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ABSTRACT  
 

Regression testing is one of the most critical testing 
activities among software product verification activities. 
Nevertheless, resources and time constraints could inhibit the 
execution of a full regression test suite, hence leaving us in 
confusion on what test cases to run to preserve the high 
quality of software products. Different techniques can be 
applied to prioritize test cases in resource-constrained 
environments, such as manual selection, automated selection, 
or hybrid approaches. Different Multi-Objective Evolutionary 
Algorithms (MOEAs) have been used in this domain to find 
an optimal solution to minimize the cost of executing a 
regression test suite while obtaining maximum fault detection 
coverage as if the entire test suite was executed. MOEAs 
achieve this by selecting set of test cases and determining the 
order of their execution. In this paper, three Multi Objective 
Evolutionary Algorithms, namely, NSGA-II, IBEA and 
MoCell are used to solve test case prioritization problems 
using the fault detection rate and branch coverage of each test 
case. The paper intends to find out what’s the most effective 
algorithm to be used in test cases prioritization problems, and 
which algorithm is the most efficient one, and finally we 
examined if changing the fitness function would impose a 
change in results. Our experiment revealed that NSGA-II is 
the most effective and efficient MOEA; moreover, we found 
that changing the fitness function caused a significant 
reduction in evolution time, although it did not affect the 
coverage metric.  
 

Key words: Regression testing, test cases prioritization, 
meta-heuristic algorithms, NSGA-II, IBEA, MoCell 
 
1. INTRODUCTION 
 

Software testing is one of the essential activities in the 
software development life cycle; testing activities consume 
50% of the total effort and cost of the whole development 
effort [1]. Regression testing is the process of ensuring that 
existing features and functionalities of software are still 
working fine, it ensures that the old code is still working 
correctly with the new code additions and the new code 
changes have no effect of what has already been implemented, 

and to make sure that historical defects did not emerge again 
in code. Challenges in regression testing are test suite size, 
time, and resources. In most cases, the time and resources are 
limited, and test suites are large; hence, the whole regression 
test suite could not be executed because of the time and cost 
constraints on running them. Having said that, it becomes 
more essential to run the test suite partially, either selectively 
or by prioritizing them to achieve some performance goal. 
 

Many research studies were conducted to minimize the 
resources needed to run the regression tests with the 
preservation of high code coverage and the quality of the 
software product. The techniques applied to that cause are 
meta heuristic, search algorithms, and SI-based algorithms. 
The main objectives were to minimize the test case number or 
identify the order of test cases to achieve effective regression 
testing in a limited resources environment. It was indicated 
that Greedy algorithms acted well in solving test case 
prioritization problems when being compared to other search 
algorithms like Hill Climbing [2]. Besides, a new proposed 
hyper-volume algorithm named HGA was found to be more 
efficient compared to NSGA-II [3]. In addition, Hybrid 
algorithms were examined, PSO and GA mutation were 
combined and found that the new algorithms outperform the 
classic PSO and other algorithms [4]. 
 

In this paper, we are going to conduct an empirical study to 
compare the efficiency of three Multi Objective Evolutionary 
Algorithms which are NSGA-II [5], IBEA [6] and MoCell [7]. 
We are going to measure each algorithm’s performance in 
finding the optimal solution by which we can reduce the cost 
of executing regression tests in terms of time and obtain high 
fault and branch coverage. The fitness functions used in each 
of the algorithms are average percentage of branch and faults 
coverage. Naturally, the best value would be higher 
faults/branch detected/covered with less execution time. 
 

The remainder of the paper is organized as follows; Section 
II narrate the related work, section III elaborates more on the 
problem domain background, section IV talks about the 
experiment details, research questions and analysis tool, and 
section V discusses the conducted experiment and results. In 
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section VI we discuss the threats to validity, and in section VII 
we summarize and conclude the results. 
 
2. LITRETUR REVIEW 
 
2.1 Single Objective Studies 
 

Zheng et al, examined a group of search algorithms for 
prioritizing regression test-cases based on statement coverage 
[2]. They compared greedy methods like Greedy, Additional 
greedy, and two optimal algorithms with a couple of 
metaheuristics algorithms which are Hill Climbing and 
Genetic Algorithms. The results were that Genetic Algorithms 
performed well when being compared to others, and greedy 
approaches also did well, given that the nature of landscape 
was multi-modal. They also investigated the fitness metrics 
“criterion” that was used in test-cases optimizations and 
measured its effect on the performance of the algorithm, the 
criterion they have checked are, Average Percentage of Block 
Coverage and Decision Coverage and Statement Coverage. 
They found that the choice of the criterion does not affect the 
efficiency of the algorithms. In contrast, the size of the test 
suite does have a direct impact since it determines the search 
space for the problem. Moreover, they found that the size of 
the program does not affect the complexity of test cases 
directly. This study has illustrated the differences between 
different types of search algorithms, and it compared three 
Greedy Algorithm with two heuristic techniques. It 
emphasized how the last overcomes the issues of Greedy 
algorithms. 

