
Mohammed Z. Al-Faiz et al., International Journal of Emerging Trends in Engineering Research, 3(4), April 2015, 01 - 07

1

ABSTRACT

This study proposes a procedure to find a path using an A*
algorithm between start and goal locations in the satellite
image. In this procedure the buildings in a satellite image are
detected depending on roof color, and the search area is
divided into a grid depending on the approximate cell
decomposition method.
The selected path is sent to autonomous robot via Wi-Fi
communication as a series of set points for real
implementation in an outdoor environment. The mobile robot
navigates its way to each point in the path using Global
Positioning System (GPS) and digital compass, and 5 sharp IR
sensors are used for detecting and avoiding all obstacles in its
way.
A Proportional-Integral-Derivative (PID) controller is used to
make the robot move in a straight line and obtains minimum
perturbations to the goal by controlling the speed of each side
of the mobile robot motors depending on the digital compass
readings.
From the obtained results, the path of the mobile robot
without PID controller deviated by up to more than 2 meters
from the selected path, but when using a PID controller the
deviations decreased to less than 1 meter. The mobile robot
reached a distance of less than three meters from the final
target, an error attributable to GPS accuracy.

Key words: Autonomous robot, A* algorithm, GPS, satellite
image.

1. INTRODUCTION

According to Sandier (1998) [1], A robot device is an
instrumented mechanism used in science or industry to take
the place of a human being. Mobile robots can move from one
place to another. This capability is difficult because many
more things can go wrong if the robot is free to move around
rather than being bolted to one place.

Autonomous mobile robots must contain everything,
including a brain and a power supply (Knudsen, 1999) [4].

Autonomous navigation of a mobile robot involves
self-steering of the robot based on computational resources.
Oroko and Nyakoe (2012) suggest that there are many ways to
approach mobile robot navigation, with path planning and
obstacle avoidance [3].

The path planning problem concerns finding the path from the
start location to the target location and can be classified
mainly into two classes: global and local path planning.

Abbas (2012) [8] points out that in global path planning, the
environment surrounding the robot is known and the path
which avoids the obstacle is selected, where in local path
planning, the environment surrounding the robot is unknown,
and sensors are used to detect the obstacles and avoid
collision.

The path planning problem has been studied much less for
outdoor vehicles than for indoor vehicles. While this may be
because outdoor environments are much less cluttered than
indoor, it is more likely that the ease of use, and the size and
complexity of indoor mobile robots makes them more
practical experimental vehicles. Many algorithms can be used
to find the best path to the goal, such as depth-first,
breadth-first, and heuristic searches such as A* and best-first,
according to Giesbrecht(2004) [5].

In many outdoor applications, the robots can determine their
coordinates by using the GPS (global positioning system),
ideal for this purpose, according to Zogg (2002) [6], as it
provides the position information that can enable the robot as
well the user to control the robot path.

2. HARDWARE SYSTEM

The system block diagram, is shown in Figure 1, and consists
of the following three parts: mobile robot, wireless
communication and personal computer (base station).
Rover 5 chassis was chosen to act as the base of the robot; it
contains 4 DC motors with gear box. The Arduino Mega
2560; a microcontroller board based on the Tmega2560; was
chosen as the brain of the mobile robot. It has 54 digital
input/output pins (of which 15 can be used as pulse with
modulation (PWM) outputs), 16 analog inputs, 4 hardware
serial ports (UARTs), a16 MHz crystal oscillator, a USB
connection, a power jack and a reset button. It contains
everything needed to support the microcontroller and is
compatible with most shields designed for the Arduino
Duemilanvoe and UNO.
Arduino, like other microcontroller boards, works on 5V DC
power supply and maximum current that can be drawn from
Arduino pins is just 40mA.Therefore, to control 12V DC
motors, one needs some kind of motor driver.
Rover 5 Motor Driver Board was used because it was
originally designed by Dagu for their Rover 5 platform and
was very easy to use; it has 4 x low resistance FET “H”
bridges.

