
HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1445

ABSTRACT

Regression testing is one of the most critical testing
activities among software product verification activities.
Nevertheless, resources and time constraints could inhibit the
execution of a full regression test suite, hence leaving us in
confusion on what test cases to run to preserve the high
quality of software products. Different techniques can be
applied to prioritize test cases in resource-constrained
environments, such as manual selection, automated selection,
or hybrid approaches. Different Multi-Objective Evolutionary
Algorithms (MOEAs) have been used in this domain to find
an optimal solution to minimize the cost of executing a
regression test suite while obtaining maximum fault detection
coverage as if the entire test suite was executed. MOEAs
achieve this by selecting set of test cases and determining the
order of their execution. In this paper, three Multi Objective
Evolutionary Algorithms, namely, NSGA-II, IBEA and
MoCell are used to solve test case prioritization problems
using the fault detection rate and branch coverage of each test
case. The paper intends to find out what’s the most effective
algorithm to be used in test cases prioritization problems, and
which algorithm is the most efficient one, and finally we
examined if changing the fitness function would impose a
change in results. Our experiment revealed that NSGA-II is
the most effective and efficient MOEA; moreover, we found
that changing the fitness function caused a significant
reduction in evolution time, although it did not affect the
coverage metric.

Key words: Regression testing, test cases prioritization,
meta-heuristic algorithms, NSGA-II, IBEA, MoCell

1. INTRODUCTION

Software testing is one of the essential activities in the
software development life cycle; testing activities consume
50% of the total effort and cost of the whole development
effort [1]. Regression testing is the process of ensuring that
existing features and functionalities of software are still
working fine, it ensures that the old code is still working
correctly with the new code additions and the new code
changes have no effect of what has already been implemented,

and to make sure that historical defects did not emerge again
in code. Challenges in regression testing are test suite size,
time, and resources. In most cases, the time and resources are
limited, and test suites are large; hence, the whole regression
test suite could not be executed because of the time and cost
constraints on running them. Having said that, it becomes
more essential to run the test suite partially, either selectively
or by prioritizing them to achieve some performance goal.

Many research studies were conducted to minimize the
resources needed to run the regression tests with the
preservation of high code coverage and the quality of the
software product. The techniques applied to that cause are
meta heuristic, search algorithms, and SI-based algorithms.
The main objectives were to minimize the test case number or
identify the order of test cases to achieve effective regression
testing in a limited resources environment. It was indicated
that Greedy algorithms acted well in solving test case
prioritization problems when being compared to other search
algorithms like Hill Climbing [2]. Besides, a new proposed
hyper-volume algorithm named HGA was found to be more
efficient compared to NSGA-II [3]. In addition, Hybrid
algorithms were examined, PSO and GA mutation were
combined and found that the new algorithms outperform the
classic PSO and other algorithms [4].

In this paper, we are going to conduct an empirical study to
compare the efficiency of three Multi Objective Evolutionary
Algorithms which are NSGA-II [5], IBEA [6] and MoCell [7].
We are going to measure each algorithm’s performance in
finding the optimal solution by which we can reduce the cost
of executing regression tests in terms of time and obtain high
fault and branch coverage. The fitness functions used in each
of the algorithms are average percentage of branch and faults
coverage. Naturally, the best value would be higher
faults/branch detected/covered with less execution time.

The remainder of the paper is organized as follows; Section
II narrate the related work, section III elaborates more on the
problem domain background, section IV talks about the
experiment details, research questions and analysis tool, and
section V discusses the conducted experiment and results. In

Comparison of Multi-Objective Evolutionary Algorithms
to Prioritize Regression Test Cases

HadiAwad1, Abdel Salam Sayyad2

1 Master of Software Engineering, Birzeit University, Palestine, awadhadi@gmail.com
2 Master of Software Engineering, Birzeit University, Palestine, abed.sayyad@gmail.com

Received Date : November 06, 2021 Accepted Date : November 28, 2021 Published Date : December 07, 2021

 ISSN 2347 - 3983

Volume 9. No.12, December 2021
International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/IJETER/static/pdf/file/ijeter019122021.pdf

https://doi.org/10.30534/ijeter/2021/019122021

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1446

section VI we discuss the threats to validity, and in section VII
we summarize and conclude the results.

2. LITRETUR REVIEW

2.1 Single Objective Studies

Zheng et al, examined a group of search algorithms for
prioritizing regression test-cases based on statement coverage
[2]. They compared greedy methods like Greedy, Additional
greedy, and two optimal algorithms with a couple of
metaheuristics algorithms which are Hill Climbing and
Genetic Algorithms. The results were that Genetic Algorithms
performed well when being compared to others, and greedy
approaches also did well, given that the nature of landscape
was multi-modal. They also investigated the fitness metrics
“criterion” that was used in test-cases optimizations and
measured its effect on the performance of the algorithm, the
criterion they have checked are, Average Percentage of Block
Coverage and Decision Coverage and Statement Coverage.
They found that the choice of the criterion does not affect the
efficiency of the algorithms. In contrast, the size of the test
suite does have a direct impact since it determines the search
space for the problem. Moreover, they found that the size of
the program does not affect the complexity of test cases
directly. This study has illustrated the differences between
different types of search algorithms, and it compared three
Greedy Algorithm with two heuristic techniques. It
emphasized how the last overcomes the issues of Greedy
algorithms.