 
Kaur et al, used Genetic Algorithm (GA) for regression test 

cases scheduling based on code coverage [8]. They explained 
in detail how to apply the GA for test case prioritization, the 
initial chromosomes set was randomly generated, then genetic 
operations are applied until reaching the optimum goal. Their 
fitness function was based on total code coverage is done by 
structural testing, which aims to visit all independent paths as 
a minimum once during path testing, so the GA fitness 
function was checking if the minimum number of test cases to 
cover all separate paths. The experiments were done on 
triangle problems to get the intended paths and 20 test-cases 
are generated with random paths as inputs for the GA. The GA 
test-cases order was compared to original, random, reveres 
and optimal order. They used Average Percentage of 
Condition Coverage (APCC) to compare the orders, and the 
results of the experiment demonstrated that GA is performing 
as expected and its order was as effective as the optimal order. 

 
Pedemonte et al. [9] experimented to identify the 

performance of Systolic Genetic Search in solving the Test 
Suite Minimization Problem (TSMP). Besides, they 
compared the results to the other two competitive genetic 
algorithms which are Simple Genetic Algorithm and an Elitist 
Genetic Algorithm, as well as to four heuristics techniques 
namely GREE, HGSE, GREEDYR, and GREEDYE. Not 
only the SGS outperform the six algorithms in results, but it 

showed a considerable time reduction in terms of GPU 
implementation when being compared to the CPU 
implementation of SGS. The results also revealed that SGS 
scales well when being executed on large test suites. The 
experiment aimed to evaluate the effect of the test’s suite size 
and several testing requirements on the performance of the 
CPU and GPU implementation when executing the SGS. It’s 
found that the performance of CPU-based SGS has expanded 
considerably when considering many test requirements, 
whereas the GPU-based SGS has been minimally affected 
when being tested on a test suite. The significant point in this 
experiment is that they studied a test case minimization 
problem that is cost-aware i.e., they tried to eliminate 
redundant test cases and select a minimal set of test cases that 
achieve the testing goals and reduces the number of resources 
it needs during execution. The experiment was performed 
over seven real word programs owned by Siemen’s 
benchmark suite; a well-known test suite was used to examine 
and assess the reductions algorithms. Add to this; the 
algorithms were evaluated against a case study from real word 
program which was Cisco regression test suite containing 
2000+ test cases and needs around five weeks to be executed 

 
Saraswat and Singhal [4] led a study on a hybrid approach 

for test case prioritization as well as optimization, and they 
used the Genetic Algorithm (GA) along with Particle Swarm 
Optimization (PSO) in their experiment. To validate their 
findings, they compared the GA_PSO to other optimization 
algorithms via the Average Percentage Fault Detection 
(APFD) metric. In the GA_PSO algorithm, the GA was 
overall an initial population for several iterations to get an 
optimized result, so, the output of the GA will be the initial 
population for the PSO, the PSO then optimizes the 
population to get the optimum order to run based on the 
APFD. The results of this hybrid algorithm were compared to 
the following techniques, ORIGINAL ORDER, 
NON-PRIORITIZED, REVERSE ORDER, RANDOM 
ORDER, OPTIMUM ORDER, and HYBRID GA_PSO. The 
results showed that the original order is the worst; the random 
order could be close to the optimum but never the best. There 
was a slight difference between the optimum and Hybrid 
order. Thus, the authors have proved that the hybrid GA_PSO 
is better than the optimum order of other algorithms. 

 
In the study that was conducted by Mittal and Sangwan 

[10], they have surfed literature and came out with the 
examined meta-heuristic algorithms and how they performed 
in the domain of test selection, minimization, and test 
prioritization. They also addressed the problem of choosing a 
proper fitness metric for such an optimization problem and 
concluded that the Average Percentage of Fault Detected 
(APFD) is the most frequently and widely used metric 
nowadays. The study found that ABC outperforms other 
approaches i.e., GA, ACO, BCO and PSO in the test suite 
optimization problem as it makes use of the parallel behavior 
of the employed, onlooker and scout bees which in return 
make the search process much faster. Add to this that ABC 
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introduces a balance between exploration and exploitation by 
employing the scout bees to perform a global search and 
onlooker bees to perform a local search. In addition to that, the 
Cuscuta search algorithm has been used and achieved the 
same results asACO but better than unordered, random, and 
reverse order. 
 
2.2 Multi-Objective Studies 
 
 Di Nucci et al. [3] introduced a new Hyper Volume 
Algorithm (HGA) and conducted a detailed experiment to 
examine this algorithm. They used Area Under Curve (AUC) 
metrics to construct their objective functions, such as Average 
Percentage of fault/statement/branch coverage of a test-suite. 
Their Results have proved that the test-case prioritization 
solutions produced by HGA was more effective in terms of 
cost than Additional Greedy, GA, and NSGA-II. Moreover, 
they found that HGA was more efficient and faster than 
NSGA-II and GA. They also compared HGA with other 
MOEA like Generalized Differential Evolution and 
Multi-objective Evolutionary Algorithm Based on 
Decomposition and found that HGA was 3 times efficient 
than those algorithms. Lastly, they repeated the experiment on 
large scale software such as MySQL and observed similar 
results. 