GPS-based Navigated Autonomous Robot

Mohammed Z. Al-Faiz1, Ghufran E. Mahameda2

1College of Information Engineering, Al-Nahrain University, Baghdad, Iraq, mzalfaiz@ieee.org
2Department of Computer Engineering, Al-Nahrain University, Baghdad, Iraq, ghufran.omran11@gmail.com

 ISSN 2347 - 3983
Volume 3, No.4, April 2015

International Journal of Emerging Trends in Engineering Research
Available Online at http://www.warse.org/ijeter/static/pdf/file/ijeter01252015.pdf

Mohammed Z. Al-Faiz et al., International Journal of Emerging Trends in Engineering Research, 3(4), April 2015, 01 - 07

2

The EM-406A GPS is a pretty simple device, used with a
mobile robot for determining location using satellites and
some really complex math and general relativity. The
Honeywell HMC6352 digital compass was chosen to get the
heading angle of a mobile robot. This device is I2C connected.
Since the mobile robot should avoid local static obstacles,
GP2Y0A21YK IR sensors, which cover 45 degree range
finder and up to 80 cm, were used. The mobile robot needed
five IR sensors for front and side detection.
Finally to enable the mobile robot to communicate with the
computer unit, two parts of Xbee wireless modules were used
to transmit and receive data between mobile robot units and
computer unit. The first module was connected to Arduino
mega carried with mobile robot and the second was connected
with Arduino UNO or Xbee adapter that connected to a
computer via USB port. These two wireless modules used
through one-to-one communication without special settings.
The actual mobile robot used is shown in Figure 2.

Figure 1: A Block Diagram of System architecture

Figure 2: Mobile Robot Unit

3. SOFTWARE SYSTEM DESIGN

The software system is divided into two parts: base station
software and mobile robot software, as follows:

3.1 Base Station Software
The computer unit is the main controller of the robot unit;
Graphical User Interface (GUI) is made with MATLAB
program version 2013b/8.2 as shown in Figure 3, and this GUI
is responsible for three main jobs of the computer unit: getting
the map of the search area; calculating the path for the mobile
robot using A* algorithm and converting it to a series of
latitude/longitude points; and transmitting this path to the
mobile robot. Furthermore, the computer unit can be used to
control the mobile robot manually using the keyboard. A
simplified scheme of the algorithmic principle is depicted in
the flowchart in Figure 4.

Figure 3: Graphical User Interface

Figure 4: Flowchart of Base Station Procedure

Mohammed Z. Al-Faiz et al., International Journal of Emerging Trends in Engineering Research, 3(4), April 2015, 01 - 07

3

3.1.1 Get satellite map of search area
A satellite map can be obtained as an image from many
resources such Google Earth or maps, or from the Bing web
site and other web sites that provide maps. Image maps can be
stored in JPG, bmp and tiff format, and calibration data are
usually stored in the same named file; however, if the word
file is not available with the satellite image it can be created by
using any GIS programs such as the Arcmap program.

3.1.2 Building detection in satellite image
The color of each image in Google Earth may vary because of
such factors as sunlight intensity, dust etc. The idea was to
detect buildings only by roof color. Figure 5 shows the
flowchart of building detection algorithm depends on roof
color.

There is also problem of non-standard building detection.
These objects must be detected by sensors or manually
selected as obstacles in the map by using region of interest
(ROI), a tool used to select a portion of the image that one
wants to filter or perform some other operation on.

3.1.3 Represent search area as grid cell
The first step in path finding is to represent the search area
into something easily workable. In this work, approximate
cell decomposition is used; the square shape was used as the
unit for the path finding algorithm.
The search area can be represented by a two-dimensional
array have the same map sized which it represents. The search
area was divided into square with (1*1) m dimension and
considers the center of the square as the node.

3.1.4 Apply A* search algorithm and create path
Kilinçarslan (2007) [7] points out that the algorithm was first
described in 1968 by Peter Hart, Nils Nilsson, and Bertram
Raphael. It is a global space-search algorithm that can be used
to to solve many problems, including path finding. It has been
used in many real-time strategy games and is probably the
most popular path finding algorithm. The pseudo code of this
algorithm is shown in Figure 6.
The A* search algorithm is implemented on the map after
getting the start location from mobile robot and selecting the
goal location point on the search area. The result was a path
containing a number of points; the distance between each
depended on the dimension of the tile.
Since the accuracy of GPS for a mobile robot is 5 meters, the
path was divided to a specific meter and obtained fewer
points; these points were in pixel dimension and it converted
to lat/lng points depending on the geo information from the
world file, which was then sent to the mobile robot via Wi-Fi
Xbee.