Kaur et al, used Genetic Algorithm (GA) for regression test

cases scheduling based on code coverage [8]. They explained
in detail how to apply the GA for test case prioritization, the
initial chromosomes set was randomly generated, then genetic
operations are applied until reaching the optimum goal. Their
fitness function was based on total code coverage is done by
structural testing, which aims to visit all independent paths as
a minimum once during path testing, so the GA fitness
function was checking if the minimum number of test cases to
cover all separate paths. The experiments were done on
triangle problems to get the intended paths and 20 test-cases
are generated with random paths as inputs for the GA. The GA
test-cases order was compared to original, random, reveres
and optimal order. They used Average Percentage of
Condition Coverage (APCC) to compare the orders, and the
results of the experiment demonstrated that GA is performing
as expected and its order was as effective as the optimal order.

Pedemonte et al. [9] experimented to identify the

performance of Systolic Genetic Search in solving the Test
Suite Minimization Problem (TSMP). Besides, they
compared the results to the other two competitive genetic
algorithms which are Simple Genetic Algorithm and an Elitist
Genetic Algorithm, as well as to four heuristics techniques
namely GREE, HGSE, GREEDYR, and GREEDYE. Not
only the SGS outperform the six algorithms in results, but it

showed a considerable time reduction in terms of GPU
implementation when being compared to the CPU
implementation of SGS. The results also revealed that SGS
scales well when being executed on large test suites. The
experiment aimed to evaluate the effect of the test’s suite size
and several testing requirements on the performance of the
CPU and GPU implementation when executing the SGS. It’s
found that the performance of CPU-based SGS has expanded
considerably when considering many test requirements,
whereas the GPU-based SGS has been minimally affected
when being tested on a test suite. The significant point in this
experiment is that they studied a test case minimization
problem that is cost-aware i.e., they tried to eliminate
redundant test cases and select a minimal set of test cases that
achieve the testing goals and reduces the number of resources
it needs during execution. The experiment was performed
over seven real word programs owned by Siemen’s
benchmark suite; a well-known test suite was used to examine
and assess the reductions algorithms. Add to this; the
algorithms were evaluated against a case study from real word
program which was Cisco regression test suite containing
2000+ test cases and needs around five weeks to be executed

Saraswat and Singhal [4] led a study on a hybrid approach

for test case prioritization as well as optimization, and they
used the Genetic Algorithm (GA) along with Particle Swarm
Optimization (PSO) in their experiment. To validate their
findings, they compared the GA_PSO to other optimization
algorithms via the Average Percentage Fault Detection
(APFD) metric. In the GA_PSO algorithm, the GA was
overall an initial population for several iterations to get an
optimized result, so, the output of the GA will be the initial
population for the PSO, the PSO then optimizes the
population to get the optimum order to run based on the
APFD. The results of this hybrid algorithm were compared to
the following techniques, ORIGINAL ORDER,
NON-PRIORITIZED, REVERSE ORDER, RANDOM
ORDER, OPTIMUM ORDER, and HYBRID GA_PSO. The
results showed that the original order is the worst; the random
order could be close to the optimum but never the best. There
was a slight difference between the optimum and Hybrid
order. Thus, the authors have proved that the hybrid GA_PSO
is better than the optimum order of other algorithms.

In the study that was conducted by Mittal and Sangwan

[10], they have surfed literature and came out with the
examined meta-heuristic algorithms and how they performed
in the domain of test selection, minimization, and test
prioritization. They also addressed the problem of choosing a
proper fitness metric for such an optimization problem and
concluded that the Average Percentage of Fault Detected
(APFD) is the most frequently and widely used metric
nowadays. The study found that ABC outperforms other
approaches i.e., GA, ACO, BCO and PSO in the test suite
optimization problem as it makes use of the parallel behavior
of the employed, onlooker and scout bees which in return
make the search process much faster. Add to this that ABC

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1447

introduces a balance between exploration and exploitation by
employing the scout bees to perform a global search and
onlooker bees to perform a local search. In addition to that, the
Cuscuta search algorithm has been used and achieved the
same results asACO but better than unordered, random, and
reverse order.

2.2 Multi-Objective Studies

 Di Nucci et al. [3] introduced a new Hyper Volume
Algorithm (HGA) and conducted a detailed experiment to
examine this algorithm. They used Area Under Curve (AUC)
metrics to construct their objective functions, such as Average
Percentage of fault/statement/branch coverage of a test-suite.
Their Results have proved that the test-case prioritization
solutions produced by HGA was more effective in terms of
cost than Additional Greedy, GA, and NSGA-II. Moreover,
they found that HGA was more efficient and faster than
NSGA-II and GA. They also compared HGA with other
MOEA like Generalized Differential Evolution and
Multi-objective Evolutionary Algorithm Based on
Decomposition and found that HGA was 3 times efficient
than those algorithms. Lastly, they repeated the experiment on
large scale software such as MySQL and observed similar
results.

Epitropakis et al. [11] conducted an empirical study on

MOEA to prioritize regression test cases executions. Their
experiment was the first to analyze the TCP problem as multi
objective, they have examined seven different algorithms,
three algorithms were different flavors of the additional
Greedy Algorithms with different fault detection alternatives
and two MOEA which are NSGA-II and TAEA and two
algorithms that are hybridizations from MOEAs and the
additional greedy algorithms. The algorithms were evaluated
on a group of 5 GNU Utility programs from SIR repository.
They found that MOEAs and Hybrid algorithms generated
solutions that either equal or superior the ones generated by
Greedy algorithms. This study used the cost cognizant
Average Percentage of Fault Detection APFDc.