 
Epitropakis et al. [11] conducted an empirical study on 

MOEA to prioritize regression test cases executions. Their 
experiment was the first to analyze the TCP problem as multi 
objective, they have examined seven different algorithms, 
three algorithms were different flavors of the additional 
Greedy Algorithms with different fault detection alternatives 
and two MOEA which are NSGA-II and TAEA and two 
algorithms that are hybridizations from MOEAs and the 
additional greedy algorithms. The algorithms were evaluated 
on a group of 5 GNU Utility programs from SIR repository. 
They found that MOEAs and Hybrid algorithms generated 
solutions that either equal or superior the ones generated by 
Greedy algorithms. This study used the cost cognizant 
Average Percentage of Fault Detection APFDc. 

 
Tyagi and Malhotra proposed a three-phase approach to 

solve the TCP problem [12]. Their approach starts by 
removing all duplicated test cases using matrices operation, 
next they selected test cases from a test suite such that the 
chosen set represents the very minimal set that achieves a high 
fault coverage with minimal cost possible by applying multi 
objective particle swarm optimization (MOPSO) algorithm to 
optimize fault coverage to cost (execution time). Finally, they 
allocate priority to test cases by calculating the ratio of fault 
coverage to cost, higher ratio indicates higher priority, then 
test cases were added in an order that reflects the calculated 
priority. They compared their approach to other techniques 
such as No Ordering, Random and Reverse Ordering,they 
found that their approach outperforms them all. This study 
calculated APFD of each approach to do the algorithm’s 
comparison. 

Tulasiraman’s et al. [13] proposed an improved 
pareto-optimal immune algorithm using three objectives, 
which are (1)minimizing Execution time (2) maximizing 
severity fault and (3) maximizing cost-cognizant average 
percentage of fault detected. Their experiment was conducted 
over an industrial project that has seven different version. 
They found out that their approach was superior to other 
algorithms such as random approach, weighted genetic 
algorithm, greedy algorithm, and NSGA-II. Their approach 
starts by analyzing the test suite to extract meta data about test 
cases such execution time and faults detection, then they 
apply the Improved Clonal Algorithm to prioritize the test 
cases. 

 
Marchetto et al. [14] employed a multi objective algorithms 

to prioritize test cases that aims to maximize the technical and 
business critical faults while decreasing the execution time of 
test cases. Their approach started by collecting information 
about business requirement, test cases and source code, then 
they applied a metric based technique to figure out critical and 
error prone parts of the system and gave those a higher 
priority during test cases ordering. They conducted an 
empirical experiment on 21 Java programs with their test 
cases and used NSGA-II to prioritize test suite. They figured 
out that their approach managed to order test cases in a way 
that enables them to recover faults as early as possible. 

 
 This paper will mainly focus on analyzing a threeelite Multi 
Objective Evolutionary Algorithms in the domain of 
prioritizing regression test suites, we check which one is the 
best in optimizing this problem and find the efficient among 
them and whether results are affected by the fitness functions. 
We chose three MOEAs to ensure diversity,NSGA-II is a 
fast-sorting algorithm that simultaneously optimizes each 
objective [5], IBEA which mates selections and iteratively 
removes the worst between them based on a indicators and 
binary tournament [6] and MoCell uses an external archives 
and feedback mechanism to get the optimal solutions [7].  
 
3. BACKGROUND 
 

In this section, we are going to discuss in detail the needed 
knowledge for a better understanding of regression testing and 
optimization algorithms. 
 
3.1 Regression Testing 

 
While constructing up the software, developers mainly 

perform functional testing that includes unit, integration, 
acceptance and smoke testing; before delivering and shipping 
software, the non-functional testing starts, and that includes 
performance and scalability testing. During maintenance, 
regression tests are executed. Computer programs should be 
adaptable to changes, and most recent software development 
paradigms enhances adaptability by handling requirements 
changes and pushing defects’ fixes during the development of 
new features. Even within the waterfall model where new 
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features are being developed, the older defects should not 
evolve again. Here comes the significance of regression 
testing which should verify that the old working programming 
is still functioning correctly. 

 
Regression tests are executed whenever there is a code 

change due to requirement change, newly added features, 
bugs and performance fixes. So, as the software evolves the 
tests and the number of test cases boost up; Regression test 
suites are executed partially or entirely, in full mode the whole 
test suite is being executed, in selection mode, the tests suites 
are either selected or prioritized. With the aid of Continuous 
Integration platforms and automation testing frameworks, 
writingand performing tests became easier; and as a result, the 
number of test-case being executed in a single regression run 
is enormous. 

 
Selection techniques and metrics of the tests subset are 

entirely dependent on the problem at hand and the testing 
method we are using. Thus, if we are using white software 
testing in which the design, structure, and implementation of 
the software are known to us, then we can apply branch 
coverage, code coverage or statement coverage in the 
prioritization process. However, if its black testing method, in 
which we know nothing about the design and implementation 
as well as not having the course code, then the above methods 
could not be applied, we need to use different ones such as 
equivalence partitioning and boundary value analysis. 

 
Regression testing demands a lot of resources and 

significant time to run it entirely. Thus, development teams 
tend to reduce this cost and minimizes resources needed by 
running the tests partially. However, complexity will be faced 
when they need to determine the subset they are going to run, 
they need a certain criteria or metric that can help in selecting 
or prioritizing the test cases to be executed. 

