there will be absolutely no delay in acquiring the
inbound information at the specific rate. The method can
handle at a optimum frequency at 813MHz on the most recent
XC7VX690T unit along with significantly fewer resource
usage and might accomplish a 104.06 Gbps throughput. The
exact same technique whenever examined on XC6VLX240T

and XC5VLX85 units along with route delays of 1.351ns and
1.425 ns could generate a throughput of 94.810 Gbps and
90.461 Gbps, respectively. Performance of the suggested
system outperforms that attained by the existing approaches.

REFERENCES

1. Seskar, I. Advanced FPGA Design. IEEE Signal
Processing Magazine, 25(6), 173-174. 2008
https://doi.org/10.1109/msp.2008.929815.

2. Phan, R. Impossible differential cryptanalysis of
7-round Advanced Encryption Standard (AES).
Information Processing Letters, 91(1), 2004,
33-38. https://doi.org/10.1016/j.ipl.2004.02.018.

3. Javeed, K., & Wang, X. FPGA Based High Speed
SPA Resistant Elliptic Curve Scalar Multiplier
Architecture. International Journal of
Reconfigurable Computing, 2016, 1-10.
https://doi.org/10.1155/2016/6371403.

4. Teubner, J., & Woods, L. Data Processing on
FPGAs. Synthesis Lectures on Data Management,
5(2), 1-118. 2013
https://doi.org/10.2200/s00514ed1v01y201306dtm0
35.

5. Bokefode, J., Bhise, A., Satarkar, P., & Modani, D.
Developing A Secure Cloud Storage System for
Storing IoT Data by Applying Role Based
Encryption. Procedia Computer Science, 89,
43-50. 2016
https://doi.org/10.1016/j.procs.2016.06.007.

6. Rahmani, H., Sundararajan, E., Ali, Z., & Zin, A.
Encryption as a Service (EaaS) as a Solution for
Cryptography in Cloud. Procedia Technology, 11,
1202-1210. 2013
https://doi.org/10.1016/j.protcy.2013.12.314.

7. Chu, C., Ouyang, Y., & Jang, C. Secure data
transmission with cloud computing in
heterogeneous wireless networks. Security and
Communication Networks, 5(12), 2012
1325-1336. https://doi.org/10.1002/sec.409.

8. Bankar, S. Cloud Computing Using Amazon Web
Services AWS. International Journal of Trend In
Scientific Research And Development, 2018
Volume-2(Issue-4), 2156-2157.
https://doi.org/10.31142/ijtsrd14583.

9. Microsoft Windows Azure: Developing Applications
for Highly Available Storage of Cloud Service.
(2015), 4(12), 662-665.
https://doi.org/10.21275/v4i12.nov151864.

10. Sentiment analysis on google cloud platform.
(2020).
https://doi.org/10.48009/2_iis_2020_221-228.

11. S, V., & T, P. An Efficient Securing Code Based
Cloud Storage using RC5 Encryption Algorithm
against Pollution Attacks. International Journal of
Trend in Scientific Research and Development,

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

355

2018 Volume-2(Issue-2), 1652-1657.
https://doi.org/10.31142/ijtsrd10744.

12. Babb, B. Commentaries on the IAALS' Honoring
Families Initiative White Paper. Family Court
Review, 52(4), 639-641. 2014
https://doi.org/10.1111/fcre.12114.

13. Viswanath, G., & Krishna, P. Hybrid encryption
framework for securing big data storage in
multi-cloud environment. Evolutionary
Intelligence. 2018
https://doi.org/10.1007/s12065-020-00404-w.

14. Farashahi, R., Rashidi, B., & Sayedi, S. FPGA
based fast and high-throughput 2-slow retiming
128-bit AES encryption algorithm.
Microelectronics Journal, 45(8), 1014-1025. 2014
https://doi.org/10.1016/j.mejo.2014.05.004.

15. Jing, M., Chen, Z., Chen, J., & Chen, Y.
Reconfigurable system for high-speed and
diversified AES using FPGA. Microprocessors and
Microsystems, 31(2), 2007, 94-102.
https://doi.org/10.1016/j.micpro.2006.02.018.