Tyagi and Malhotra proposed a three-phase approach to

solve the TCP problem [12]. Their approach starts by
removing all duplicated test cases using matrices operation,
next they selected test cases from a test suite such that the
chosen set represents the very minimal set that achieves a high
fault coverage with minimal cost possible by applying multi
objective particle swarm optimization (MOPSO) algorithm to
optimize fault coverage to cost (execution time). Finally, they
allocate priority to test cases by calculating the ratio of fault
coverage to cost, higher ratio indicates higher priority, then
test cases were added in an order that reflects the calculated
priority. They compared their approach to other techniques
such as No Ordering, Random and Reverse Ordering,they
found that their approach outperforms them all. This study
calculated APFD of each approach to do the algorithm’s
comparison.

Tulasiraman’s et al. [13] proposed an improved
pareto-optimal immune algorithm using three objectives,
which are (1)minimizing Execution time (2) maximizing
severity fault and (3) maximizing cost-cognizant average
percentage of fault detected. Their experiment was conducted
over an industrial project that has seven different version.
They found out that their approach was superior to other
algorithms such as random approach, weighted genetic
algorithm, greedy algorithm, and NSGA-II. Their approach
starts by analyzing the test suite to extract meta data about test
cases such execution time and faults detection, then they
apply the Improved Clonal Algorithm to prioritize the test
cases.

Marchetto et al. [14] employed a multi objective algorithms

to prioritize test cases that aims to maximize the technical and
business critical faults while decreasing the execution time of
test cases. Their approach started by collecting information
about business requirement, test cases and source code, then
they applied a metric based technique to figure out critical and
error prone parts of the system and gave those a higher
priority during test cases ordering. They conducted an
empirical experiment on 21 Java programs with their test
cases and used NSGA-II to prioritize test suite. They figured
out that their approach managed to order test cases in a way
that enables them to recover faults as early as possible.

 This paper will mainly focus on analyzing a threeelite Multi
Objective Evolutionary Algorithms in the domain of
prioritizing regression test suites, we check which one is the
best in optimizing this problem and find the efficient among
them and whether results are affected by the fitness functions.
We chose three MOEAs to ensure diversity,NSGA-II is a
fast-sorting algorithm that simultaneously optimizes each
objective [5], IBEA which mates selections and iteratively
removes the worst between them based on a indicators and
binary tournament [6] and MoCell uses an external archives
and feedback mechanism to get the optimal solutions [7].

3. BACKGROUND

In this section, we are going to discuss in detail the needed
knowledge for a better understanding of regression testing and
optimization algorithms.

3.1 Regression Testing

While constructing up the software, developers mainly

perform functional testing that includes unit, integration,
acceptance and smoke testing; before delivering and shipping
software, the non-functional testing starts, and that includes
performance and scalability testing. During maintenance,
regression tests are executed. Computer programs should be
adaptable to changes, and most recent software development
paradigms enhances adaptability by handling requirements
changes and pushing defects’ fixes during the development of
new features. Even within the waterfall model where new

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1448

features are being developed, the older defects should not
evolve again. Here comes the significance of regression
testing which should verify that the old working programming
is still functioning correctly.

Regression tests are executed whenever there is a code

change due to requirement change, newly added features,
bugs and performance fixes. So, as the software evolves the
tests and the number of test cases boost up; Regression test
suites are executed partially or entirely, in full mode the whole
test suite is being executed, in selection mode, the tests suites
are either selected or prioritized. With the aid of Continuous
Integration platforms and automation testing frameworks,
writingand performing tests became easier; and as a result, the
number of test-case being executed in a single regression run
is enormous.

Selection techniques and metrics of the tests subset are

entirely dependent on the problem at hand and the testing
method we are using. Thus, if we are using white software
testing in which the design, structure, and implementation of
the software are known to us, then we can apply branch
coverage, code coverage or statement coverage in the
prioritization process. However, if its black testing method, in
which we know nothing about the design and implementation
as well as not having the course code, then the above methods
could not be applied, we need to use different ones such as
equivalence partitioning and boundary value analysis.

Regression testing demands a lot of resources and

significant time to run it entirely. Thus, development teams
tend to reduce this cost and minimizes resources needed by
running the tests partially. However, complexity will be faced
when they need to determine the subset they are going to run,
they need a certain criteria or metric that can help in selecting
or prioritizing the test cases to be executed.

Test cases selection criteria and prioritization metrics are

broad, we have defect detection, code coverage, test cases
complexity, test cases types integration, boundaries, core and
so on, and the number of mixes and matches that we could
construct is big. One of the optimal goals could be executing a
subset of test cases that achieve the best code coverage with
less time; another goal would aim to run a subset of the test
suite that is most likely to detect a problem as soon as possible
and thus give a quality indication to software engineers. Some
teams tried first to minimize the number of test cases needed
to be carried off and then minimize them. For example, the
test cases could be reduced according to their relevance to
new code changes and then prioritized according to code
coverage.

3.2 Test case prioritization

Test case prioritization can be simply defined as scheduling

the execution of test cases according to specific criteria to
achieve a goal. This prioritization intends to increase the

possibility that the test suite will meet the defined goal when
being executed in a constrained environment than it would if it
were not prioritized. For example, Quality Assurance
managers are willing to run test cases that have higher code
coverage before those which have lower code coverage;
others would order them against historical fault detection or
time of execution. The main objective is not to discard the test
cases but to execute them according to the available time and
resources. Add to this, test case prioritization is needed to

1. Increase the fault detection rate.
2. Identify risky faults and regression errors earlier in the

test process.
3. Maximize code coverage at a faster rate.
4. Enhance the reliability of a system.