Figure 6: A* Algorithm Pseudo Code (Yuskel & Sezgin,

2012) [9]

3.2 Mobile Robot Software
The mobile robot has two tasks: follow the path received from
computer, and detect and avoid obstacles. It receives the path
from the computer as a number of points; each point is
considered as a target point numbered as T1, T2, Ti, … Tgoal;
for each iteration i, the robot finds the distance and the angle
bearing between the current position that received from GPS
and the target point (Ti) according to ‘haversine’ formula as in
(1) and bearing formula as in (2) (Veness, 2015) [2].
The PID controller decided the speed of the motors and the
direction of the robot (turn right or left) to orientate it straight
to the target and to move toward it with minimum oscillations,
depending on the difference between heading angle from the
compass and the bearing angle, as shown in Figure 7.After the
mobile robot reaches the target point Ti, the next target point

START

Read the satellite image

Noise clearing by median filter.

Make mask filter according to
building roof.

Morphology filter – erosion to
thickening object

Blobs – filtering for removing
bad object detection.

END

Image in binary format 0,1
where black color is buildings

Figure 5: Flowchart of Building Detection Algorithm.

Mohammed Z. Al-Faiz et al., International Journal of Emerging Trends in Engineering Research, 3(4), April 2015, 01 - 07

4

of path Ti+1 is taken and the process is repeated until the end
of the path. The flowchart of the program is shown at Figure 8.

a = 푠푖푛 (∆푙푎푡/2) + 푐표푠 푙푎푡 . 푐표푠 푙푎푡 . 푠푖푛 (∆푙푛푔/2)
∅ = 2 ⋅ tan √a,√1−a
d = 푅 ∅ (1)

θ = tan (sin∆푙푛푔 ⋅ cos 푙푎푡 , cos 푙푎푡 ⋅
 sin 푙푎푡 − sin 푙푎푡 ⋅ cos 푙푎푡 ⋅ cos∆푙푛푔) (2)

Where ∅ is the angular distance in radians, a is the square of
half the chord length between the points, d is distance, lat is
latitude, lng is longitude, 푅 is earth’s radius (mean radius =
6,371km), θ is bearing angle;

Figure 7: How Mobile Robot Choice Direction at Each Points

of Path

A sharp GP2Y0A21YK IR sensor was used to make the
mobile robot detect and avoid obstacles. The mobile robot
needed five IR sensors for front and side detection. These
sensors are placed on the vehicles front side, left side, right
side, front left side and front right side with a 45-degree
deviation angle. Each sensor has an angle of view equal to 45
degree range finder and up to 80 cm. The mobile robot
programmed to detect obstacles as far away 10 cm or less.
When the mobile robot tries to move forward, if any obstacle
prevents its movement it tries to turn its direction depends on
the front left and right sensor, if any obstacle in right, it tries to
turn left and if any obstacle in left it tries to turn right, this
turning on is a continuous process before frequently moving
forward to the goal. The flowchart of the algorithm is shown
at Figure 9.

Read one point from the path and consider it as
the goal (latitude as (latd), longitude as lond)

Figure 8: Flowchart of Mobile Robot Program

Receive path from computer as a points
of lat/lng coordinate and move command

START

Read the heading angle of robot
compass

YES
NO

NO

NO

YES

YE

NO

YES

NO

Read the current position of robot
from GPS as (lat1, lon1)

Calculate distance and angle bearing between (lat1,
lon1) and (latd, lond)

Condition = abs(bearing_angle -heading_angle) <5

Read the heading angle of robot compass

If obstacles

Move forward with min. oscillation
using PID

Read 5IR

Obstacles Avoidance
process

Target

Path End

END

If
Condition

STOP

PID calculate the speed of motors
and the direction to move

Read the heading angle
of robot compass

Mohammed Z. Al-Faiz et al., International Journal of Emerging Trends in Engineering Research, 3(4), April 2015, 01 - 07

5

4. EXPERIMENTAL TEST RESULTS

Two practical cases are considered to evaluate the algorithms
at base station and mobile robot. In the first case, the robot
navigates in an environment without obstacles in a large
garden at Al-Nahrain University; the map of the searching
area is gotten from the Google Earth program with resolution
659*1116 pix and area equal to 96m*166 m. It is divided into
a grid with block 1m*1m, the starting location is received
from the mobile robot GPS via Xbee Wi-Fi and the goal
location is selected by the user. A* algorithm is implemented
and it selects a path between start and goal location as shown
in Figure 10. This path is sent to the mobile robot as a series of
points in Geo formatting. This scenario test is repeated for
another eight paths in different places and the results are
recorded as shown in Table 1. Figure 11 shows the selected
path by the A* algorithm and the real path of mobile robot in
two statuses: without PID controller and with PID controller.

Figure 10: The Selected Path from A*Algorithm between

Start and Target Point.