16. Liu, Q., Xu, Z., & Yuan, Y. High throughput and
secure advanced encryption standard on field
programmable gate array with fine pipelining and
enhanced key expansion. IET Computers & Digital
Techniques, 2015, 9(3), 175-184.
https://doi.org/10.1049/iet-cdt.2014.0101.

17. Soltani, A., & Sharifian, S. An ultra-high
throughput and fully pipelined implementation of
AES algorithm on FPGA. Microprocessors and
Microsystems, 2015, 39(7), 480-493.
https://doi.org/10.1016/j.micpro.2015.07.005.

18. Lee, H., Paik, Y., Jun, J., Han, Y., & Kim, S.
High-throughput low-area design of AES using
constant binary matrix-vector multiplication.
Microprocessors and Microsystems, 2016 47,
360-368.
https://doi.org/10.1016/j.micpro.2016.10.003.

19. Good, T., & Benaissa, M. Pipelined AES on FPGA
with support for feedback modes (in a
multi-channel environment). IET Information
Security, 2007, 1(1), 1.
https://doi.org/10.1049/iet-ifs:20060059.

20. Hammad, I., El-Sankary, K., & El-Masry, E.
High-Speed AES Encryptor With Efficient
Merging Techniques. 2010 IEEE Embedded
Systems Letters, 2(3), 67-71.
https://doi.org/10.1109/les.2010.2052401.

21. Sugawara, T. 3-Share Threshold Implementation
of AES S-box without Fresh Randomness. IACR
Transactions on Cryptographic Hardware and
Embedded Systems, 2018 123-145.
https://doi.org/10.46586/tches.v2019.i1.123-145.

22. Kalaiselvi, K., & Mangalam, H. Power efficient
and high-performance VLSI architecture for AES
algorithm. Journal of Electrical Systems And
Information Technology, 2(2), 2015 178-183.
https://doi.org/10.1016/j.jesit.2015.04.002.

23. P., R., & H., M. Design and implementation of
power and area optimized AES architecture on
FPGA for IoT application. Circuit World,
ahead-of-print(ahead-of-print). 2020
https://doi.org/10.1108/cw-04-2019-0039.

24. Yang, C., & Chien, Y. FPGA Implementation and
Design of a Hybrid Chaos-AES Color Image
Encryption Algorithm. Symmetry, 12(2), 2020,
189. https://doi.org/10.3390/sym12020189.

25. Arul Murugan, C., Karthigaikumar, P., & Sathya
Priya, S. FPGA implementation of hardware
architecture with AES encryptor using
sub-pipelined S-box techniques for compact
applications. Automatika, 2020, 61(4), 682-693.
https://doi.org/10.1080/00051144.2020.1816388.

26. Nabil, M., M. Khalaf, A., & M. Hassan, S. Design
and implementation of pipelined and parallel AES
encryption systems using FPGA. 2020, Indonesian
Journal of Electrical Engineering and Computer
Science, 20(1), 287.
https://doi.org/10.11591/ijeecs.v20.i1.pp287-299.

27. Thiyagarajan, K., El-Sankary, K., Wang, Y., &
Hammad, I. Low Complexity Multimedia
Encryption. International Journal of Computer
Network and Information Security, 2016, 8(4),
1-13. https://doi.org/10.5815/ijcnis.2016.04.01

28. Granado-Criado, J., Vega-Rodríguez, M.,
Sánchez-Pérez, J., & Gómez-Pulido, J. Hardware
security platform for multicast communications.
Journal of Systems Architecture, 2014, 60(1),
11-21. https://doi.org/10.1016/j.sysarc.2013.11.007

29. Chiţu, C., & Glesner, M. An FPGA implementation
of the AES-Rijndael in OCB/ECB modes of
operation. 2005, Microelectronics Journal, 36(2),
139-146.
https://doi.org/10.1016/j.mejo.2004.10.012

30. Xinmiao Zhang, & Parhi, K. High-speed VLSI
architectures for the AES algorithm. IEEE
Transactions on Very Large-Scale Integration
(VLSI) Systems, 2005, 12(9), 957-967.
https://doi.org/10.1109/tvlsi.2004.832943