Test case prioritization [15] is defined by the following,

given T a test suite; PT the set of permutations of T; f is a
function from PT to the real numbers equation, then find
T’€PT such that,

(∀ܶᇱᇱ)(ܶᇱᇱ ∈ ܲܶ)(ܶᇱᇱ ≠ ܶᇱ)[݂(ܶᇱ) ≥ ݂(ܶᇱᇱ)] (1)

According to the Pareto Optimality [16], the problem

formulation can be specified as the following, a test case
ordering Ta outperforms the ordering Tb if and only if Ta
outperforms Tb in at least one objective and is not worse in all
other objectives. Given two test cases ordering, Ta and Tb and
a set of n functions (objectives) f: PT→�,Ta dominates Tb
(Ta≺ Tb) if and only if:

݂(ܶ) ≥ ݂(ܶ),∀݅ ∈ 1,2,⋯ ,݊
∃݅ ∈ 1,2,⋯ , ݊: ݂(ܶ) > ݂(ܶ) (2)

3.3Analyzed Metaheuristic Algorithms

“In computer science and mathematical optimization, a
metaheuristic is a higher-level procedure or heuristic designed
to find, generate, or select a heuristic (partial search
algorithm) that may provide a sufficiently right solution to an
optimization problem, especially with incomplete or
imperfect information or limited computation capacity"[2].

The importance of a metaheuristic algorithm is that it

provides us with the optimal solution with the tiniest
execution cost. Moreover, they are performing superior in
finding a solution to an optimization problem with insufficient
or partial information and constrained environment with
limited resources. Metaheuristic implies a learning module
that guides the whole search procedure i.e. the heuristic. The
heuristic is based on two main events, exploration and
exploitation; exploration starts by spreading search agents
into search space randomly so that to explore all options and
avoid the local minimum. Exploitation, in which we assess the
explored regions in search space and evaluate it carefully
using a fitness metric to check if it contains a good local
minimum. The results in metaheuristic methods are usually
non-deterministic, meaning, if we provide them with the same

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1449

initial population, they will result in different results.
Metaheuristic techniques can be classified into two main
categories,

1. Single Solution-based, as iterated local search and

variable-neighborhood
2. Population-based which can be classified into two

more
a. Evolutionary algorithms like Genetic

algorithm
b. Swarm Intelligence like Particle Swarm

Optimization
This study will evaluate three elite Multi Objective

Evolutionary Algorithms (MOEA), IBEA, NSGA-II and
MoCell. The next sections will elaborate about those
algorithms.

A. IBEA
Indicator based Evolutionary Algorithm (IBEA) [6] is one

of multi-objective optimization algorithm that is a preference
based evolutionary algorithm, its main advantages is that its
capable of including the user decisions in the search process.
IBEA forms the user preferences as an indicator and will be
using it in the selection process of the offspring when the
algorithm starts to evolve solution. IBEA solves various
Multi-Objective Optimizations Problems (MOPs) by applying
three main search components (1) fitness assignment, (2)
diversity preservation and (3) elitism. The main contribution
of IBEA is that it provides a general framework for indicator
based Multiple Objective Evolutionary Algorithms
(MOEAs), meaning, several quality indicators could be used
and integrated within IBEA main flow to solve a MOPs in any
domain.

B. NSGA-II
Non-dominated Sorting Genetic Algorithm II (NSGA-II) is

another algorithm from the MOEA family, it has two versions
the classical NSGA and the updated one NSGA-II, and most
recent one which is NSGA-III [17]. This study takes into
consideration NSGA-II due to its popularity solving MOPs
and being used a lot in the studies which aims to compare
algorithms. NSGA-II is following a genetic algorithm flow in
terms of generating population, doing mutation and crossover
to generate offspring, and applying selection to select the next
generation. What distinguishes NSGA-II is that it sorts the
evolved algorithm into a group of sub-population called fronts
depending on the Pareto Ranking and crowding measures.
NSGA-II has come out to solve two main issues in any
MOEA, the first is the complexity of computation needed to
evaluate individuals and the second is absence of elitism;
NSGA-II employed elitism to preserve the good solutions.

C. MoCell
Multi-Objective Cellular Genetic Algorithm (MoCell) [7] is

one of the EA algorithms that belongs to the family of cellular
Genetic Algorithms (cGA) for solving MOPs. The main
advantage of MoCell is that it uses an external archive to
preserve the non-dominated solutions. MoCell allocate the

population in a certain structure and apply mutation and
crossover genetic operators on some individuals from the
population instead of the complete set of individuals. This
algorithm makes uses of cellular idea where adjacent
individuals are used a lot, that’s to say in each iteration every
individual only do contact with its neighbor. Having said that,
MoCell assures both exploration of search space and
exploitation when applying GA operators only within an
individual neighborhood and thus, increasing the quality of
evolved solutions.

3.4 Objective Functions

It’s essential to have measurement criteria to compare the
prioritization/order results of used prioritization algorithms.
We are considering the white box testing metrics, thus the
program source code is available and techniques such as
statement coverage or branch coverage can be used. In this
paper, we are interested in ordering the test cases to achieve
the highest rate of defect defection and branch coverage with
the fewest time possible, meaning, the order of test case is
better than a different order if the first detects a higher number
of faults and branches with minimum execution time. Di
Nucci and his team where the first to introduce the Average
Percentage of Block and Decision coverage in order to be able
to apply the Metaheuristic algorithms [2]. To Formulate a
general formula, the Average Percentage of Elements
Coverage (APEC) which denotes the weighted average of
elements being covered by the test-cases execution can be
calculated by the following equation “equation (3)” [18]

ܥܧܲܣ = 1 −
∑  
సభ ்ா
×

+ ଵ
ଶ×

 (3)

Where,
T: The test suite under evaluation
m: The number of elements contained in the program under
test P
n: The total number of test-cases
TEi: The position of the first testin T that covers the element i

Element could be a fault, a certain branch or statement in the
Program Under Test. The test-cases order would be better if it
finds the maximum number of elements earlier than other
orders.