 
Test cases selection criteria and prioritization metrics are 

broad, we have defect detection, code coverage, test cases 
complexity, test cases types integration, boundaries, core and 
so on, and the number of mixes and matches that we could 
construct is big. One of the optimal goals could be executing a 
subset of test cases that achieve the best code coverage with 
less time; another goal would aim to run a subset of the test 
suite that is most likely to detect a problem as soon as possible 
and thus give a quality indication to software engineers. Some 
teams tried first to minimize the number of test cases needed 
to be carried off and then minimize them. For example, the 
test cases could be reduced according to their relevance to 
new code changes and then prioritized according to code 
coverage. 

 
3.2 Test case prioritization 

 
Test case prioritization can be simply defined as scheduling 

the execution of test cases according to specific criteria to 
achieve a goal. This prioritization intends to increase the 

possibility that the test suite will meet the defined goal when 
being executed in a constrained environment than it would if it 
were not prioritized. For example, Quality Assurance 
managers are willing to run test cases that have higher code 
coverage before those which have lower code coverage; 
others would order them against historical fault detection or 
time of execution. The main objective is not to discard the test 
cases but to execute them according to the available time and 
resources. Add to this, test case prioritization is needed to 

1. Increase the fault detection rate. 
2. Identify risky faults and regression errors earlier in the 

test process. 
3. Maximize code coverage at a faster rate. 
4. Enhance the reliability of a system. 
 
Test case prioritization [15] is defined by the following, 

given T a test suite; PT the set of permutations of T; f is a 
function from PT to the real numbers equation, then find 
T’€PT such that, 

 
(∀ܶᇱᇱ)(ܶᇱᇱ ∈ ܲܶ)(ܶᇱᇱ ≠ ܶᇱ)[݂(ܶᇱ) ≥ ݂(ܶᇱᇱ)]   (1) 

 
According to the Pareto Optimality [16], the problem 

formulation can be specified as the following, a test case 
ordering Ta outperforms the ordering Tb if and only if Ta 
outperforms Tb in at least one objective and is not worse in all 
other objectives. Given two test cases ordering, Ta and Tb and 
a set of n functions (objectives) f: PT→�,Ta dominates Tb 
(Ta≺ Tb) if and only if: 

 
݂( ܶ) ≥ ݂( ܶ),∀݅ ∈ 1,2,⋯ ,݊
∃݅ ∈ 1,2,⋯ , ݊: ݂( ܶ) > ݂( ܶ)         (2) 

 
3.3Analyzed Metaheuristic Algorithms 
 

“In computer science and mathematical optimization, a 
metaheuristic is a higher-level procedure or heuristic designed 
to find, generate, or select a heuristic (partial search 
algorithm) that may provide a sufficiently right solution to an 
optimization problem, especially with incomplete or 
imperfect information or limited computation capacity"[2]. 

 
The importance of a metaheuristic algorithm is that it 

provides us with the optimal solution with the tiniest 
execution cost. Moreover, they are performing superior in 
finding a solution to an optimization problem with insufficient 
or partial information and constrained environment with 
limited resources. Metaheuristic implies a learning module 
that guides the whole search procedure i.e. the heuristic. The 
heuristic is based on two main events, exploration and 
exploitation; exploration starts by spreading search agents 
into search space randomly so that to explore all options and 
avoid the local minimum. Exploitation, in which we assess the 
explored regions in search space and evaluate it carefully 
using a fitness metric to check if it contains a good local 
minimum. The results in metaheuristic methods are usually 
non-deterministic, meaning, if we provide them with the same 
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initial population, they will result in different results. 
Metaheuristic techniques can be classified into two main 
categories, 

 
1. Single Solution-based, as iterated local search and 

variable-neighborhood 
2. Population-based which can be classified into two 

more 
a. Evolutionary algorithms like Genetic 

algorithm 
b.  Swarm Intelligence like Particle Swarm 

Optimization 
This study will evaluate three elite Multi Objective 

Evolutionary Algorithms (MOEA), IBEA, NSGA-II and 
MoCell. The next sections will elaborate about those 
algorithms. 

A. IBEA 
Indicator based Evolutionary Algorithm (IBEA) [6] is one 

of multi-objective optimization algorithm that is a preference 
based evolutionary algorithm, its main advantages is that its 
capable of including the user decisions in the search process. 
IBEA forms the user preferences as an indicator and will be 
using it in the selection process of the offspring when the 
algorithm starts to evolve solution. IBEA solves various 
Multi-Objective Optimizations Problems (MOPs) by applying 
three main search components (1) fitness assignment, (2) 
diversity preservation and (3) elitism. The main contribution 
of IBEA is that it provides a general framework for indicator 
based Multiple Objective Evolutionary Algorithms 
(MOEAs), meaning, several quality indicators could be used 
and integrated within IBEA main flow to solve a MOPs in any 
domain. 

B. NSGA-II 
Non-dominated Sorting Genetic Algorithm II (NSGA-II) is 

another algorithm from the MOEA family, it has two versions 
the classical NSGA and the updated one NSGA-II, and most 
recent one which is NSGA-III [17]. This study takes into 
consideration NSGA-II due to its popularity solving MOPs 
and being used a lot in the studies which aims to compare 
algorithms. NSGA-II is following a genetic algorithm flow in 
terms of generating population, doing mutation and crossover 
to generate offspring, and applying selection to select the next 
generation. What distinguishes NSGA-II is that it sorts the 
evolved algorithm into a group of sub-population called fronts 
depending on the Pareto Ranking and crowding measures. 
NSGA-II has come out to solve two main issues in any 
MOEA, the first is the complexity of computation needed to 
evaluate individuals and the second is absence of elitism; 
NSGA-II employed elitism to preserve the good solutions. 