31. Mozaffari-Kermani, M., & Reyhani-Masoleh, A.
Efficient and High-Performance Parallel
Hardware Architectures for the AES-GCM. IEEE
Transactions on Computers, 2005, 61(8),
1165-1178. https://doi.org/10.1109/tc.2011.125

32. Zhao, J., Guo, Z., & Zeng, X., High Throughput
Implementation of SMS4 on FPGA. 2019, IEEE
Access, 7, 88836-88844.
https://doi.org/10.1109/access.2019.2923440.

33. Hamidi, I., & Al-aassi, F. High Speed FPGA Based
128-bit Advance Encryption Standard (AES).
International Journal Of Sensors, Wireless
Communications And Control, 2015, 11.
https://doi.org/10.2174/2210327911666210201104
151.

Nitesh Kumar Dixit, International Journal of Emerging Trends in Engineering Research, 9(4), April 2021, 347 – 356

356

34. Oukili, S., & Bri, S., High throughput FPGA
Implementation of Advanced Encryption Standard
Algorithm. TELKOMNIKA (Telecommunication
Computing Electronics And Control), 2017, 15(1),
494.
https://doi.org/10.12928/telkomnika.v15i1.4713.

35. Oukili, S., & Bri, S., Hardware Implementation of
AES Algorithm with Logic S-box. Journal Of
Circuits, Systems And Computers, 26(09), 2017,
1750141.
https://doi.org/10.1142/s0218126617501419.

36. Hussien, M. Encryption of Stereo Images after
Compression by Advanced Encryption Standard
(AES). Al-Mustansiriyah Journal of Science,
28(2), 2017, 156.
https://doi.org/10.23851/mjs.v28i2.511.

37. Silva, L., B. P, D., & Heriyanto, H. Aplikasi enkripsi
dan dekripsi file dengan menggunakan aes
(advanced encryption standard) algoritma rijndael
pada sistem operasi android. Telematika, 10(1).
2015,
https://doi.org/10.31315/telematika.v10i1.383.

38. Baux, K. Rankin SH, Stallings KD. Patient
Education. The Journal of Cardiovascular Nursing,
5(3), 86. 1991.
https://doi.org/10.1097/00005082-199104000-0001
2.

39. Heron, S. Advanced Encryption Standard (AES).
Network Security, 2009 (12), 8-12.
https://doi.org/10.1016/s1353-4858(10)70006-4.

40. Wright, M. The Advanced Encryption Standard.
Network Security, 2001(10), 11-13.
https://doi.org/10.1016/s1353-4858(01)01018-2.

41. Hennessy, J., & Patterson, D. A new golden age for
computer architecture. Communications of the
ACM, 2019, 62(2), 48-60.
https://doi.org/10.1145/3282307.

42. Obaidat, M. Book Reviews: ADVANCED
COMPUTER ARCHITECTURE: Parallelism,
Scalability, and Programmability by Kai Hwang
McGraw-Hill, New York, N.Y., 1993. 770 pages,
Price: $56.95, ISBN: 0-07-031622-8.
SIMULATION, 61(4), 250-250.
https://doi.org/10.1177/003754979306100406.

43. An Efficient VLSI Design of 32X32 bit Multiplier
using Wallace Tree Algorithm in Vivado HLS and
Xilinx ISE Software using VHDL. (2020), 9(7),
490-495.
https://doi.org/10.35940/ijitee.g5299.059720.

44. Shashidhara, K., & Srinivasaiah, H. Hardware
co-simulation of 1024-point FFT and its
Implementation, in Simulink, Xilinx Vivado IDE
on Zynq-7000 FPGA. 2019, European Journal of
Engineering Research and Science, 4(9), 58-64.
https://doi.org/10.24018/ejers.2019.4.9.1501.

45. Accelerator Design for Ethernet and HDMI IP
Systems for IoT using Xilinx Vivado 18.X. (2019),

8(10), 652-656.
https://doi.org/10.35940/ijitee.j8786.0881019.