The previous equation assumes that all elements to be
covered have the same cost, but that assumption is not valid in
real or industrial life. Thus, another formula will be used as
the objective function in which we take into account the cost.
In principle, the cost of test-case is the time it needs to be fully
executed. Having said that the next equation “equation (4)”
shows a different variant of the first one in which we consider
the test case cos.

ܥܧܲܣ =
∑  
సభ ቀ∑  

ೕసಶ
ೕି

భ
మಶቁ

∑  
సభ ×

 (4)

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1450

If we assumed that all test cases have the same execution time
(cost) (i.e.,∀ci € C, ci = 1), Equation 4 becomes equivalent to
Equation 3.

4. EXPERIMENTAL DETAILS

This section elaborates on the proposed research method,
which is based on one of the empirical strategies, an empirical
experiment.

4.1 Research Questions

The following research questions have encouraged this
study,
 (RQ1) Which algorithm is the best in finding the

optimal order of test cases?
 (RQ2) Which algorithms is more efficient in TCP

optimization problem?
 (RQ3) Does the results change if we changed the

objective (evaluation) function?

The first question is concerned about checking the quality
of the applied MOEA in optimizing the order of test cases, and
whether the test case execution time is minimized while
elements covering is maximized while running the regression
test suite in the order generated by each algorithm. Whereas
the second question aims to examine the generation time of
each algorithm and checks which one is the most efficient.
Our third question will examine if changing the objective
function would affect the results of the first and second
question.

4.2Experimental Subjects

The subjects used in this experiment are part of the GNU
utilities. This study chose 6 programs which are bash, sed,
flex, grep, printtokens and printtokens2 which are collected
from Software-artifact Infrastructure Repository (SIR) [19].
These subjects were selected because it was used in different
researches [19], [20] and [21]. All the details of the Program
under test are being illustrated in Table 1, and that includes
line of code, test suite size and number of faults. The selected
subjects have a LOC between 5680 and 59846, and number of
test cases is between 214 and 1061.

4.3 Experimental Design

The objective of the experiment is to find how well each of
the two algorithms prioritizes test cases in terms of the
objective function metric. The experiment methodology is to
use the datasets of Experimental Subject section 4.2 and run
the algorithms to get the order and finally examine and
analyze the results. This experiment will mainly use two cost
aware objective functions which will be calculated based on
Equation (4),

 Average Percentage of Fault Coverage APFCc
 Average Percentage of Branch Coverage APBCc

The algorithms will be used to prioritize the test cases to
find the order with higher APEC value and lower execution
time, the number of max-evaluations for all algorithms is
unified and was set to 25000. Hence, we neutralize the time
factor in running the algorithms. Table 2 shows the Genetic
algorithms configuration used in this study. The reason we
chose those is that they have been used previously in other
studies [22] and [11].

Table 1: Experiment Subjects

Program Description Line of
Code

Number of
Tests

Number
of Faults

Language Fault
Type

Bash Shell Language
Interpreter

59,846 1,061 5 C Seeded

Flex Fast Lexical
Analyzer

10,459 567 15 C Seeded

Grep Regular
Expression Utility

10,068 809 10 C Seeded

GZip Compression Tool 5,680 214 11 C Seeded
Sed Non-Interactive

Text Editor
14,427 360 5 C Seeded

Table 2: Algorithm’s Parameters Settings
Parameter Value

Population size 250
Max number of

Evaluations
25000

Generations 100
Independent runs 30

Crossover rate 0.9

4.4 Experiment Run and Analysis Tool

All algorithms have been implemented within jMetal [23]
which is java-based tool for single and multi-objective
optimizations. The execution will take place on a computation
machines hosted on Google Cloud Platform with a particular
specification that helps in reducing the computational time of
executing the test cases.

Firstly, we will compare the quality of the solutions

generated by algorithms between each other using the output
of quality indicators, where text cases execution time is
unified to determine which algorithms perform the best. This
will be done by calculating the medians and means for each
quality indicator for each algorithm for all runs, and thus we
will be able to answer our first Research question. Afterward,
we will compare how algorithms behaved by comparing the
APECc of all algorithms against each program under test to
answer our second research question. Finally, the data of the
experiments will be statically analyzed using Friedman and
Wilcoxon t-test for pair wise comparison [24].

5. RESULTS AND DISCUSSIONS

In this section we will be discussing the results that we

collected during ruining the experiment.

5.1 Solution Quality Analysis

In order to answer our first question, we will present the
whole statistics data that describes the quality indicators of the

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1451

Pareto fronts. To achieve this, we measured both the Spread
and HV quality indicators for all Pareto fronts generated by
algorithms for all subject programs in each independent runs.
Thus, we have 30 quality indicators for each algorithm
executed over a subject program. Table 3 and Table 4 show
the means of HV and Quality indicator forfound Pareto fronts.