C. MoCell 
Multi-Objective Cellular Genetic Algorithm (MoCell) [7] is 

one of the EA algorithms that belongs to the family of cellular 
Genetic Algorithms (cGA) for solving MOPs. The main 
advantage of MoCell is that it uses an external archive to 
preserve the non-dominated solutions. MoCell allocate the 

population in a certain structure and apply mutation and 
crossover genetic operators on some individuals from the 
population instead of the complete set of individuals. This 
algorithm makes uses of cellular idea where adjacent 
individuals are used a lot, that’s to say in each iteration every 
individual only do contact with its neighbor. Having said that, 
MoCell assures both exploration of search space and 
exploitation when applying GA operators only within an 
individual neighborhood and thus, increasing the quality of 
evolved solutions. 

 
3.4 Objective Functions 
 

It’s essential to have measurement criteria to compare the 
prioritization/order results of used prioritization algorithms. 
We are considering the white box testing metrics, thus the 
program source code is available and techniques such as 
statement coverage or branch coverage can be used. In this 
paper, we are interested in ordering the test cases to achieve 
the highest rate of defect defection and branch coverage with 
the fewest time possible, meaning, the order of test case is 
better than a different order if the first detects a higher number 
of faults and branches with minimum execution time. Di 
Nucci and his team where the first to introduce the Average 
Percentage of Block and Decision coverage in order to be able 
to apply the Metaheuristic algorithms [2]. To Formulate a 
general formula, the Average Percentage of Elements 
Coverage (APEC) which denotes the weighted average of 
elements being covered by the test-cases execution can be 
calculated by the following equation “equation (3)” [18] 

 

ܥܧܲܣ = 1 −
∑  
సభ ்ா
×

+ ଵ
ଶ×

          (3) 
 

Where, 
T: The test suite under evaluation 
m: The number of elements contained in the program under 
test P 
n: The total number of test-cases 
TEi: The position of the first testin T that covers the element i 

 
Element could be a fault, a certain branch or statement in the 
Program Under Test. The test-cases order would be better if it 
finds the maximum number of elements earlier than other 
orders.  
 

The previous equation assumes that all elements to be 
covered have the same cost, but that assumption is not valid in 
real or industrial life. Thus, another formula will be used as 
the objective function in which we take into account the cost. 
In principle, the cost of test-case is the time it needs to be fully 
executed. Having said that the next equation “equation (4)” 
shows a different variant of the first one in which we consider 
the test case cos. 

 

ܥܧܲܣ =
∑  
సభ ቀ∑  

ೕసಶ
ೕି

భ
మಶቁ

∑  
సభ ×

          (4) 
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If we assumed that all test cases have the same execution time 
(cost) (i.e.,∀ci € C, ci = 1), Equation 4 becomes equivalent to 
Equation 3. 
 
4.  EXPERIMENTAL DETAILS 
 

This section elaborates on the proposed research method, 
which is based on one of the empirical strategies, an empirical 
experiment. 

 
4.1 Research Questions 
 

The following research questions have encouraged this 
study, 
 (RQ1) Which algorithm is the best in finding the 

optimal order of test cases? 
 (RQ2) Which algorithms is more efficient in TCP 

optimization problem? 
 (RQ3) Does the results change if we changed the 

objective (evaluation) function? 

The first question is concerned about checking the quality 
of the applied MOEA in optimizing the order of test cases, and 
whether the test case execution time is minimized while 
elements covering is maximized while running the regression 
test suite in the order generated by each algorithm. Whereas 
the second question aims to examine the generation time of 
each algorithm and checks which one is the most efficient. 
Our third question will examine if changing the objective 
function would affect the results of the first and second 
question. 
 
4.2Experimental Subjects  
 

The subjects used in this experiment are part of the GNU 
utilities. This study chose 6 programs which are bash, sed, 
flex, grep, printtokens and printtokens2 which are collected 
from Software-artifact Infrastructure Repository (SIR) [19]. 
These subjects were selected because it was used in different 
researches [19], [20] and [21]. All the details of the Program 
under test are being illustrated in Table 1, and that includes 
line of code, test suite size and number of faults. The selected 
subjects have a LOC between 5680 and 59846, and number of 
test cases is between 214 and 1061. 
 
4.3 Experimental Design 
 

The objective of the experiment is to find how well each of 
the two algorithms prioritizes test cases in terms of the 
objective function metric. The experiment methodology is to 
use the datasets of Experimental Subject section 4.2 and run 
the algorithms to get the order and finally examine and 
analyze the results. This experiment will mainly use two cost 
aware objective functions which will be calculated based on 
Equation (4), 
 

 Average Percentage of Fault Coverage APFCc 
 Average Percentage of Branch Coverage APBCc 

The algorithms will be used to prioritize the test cases to 
find the order with higher APEC value and lower execution 
time, the number of max-evaluations for all algorithms is 
unified and was set to 25000. Hence, we neutralize the time 
factor in running the algorithms. Table 2 shows the Genetic 
algorithms configuration used in this study. The reason we 
chose those is that they have been used previously in other 
studies [22] and [11].  

 
Table 1: Experiment Subjects 

Program Description Line of 
Code 

Number of 
Tests 

Number 
of Faults 

Language Fault 
Type 

Bash Shell Language 
Interpreter 

59,846 1,061 5 C Seeded 

Flex Fast Lexical 
Analyzer 

10,459 567 15 C Seeded 

Grep Regular 
Expression Utility 

10,068 809 10 C Seeded 

GZip Compression Tool 5,680 214 11 C Seeded 
Sed Non-Interactive 

Text Editor 
14,427 360 5 C Seeded 

 
Table 2: Algorithm’s Parameters Settings 
Parameter  Value 

Population size  250 
Max number of 

Evaluations  
25000 

Generations 100 
Independent runs 30 

Crossover rate  0.9 
 

4.4 Experiment Run and Analysis Tool 
 

All algorithms have been implemented within jMetal [23] 
which is java-based tool for single and multi-objective 
optimizations. The execution will take place on a computation 
machines hosted on Google Cloud Platform with a particular 
specification that helps in reducing the computational time of 
executing the test cases. 

 
Firstly, we will compare the quality of the solutions 

generated by algorithms between each other using the output 
of quality indicators, where text cases execution time is 
unified to determine which algorithms perform the best. This 
will be done by calculating the medians and means for each 
quality indicator for each algorithm for all runs, and thus we 
will be able to answer our first Research question. Afterward, 
we will compare how algorithms behaved by comparing the 
APECc of all algorithms against each program under test to 
answer our second research question. Finally, the data of the 
experiments will be statically analyzed using Friedman and 
Wilcoxon t-test for pair wise comparison [24]. 
 
5. RESULTS AND DISCUSSIONS 

 
In this section we will be discussing the results that we 

collected during ruining the experiment. 
 

5.1 Solution Quality Analysis 
 

In order to answer our first question, we will present the 
whole statistics data that describes the quality indicators of the 
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Pareto fronts. To achieve this, we measured both the Spread 
and HV quality indicators for all Pareto fronts generated by 
algorithms for all subject programs in each independent runs. 
Thus, we have 30 quality indicators for each algorithm 
executed over a subject program. Table 3 and Table 4 show 
the means of HV and Quality indicator forfound Pareto fronts. 

 
Table 3: HV. Median and Interquartile Range 

 NSGA-11 MoCell IBEA 
bash 5.50e − 012.8e−03 5.37e – 011.0e−02 5.46e − 012.5e−03 
flex 6.98e – 016.4e−04 6.94e – 014.4e−03 6.97e – 014.3e−04 
grep 3.21e – 012.0e−04 3.19e – 018.6e−04 3.20e – 013.7e−04 
printtokens 9.43e – 018.7e−05 9.43e – 012.5e−04 9.43e – 011.3e−04 
printtokens2 9.79e − 011.9e−05 9.79e − 016.4e−05 9.79e − 012.6e−05 
sed 6.12e – 011.7e−04 6.10e − 011.5e−03 6.12e − 011.7e−04 

 
Table 4: SPREAD. Median and Interquartile Range 

 NSGA-11 MoCell IBEA 
bash 1.00e + 00 7.8e−03 1.00e + 00 4.4e−03 9.99e − 01 2.2e−03 
flex 1.00e + 00 2.7e−04 1.00e + 00 2.7e−04 1.00e + 00 7.1e−04 
grep 1.00e + 00 1.4e−04 1.00e + 00 5.0e−05 1.00e + 00 5.4e−04 
printtokens 1.00e + 00 5.6e−04 1.00e + 00 2.8e−04 1.00e + 00 3.7e−04 
printtokens2 1.00e + 00 5.0e−04 1.00e + 00 1.0e−04 1.00e + 00 2.2e−04 
sed 1.00e + 00 4.9e−04 1.00e + 00 1.6e−04 1.00e + 00 1.5e−04 

 

 
Figure 1: HV Quality Indicator 

 
In terms of HV quality indicators, and if we look at Table 3 

and figure 1, we can see that NSGA-II has achieved the best 
Pareto Front and outperforms both IBEA and MoCell. Yet, 
IBEA has achieved a better result and was somehow close to 
NSGA-II. MoCell achieved the worse results. As for the 
spread of the solutions on the Pareto, it’s obvious that the 
three algorithms have achieved similar results regardless of 
the program under test. Yet, as shown in Table 4 and Figure 2, 
IBEA has achieved a slightly better results than the NSGA-II 
and MoCell. Based on the above measurements of Spread and 
HV quality indicators, the algorithms can be ranked according 
to Friedman statistical analysis.  
 