Table 3: HV. Median and Interquartile Range

 NSGA-11 MoCell IBEA
bash 5.50e − 012.8e−03 5.37e – 011.0e−02 5.46e − 012.5e−03
flex 6.98e – 016.4e−04 6.94e – 014.4e−03 6.97e – 014.3e−04
grep 3.21e – 012.0e−04 3.19e – 018.6e−04 3.20e – 013.7e−04
printtokens 9.43e – 018.7e−05 9.43e – 012.5e−04 9.43e – 011.3e−04
printtokens2 9.79e − 011.9e−05 9.79e − 016.4e−05 9.79e − 012.6e−05
sed 6.12e – 011.7e−04 6.10e − 011.5e−03 6.12e − 011.7e−04

Table 4: SPREAD. Median and Interquartile Range

 NSGA-11 MoCell IBEA
bash 1.00e + 00 7.8e−03 1.00e + 00 4.4e−03 9.99e − 01 2.2e−03
flex 1.00e + 00 2.7e−04 1.00e + 00 2.7e−04 1.00e + 00 7.1e−04
grep 1.00e + 00 1.4e−04 1.00e + 00 5.0e−05 1.00e + 00 5.4e−04
printtokens 1.00e + 00 5.6e−04 1.00e + 00 2.8e−04 1.00e + 00 3.7e−04
printtokens2 1.00e + 00 5.0e−04 1.00e + 00 1.0e−04 1.00e + 00 2.2e−04
sed 1.00e + 00 4.9e−04 1.00e + 00 1.6e−04 1.00e + 00 1.5e−04

Figure 1: HV Quality Indicator

In terms of HV quality indicators, and if we look at Table 3

and figure 1, we can see that NSGA-II has achieved the best
Pareto Front and outperforms both IBEA and MoCell. Yet,
IBEA has achieved a better result and was somehow close to
NSGA-II. MoCell achieved the worse results. As for the
spread of the solutions on the Pareto, it’s obvious that the
three algorithms have achieved similar results regardless of
the program under test. Yet, as shown in Table 4 and Figure 2,
IBEA has achieved a slightly better results than the NSGA-II
and MoCell. Based on the above measurements of Spread and
HV quality indicators, the algorithms can be ranked according
to Friedman statistical analysis.

Table 5 below shows the ranking of algorithms according
to HV measurements considering reduction performance
(distributed according to chi-square with 2 degrees of
freedom: 12.0). We can notice that NSGA-II has achieved the
highest ranking with 3.0 score followed by IBEA with 1.98
and Finally NSGA-II

Table 5: Average ranking of the algorithms considering HV
Algorithm Ranking
MoCell 3.0
IBEA 1.98
NSGA-II 0.99

Table 6: Average ranking of the algorithms considering Spread

Algorithm Ranking
MoCell 1.33
IBEA 2.0
NSGA-II 2.65

Table 6 above shows the algorithms ranking considering

the Spread quality indicator measurements and reduction
performance (distributed according to chi-square with 2
degrees of freedom: 5.333333333333336). We found that
IBEA achieved the best Spread score followed by MoCell and
NSGA-II respectively

To better understand how the algorithms optimized the
TCP problems; Figure 3 and Figure 4 show the Pareto front of
the three algorithms when trying to generate test cases for
bash and flex programs. We can see that NSGA-II has
generated in most of the cases a non-dominated set of
solutions. All the data and the rest of the figures can be found
publicly here 1.

Figure 2: Spread Quality Indicator

Figure 3: Pareto front of the algorithms when trying to generate test

cases for bash

1Experiment Github

repo.URL:https://github.com/HadiAwad/MOEA_TCO

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1452

Figure 4: Pareto front of the algorithms when trying to generate test

cases for flex

Table 7: Evolution Time of Algorithms for each Program

 Bash Flex Grep Printtokens Printtokens2 Sed
IBEA 2341201.77 84802.90 241259.33 41569.93 39020.80 38770.93
MoCell 2391202.27 77985.90 239448.97 34303.67 32308.13 30649.57
NSGA-II 2370850.00 76446.40 235666.50 30721.70 28322.97 29955.30

Thus, we can conclude that NSGA-II has generated the best

solutions and outperformed other algorithms in test-cases
prioritization problem. Besides, NSGA-II algorithm has
produced a set of solutions that were well spread over the
Pareto since it achieved a close Spread scores when being
compared to its rivals.

5.2 Efficiency Analysis

Regarding the efficiency and to answer the second
question, we have measured the time needed by each
algorithm to optimize and order the test cases. Table 7 shows
the average time consumed by each algorithm when being
invoked for a certain subject.

Figure 5 displays the time in box charts, we have eliminated
the "Bash" subject for better illustration. Its very clear that
there is no significant differences between the algorithms.
However, to answer our second question, we found that
NSGA-II has the least execution time, followed by MoCell
and finally IBEA. It’s worth noting here that this result is
expected and makes sense since IBEA is well known to have a
high evolution time due its high computation cost in

5.3 Fitness Function Effect

To answer the third question, we have repeated the
experiment but, in this time, we have used Average
Percentage of Element Coverage regardless of the cost as a
fitness function. Meaning, equation (3) is used in evaluating
the populations during evolution, which means that all test
cases have the same cost, thus cost is unified or neutralized in
the second part of the experiment.

Tables 8 and Table 9 show the Median of HV and Spread
quality indicators respectively when the cost was unified.
When comparing the results, we found that the quality of the
solutions of the algorithms did not change upon changing the
fitness function; NSGA-II achieved again the highest HV and
thus the best solutions and outperformed its competitors.
However, in terms of solutions spread, MoCell achieved the
best spread and outperformed both NSGA-II and IBEA.

Figure 5: Box Charts of Evolution time

Table 8: HV. Median and Interquartile Range for Unified Cost

 NSGA-11 MoCell IBEA
bash 5.52e − 012.7e−03 5.37e − 018.8e−03 5.48e − 012.7e−03
flex 6.96e − 019.4e−04 6.90e − 013.4e−03 6.94e − 011.7e−04
grep 3.21e − 013.7e−04 3.19e − 011.2e−03 3.20e − 014.0e−04
printtokens 9.42e − 011.5e−04 9.42e − 014.1e−04 9.42e − 013.4e−04
printtokens2 9.79e − 011.2e−04 9.79e − 011.0e−04 9.79e − 019.3e−05
sed 6.07e − 014.9e−04 6.03e − 011.7e−03 6.06e − 017.6e−04

Table 9: HV. Median and Interquartile Range for Unified Cost

 NSGA-11 MoCell IBEA

bash 9.99e − 01 3.3e−03 9.99e − 01 2.0e−03 9.99e − 01 2.8e−03
flex 1.00e + 01 1.0e−03 9.99e − 01 6.5e−04 1.00e + 00 9.2e−04

grep 1.00e + 01 1.6e−03 9.99e − 01 7.2e−04 9.99e − 01 7.8e−04

printtokens 1.00e + 01 1.1e−03 1.00e + 01 3.5e−04 1.00e + 01 1.1e−03

printtokens2 1.00e + 01 3.1e−04 1.00e + 01 2.3e−04 1.00e + 01 2.2e−04

sed 1.00e + 01 6.0e−03 9.99e − 01 9.2e−04 1.00e + 01 7.8e−04

 Next, we will check if the ranking of algorithms has
changed when changing the fitness function, Tables 10 and
Table 11 show the Friedman test results of HV and Spread
quality indicators for the subject algorithms.

We can notice that the order has not changed for both
quality indicators, but it’s worth shading light on the fact that
IBEA has achieved a better HV score compared to the first
part of experiment.

As for evolution time, the following table 12 shows the

algorithm evolution time when cost is unified among all test
cases. If we look back at Table 7, we can see that in most of
the subjects (except the Bash program) the execution time was
less when fitness function was APEC, thus, we can conclude
that the choice of fitness functions has a considerable effect on
the evolution time.

Table 10: HV Average ranking of the algorithms when Cost is

unified
Algorithm Ranking
MoCell 2.835
IBEA 2.165
NSGA-II 0.999

Table 11: Spread Average ranking of the algorithms when Cost is

unified
Algorithm Ranking
MoCell 1.165
IBEA 1.833
NSGA-II 3.0

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1453

Table 12: Evolution time when fitness function is calculated
according to equation 3

 Bash Flex Grep Printtokens Printtokens2 Sed
IBEA 2412699.35 83875.3 222938.15 39686.6 38199.95 36505.4
MoCell 2443904.3 76785.65 218515.05 32711.95 31979.15 29725.0
NSGA-II 2389893.0 74192.55 213061.35 29395.85 28233.9 29005.25

Table 13: HV Pairwise Comparison for

(bash, flex, grep, printtokens, printtokens2, sed)
 MoCell IBEA

NSGA-II ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ – ▲
MoCell

▽▽▽
–
▽▽

Table 14: Spread Pairwise Comparison for
 (bash, flex, grep, printtokens, printtokens2, sed)

 MoCell IBEA
NSGA-II – – –

▽▽▽

▽▽

– –
▽▽

MoCell

▽▽
– ▲▲–

5.4 Statistical Analysis

To measure if the randomness aspect of GA algorithms has

any effect on the observed results, we have conducted
statistical analysis to check weather our results are statistically
significant or not. Previously, we have shown the Friedman
test results, now we will be showing the Wilcoxon pairwise
tests considering significance level as 0.05. Table 13 and
Table14shows the pairwise comparison between algorithms
over HV and Spread quality indicators respectively. And we
can see that there is a significant difference in most of the
cases, thus our results are statistically proven that they were
not affected by GA Randomness.

6. THREATS TO VALIDITY
This section analyzes the threats of validity, which cares

about the possibility of endangering the trustworthiness of the
study or the existence of biasing factors that could affect the
proposed empirical research and its results.

Threats to construct validity, we identified two

significant risks related to the experiment design, the first one
is concerned about the choice of our effectiveness metric
AFPD which does not consider the severity of faults. We tried
to mitigate this by taking into consideration another important
metric which is test execution time (cost). Yet, in future work
and since this experiment is repeatable, we might introduce
one more effectiveness metric to capture the effectiveness of
prioritization fully. The second one is related to the nature of
metaheuristic algorithms which could generate different
optimized solutions for the same input. This could cause the
generation of solutions that are better than the real optimized
ones and thus the existence of outliers. We mitigated this by
repeating the algorithms 30 times and conducting statistical
analysis tool to make sure that the collected results are
statistically different.

Threats to internal validity, the main threat we identified

is the application used in implementing the algorithms
(jMetal), and its hidden effect on the results. This was
mitigated by conducting a small experiment on a small dataset
in which the optimum order is known to us, the algorithms

were calculated 30 times and all result were compared to the
optimal solution and found that they are realistic. Thus, we
have high confidence that the algorithms implementation is
correct.

Threats to external validity, which is concerned about the

generalization of the study and the represent-ability of the
experimental subjects. The first threat could be related to the
size of programs; sizes of the programs used in this
experiment are between medium and large, and the test cases
numbers are somehow huge which makes us assume that the
results could be generalized. Add to this, the subject programs
were used extensively in this problem domain.