Table 5 below shows the ranking of algorithms according 
to HV measurements considering reduction performance 
(distributed according to chi-square with 2 degrees of 
freedom: 12.0). We can notice that NSGA-II has achieved the 
highest ranking with 3.0 score followed by IBEA with 1.98 
and Finally NSGA-II 

Table 5: Average ranking of the algorithms considering HV 
Algorithm  Ranking 
MoCell  3.0 
IBEA 1.98 
NSGA-II  0.99 

 
Table 6: Average ranking of the algorithms considering Spread      

Algorithm  Ranking 
MoCell  1.33 
IBEA 2.0 
NSGA-II  2.65 

 
Table 6 above shows the algorithms ranking considering 

the Spread quality indicator measurements and reduction 
performance (distributed according to chi-square with 2 
degrees of freedom: 5.333333333333336). We found that 
IBEA achieved the best Spread score followed by MoCell and 
NSGA-II respectively  
 

To better understand how the algorithms optimized the 
TCP problems; Figure 3 and Figure 4 show the Pareto front of 
the three algorithms when trying to generate test cases for 
bash and flex programs. We can see that NSGA-II has 
generated in most of the cases a non-dominated set of 
solutions. All the data and the rest of the figures can be found 
publicly here 1. 

 

 
Figure 2: Spread Quality Indicator 

 
 

 
Figure 3: Pareto front of the algorithms when trying to generate test 

cases for bash 
 

 
1Experiment Github 

repo.URL:https://github.com/HadiAwad/MOEA_TCO 
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Figure 4: Pareto front of the algorithms when trying to generate test 

cases for flex 
 
Table 7: Evolution Time of Algorithms for each Program 

 Bash Flex Grep Printtokens Printtokens2 Sed 
IBEA 2341201.77 84802.90 241259.33 41569.93 39020.80 38770.93 
MoCell 2391202.27 77985.90 239448.97 34303.67 32308.13 30649.57 
NSGA-II 2370850.00 76446.40 235666.50 30721.70 28322.97 29955.30 

 
Thus, we can conclude that NSGA-II has generated the best 

solutions and outperformed other algorithms in test-cases 
prioritization problem. Besides, NSGA-II algorithm has 
produced a set of solutions that were well spread over the 
Pareto since it achieved a close Spread scores when being 
compared to its rivals. 
 
5.2 Efficiency Analysis 
 

Regarding the efficiency and to answer the second 
question, we have measured the time needed by each 
algorithm to optimize and order the test cases. Table 7 shows 
the average time consumed by each algorithm when being 
invoked for a certain subject.  
 

Figure 5 displays the time in box charts, we have eliminated 
the "Bash" subject for better illustration. Its very clear that 
there is no significant differences between the algorithms. 
However, to answer our second question, we found that 
NSGA-II has the least execution time, followed by MoCell 
and finally IBEA. It’s worth noting here that this result is 
expected and makes sense since IBEA is well known to have a 
high evolution time due its high computation cost in 
 
5.3 Fitness Function Effect  
 

To answer the third question, we have repeated the 
experiment but, in this time, we have used Average 
Percentage of Element Coverage regardless of the cost as a 
fitness function. Meaning, equation (3) is used in evaluating 
the populations during evolution, which means that all test 
cases have the same cost, thus cost is unified or neutralized in 
the second part of the experiment. 
 

Tables 8 and Table 9 show the Median of HV and Spread 
quality indicators respectively when the cost was unified. 
When comparing the results, we found that the quality of the 
solutions of the algorithms did not change upon changing the 
fitness function; NSGA-II achieved again the highest HV and 
thus the best solutions and outperformed its competitors. 
However, in terms of solutions spread, MoCell achieved the 
best spread and outperformed both NSGA-II and IBEA.  

 
 

 
Figure 5: Box Charts of Evolution time 

 
 
Table 8: HV. Median and Interquartile Range for Unified Cost 

 NSGA-11 MoCell IBEA 
bash 5.52e − 012.7e−03 5.37e − 018.8e−03 5.48e − 012.7e−03 
flex 6.96e − 019.4e−04 6.90e − 013.4e−03 6.94e − 011.7e−04 
grep 3.21e − 013.7e−04 3.19e − 011.2e−03 3.20e − 014.0e−04 
printtokens 9.42e − 011.5e−04 9.42e − 014.1e−04 9.42e − 013.4e−04 
printtokens2 9.79e − 011.2e−04 9.79e − 011.0e−04 9.79e − 019.3e−05 
sed 6.07e − 014.9e−04 6.03e − 011.7e−03 6.06e − 017.6e−04 

 
Table 9: HV. Median and Interquartile Range for Unified Cost 

 NSGA-11 MoCell IBEA 

bash 9.99e − 01 3.3e−03 9.99e − 01 2.0e−03 9.99e − 01 2.8e−03 
flex 1.00e + 01 1.0e−03 9.99e − 01 6.5e−04 1.00e + 00 9.2e−04 

grep 1.00e + 01 1.6e−03 9.99e − 01 7.2e−04 9.99e − 01 7.8e−04 

printtokens 1.00e + 01 1.1e−03 1.00e + 01 3.5e−04 1.00e + 01 1.1e−03 

printtokens2 1.00e + 01 3.1e−04 1.00e + 01 2.3e−04 1.00e + 01 2.2e−04 

sed 1.00e + 01 6.0e−03 9.99e − 01 9.2e−04 1.00e + 01 7.8e−04 

 
 Next, we will check if the ranking of algorithms has 
changed when changing the fitness function, Tables 10 and 
Table 11 show the Friedman test results of HV and Spread 
quality indicators for the subject algorithms. 
 