7. CONCLUSION
This paper conducted a comparison between three popular

Multi Objective Evolutionary Algorithms in prioritizing
regression test cases problems. IBEA, MoCell and NSGA-II
were analyzed. The aim of this study was to find out which
algorithms generates the best solution, and which is the most
efficient one. Moreover, we intended to examine if changing
the fitness functions influences the results and evolution time.
Two experiments were conducted, one that takes the test cases
execution cost into consideration and the others assumes that
all test cases have the same cost (execution time). In The first
part, we found that NSGA-II is the most effective and
efficient algorithm since it generated the optimal solutions
and found to have the less evolution time. In the second part,
we changed the fitness function nature and checked what
effect does it have on the results. We found that the results did
not change significantly, NSGA-II still outperforms IBEA
and MoCell in both optimizing the problem and having the
less evolution time. We observed a general reduction in
evolution time for all algorithms, and that was totally
dependent on the fitness function nature which in the second
part needed less execution time.

Future work may include analyzing other algorithms, as

well as analyzing more fitness functions and objectives to
further understand how the algorithms behave.

REFERENCES

1. C. Doungsa-ard, K. P. Dahal, M. A. Hossain, T.

Suwannasart, An automatic test data generation from
uml state diagram using genetic algorithm. (2007). on
Neural Networks, Vol. 4, pp. 570-578, July 1993.

2. Z. Li, M. Harman, R. M. Hierons, Search algorithms for
regression test case prioritization, IEEE Transactions
on software engineering 33 (4) (2007) 225–237.

3. D. Di Nucci, A. Panichella, A. Zaidman, A. De Lucia, A
test case prioritization genetic algorithm guided by
the hypervolume indicator, IEEE Transactions on
Software Engineering (2018).

4. P. Saraswat, A. Singhal, A hybrid approach for test
case prioritization and optimization using
meta-heuristics techniques, in: 2016 1st India

HadiAwad et al., International Journal of Emerging Trends in Engineering Research, 9(12), December 2021, 1445 – 1454

1454

International Conference on Information Processing
(IICIP), IEEE, 2016, pp. 1–6.

5. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast
elitist non-dominatedsorting genetic algorithm for
multi-objective optimization: Nsga-ii, in: International
conference on parallel problem solving from nature,
Springer, 2000, pp. 849–858.

6. E. Zitzler, S. Künzli, Indicator-based selection in
multiobjective search,in: International Conference on
Parallel Problem Solving from Nature, Springer, 2004,
pp. 832–842.

7. A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, E.
Alba, Mocell: A cellular genetic algorithm for
multiobjective optimization, International Journal of
Intelligent Systems 24 (7) (2009) 726–746.

8. A. Kaur, S. Goyal, A genetic algorithm for regression
test case prioritizationusing code coverage,
International journal on computer science and
engineering 3 (5) (2011) 1839–1847.

9. M. Pedemonte, F. Luna, E. Alba, A systolic genetic
search for reducing the execution cost of regression
testing, Applied Soft Computing 49 (2016) 1145–1161.

10. S. Mittal, O. P. Sangwan, Prioritizing test cases for
regression techniques using metaheuristic techniques,
Journal of Information and Optimization Sciences 39 (1)
(2018) 39–51.

11. M. G. Epitropakis, S. Yoo, M. Harman, E. K. Burke,
Empirical evaluation of pareto efficient
multi-objective regression test case prioritization, in:
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 234–245.

12. M. Tyagi, S. Malhotra, Test case prioritization using
multi objective particle swarm optimizer, in 2014
International Conference on Signal Propagation and
Computer Technology (ICSPCT 2014), IEEE, 2014, pp.
390–395.

13. M. Tulasiraman, N. Vivekanandan, V. Kalimuthu,
Multi-objective test case prioritization using
improved pareto-optimal clonal selection algorithm,
3D Research 9 (3) (2018) 32.

14. A. Marchetto, M. M. Islam, W. Asghar, A. Susi, G.
Scanniello, A multiobjective technique to prioritize
test cases, IEEE Transactions on Software Engineering
42 (10) (2015) 918–940.

15. G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold,
Prioritizing test cases for regression testing, IEEE
Transactions on software engineering 27 (10) (2001)
929–948.

16. C. M. Fonseca, P. J. Fleming, An overview of
evolutionary algorithms in multiobjective
optimization, Evolutionary computation 3 (1) (1995)
1–16.

17. K. Deb, H. Jain, An evolutionary many-objective
optimization algorithm using reference-point-based
nondominated sorting approach, part i: solving
problems with box constraints, IEEE transactions on
evolutionary computation 18 (4) (2013) 577–601.

18. R. Krishnamoorthi, S. S. A. Mary, Regression test suite
prioritization using genetic algorithms, International

Journal of Hybrid Information Technology 2 (3) (2009)
35–52.

19. H. Do, S. Elbaum, G. Rothermel, Supporting controlled
experimentation with testing techniques: An
infrastructure and its potential impact, Empirical
Software Engineering 10 (4) (2005) 405–435.

20. S. Yoo, M. Harman, Using hybrid algorithm for pareto
efficient multiobjectivetest suite minimisation, Journal
of Systems and Software 83 (4) (2010) 689–701

21. T. Y. Chen, M. F. Lau, Dividing strategies for the
optimization of a test suite, Information Processing
Letters 60 (3) (1996) 135–141.

22. S. Yoo, M. Harman, Pareto efficient multi-objective
test case selection, in: Proceedings of the 2007
international symposium on Software testing and
analysis, 2007, pp. 140–150.

23. J. J. Durillo, A. J. Nebro, jmetal: A java framework for
multi-objective optimization, Advances in Engineering
Software 42 (10) (2011) 760–771.

24. W. J. Conover, W. J. Conover, Practical nonparametric
statistics (1980).