We can notice that the order has not changed for both 
quality indicators, but it’s worth shading light on the fact that 
IBEA has achieved a better HV score compared to the first 
part of experiment. 

 
As for evolution time, the following table 12 shows the 

algorithm evolution time when cost is unified among all test 
cases. If we look back at Table 7, we can see that in most of 
the subjects (except the Bash program) the execution time was 
less when fitness function was APEC, thus, we can conclude 
that the choice of fitness functions has a considerable effect on 
the evolution time. 

 
Table 10: HV Average ranking of the algorithms when Cost is 

unified 
Algorithm  Ranking 
MoCell  2.835 
IBEA 2.165 
NSGA-II  0.999 

 
Table 11: Spread Average ranking of the algorithms when Cost is 

unified 
Algorithm  Ranking 
MoCell  1.165 
IBEA 1.833 
NSGA-II  3.0 
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Table 12: Evolution time when fitness function is calculated 
according to equation 3 

 Bash Flex Grep Printtokens Printtokens2 Sed 
IBEA 2412699.35 83875.3 222938.15 39686.6 38199.95 36505.4 
MoCell 2443904.3 76785.65 218515.05 32711.95 31979.15 29725.0 
NSGA-II 2389893.0 74192.55 213061.35 29395.85 28233.9 29005.25 

 
Table 13: HV Pairwise Comparison for  

(bash, flex, grep, printtokens, printtokens2, sed) 
 MoCell IBEA 

NSGA-II ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ –  ▲ 
MoCell  

▽▽▽
– 
▽▽

 
 

Table 14: Spread Pairwise Comparison for 
 (bash, flex, grep, printtokens, printtokens2, sed) 

 MoCell IBEA 
NSGA-II – – –

▽▽▽
 
▽▽

–  – 
▽▽

 
MoCell  

▽▽
– ▲▲– 

 
5.4 Statistical Analysis 

 
To measure if the randomness aspect of GA algorithms has 

any effect on the observed results, we have conducted 
statistical analysis to check weather our results are statistically 
significant or not. Previously, we have shown the Friedman 
test results, now we will be showing the Wilcoxon pairwise 
tests considering significance level as 0.05. Table 13 and 
Table14shows the pairwise comparison between algorithms 
over HV and Spread quality indicators respectively. And we 
can see that there is a significant difference in most of the 
cases, thus our results are statistically proven that they were 
not affected by GA Randomness. 

6. THREATS TO VALIDITY 
This section analyzes the threats of validity, which cares 

about the possibility of endangering the trustworthiness of the 
study or the existence of biasing factors that could affect the 
proposed empirical research and its results. 

 
Threats to construct validity, we identified two 

significant risks related to the experiment design, the first one 
is concerned about the choice of our effectiveness metric 
AFPD which does not consider the severity of faults. We tried 
to mitigate this by taking into consideration another important 
metric which is test execution time (cost). Yet, in future work 
and since this experiment is repeatable, we might introduce 
one more effectiveness metric to capture the effectiveness of 
prioritization fully. The second one is related to the nature of 
metaheuristic algorithms which could generate different 
optimized solutions for the same input. This could cause the 
generation of solutions that are better than the real optimized 
ones and thus the existence of outliers. We mitigated this by 
repeating the algorithms 30 times and conducting statistical 
analysis tool to make sure that the collected results are 
statistically different. 

 
Threats to internal validity, the main threat we identified 

is the application used in implementing the algorithms 
(jMetal), and its hidden effect on the results. This was 
mitigated by conducting a small experiment on a small dataset 
in which the optimum order is known to us, the algorithms 

were calculated 30 times and all result were compared to the 
optimal solution and found that they are realistic. Thus, we 
have high confidence that the algorithms implementation is 
correct. 

 
Threats to external validity, which is concerned about the 

generalization of the study and the represent-ability of the 
experimental subjects. The first threat could be related to the 
size of programs; sizes of the programs used in this 
experiment are between medium and large, and the test cases 
numbers are somehow huge which makes us assume that the 
results could be generalized. Add to this, the subject programs 
were used extensively in this problem domain. 

7. CONCLUSION 
This paper conducted a comparison between three popular 

Multi Objective Evolutionary Algorithms in prioritizing 
regression test cases problems. IBEA, MoCell and NSGA-II 
were analyzed. The aim of this study was to find out which 
algorithms generates the best solution, and which is the most 
efficient one. Moreover, we intended to examine if changing 
the fitness functions influences the results and evolution time. 
Two experiments were conducted, one that takes the test cases 
execution cost into consideration and the others assumes that 
all test cases have the same cost (execution time). In The first 
part, we found that NSGA-II is the most effective and 
efficient algorithm since it generated the optimal solutions 
and found to have the less evolution time. In the second part, 
we changed the fitness function nature and checked what 
effect does it have on the results. We found that the results did 
not change significantly, NSGA-II still outperforms IBEA 
and MoCell in both optimizing the problem and having the 
less evolution time. We observed a general reduction in 
evolution time for all algorithms, and that was totally 
dependent on the fitness function nature which in the second 
part needed less execution time. 

 
Future work may include analyzing other algorithms, as 

well as analyzing more fitness functions and objectives to 
further understand how the algorithms behave. 
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