Table 1: Practical Results Recorded Of Mobile Robot Path

Path
number Start locations Final target

Length
of path
(meter)

Slips
from
path

(meter)

Error
(meter)

Time
(min)

1
Lat:33.278126

Lng:44.374010

Lat:33.278415

Lng:44.373978
35 0.7 2.8 3.7

2
Lat: 33.278152

Lng:44.374234

Lat: 33.278442

Lng:44.374074
33 0.7 2.6 3.5

3
Lat: 33.277998

Lng:44.374373

Lat: 33.277955

Lng:44.374105
25 0.8 2.9 2.8

4
Lat: 33.229614

Lng:44.389876

Lat: 33.229686

Lng:44.390143
25 0.8 2.7 2.7

5
Lat: 33.278152

Lng:44.374234

Lat: 33.278377

Lng:44.374246
24 0.7 2.7 2.5

6
Lat: 33.278126

Lng:44.374010

Lat: 33.278308

Lng:44.373924
20 0.6 2.7 2.3

7
Lat:33.229658

Lng:44.389876

Lat:33.229712

Lng:44.390068
19.5 0.6 2.5 2.1

8
Lat:33.277681

Lng:44.377192

Lat: 33.277609

Lng:44.377052
15 0.5 2.8 1.6

9
Lat: 33.229765

Lng:44.389886

Lat: 33.229703

Lng:44.389897
8 0.5 2.5 0.9

In table (1) it can be noticed that the mobile robot reaches the
final target by distance less than three meters for all paths with
different lengths. This error is attributable to the accuracy of
GPS which, in our mobile robot, equals 5 meters.

Figure 9: Flowchart of Obstacles Avoidance Process

YES

NO YES

YES

NO

YES

NO

NO

Obstacles from
IR_center <=10cm

Rotate Right

Move forward

Read obstacle distance
Right and Left

DL>DR

Rotate Left

Obstacles from
IR_Right<=10cm Rotate Left

Read 5 IR sensors

START

Rotate Right

END

Obstacles from
IR_Left<=10cm

Mohammed Z. Al-Faiz et al., International Journal of Emerging Trends in Engineering Research, 3(4), April 2015, 01 - 07

6

(a)

(b)

Figure 11: The Selected Path from A* Algorithm with real
path from robot: (a) without PID controller, (b) with PID

controller

It can be noticed from Figure 11-a that the mobile robot does
not move in a continuous straight line, but deviates by 1 meter
and up to more than 2 meters from the selected path; to fix this
problem, a PID controller is used to obtain minimum
deviations and make the robot move in a straight line in a
specific angle to the goal by controlling the speed of each side
of the mobile robot depending on the digital compass
readings, as shown in Figure 11-b and results in Table 1; in
which it can be noticed that the mobile robot determines its
path line to the target point with minimum error slips (less
than 1 meter).

In the second test, the robot navigates in an environment with
obstacles and moves to the points of the path to reach the
desired destination safely. Figure 12 shows how mobile robot
behaves when there is more than one obstacle in its path and
Figure 13 shows the actual path of the mobile robot when
there are obstacles in its way (the locations of the obstacles are
drawn by hand on the map for clarification).

Figure 12: Mobile Robot with Complicated Obstacles.

Figure 13: Mobile Robot Path with Local Obstacles.

From Figure 13 it can be noticed that the mobile robot avoids
the local obstacles in its way. The first obstacle made the
mobile robot to turn left because the left side has fewer
obstacles; the second and third obstacles made the robot to
turn right where the fewest obstacles were located, and after
avoiding the obstacles the robot moves to the target.

5. CONCLUSIONS

It has been proven that the mobile robot successfully finds its
path between its start location and target point, depending on
information from the GPS and digital compass sensors.

It has been proven that with five Sharp IR sensors the mobile
robot detected and avoided complicated obstacles in its path.

Without using a PID controller, the mobile robot does not
move in a continuous straight line, it deviates around the
selected path and takes more time to reach to its final target;

Local obstacles

Mohammed Z. Al-Faiz et al., International Journal of Emerging Trends in Engineering Research, 3(4), April 2015, 01 - 07

7

with a PID controller it makes the robot move in a straight line
in a specific angle to the goal. By controlling the speed of each
side of the mobile robot motors depending on the digital
compass readings, the perturbations is decreased to (50%) and
the speed of mobile robot is decreased to (33.3%) but has
smooth movement which makes it to reaches to the final target
in approximately the same time without PID.

The robot reached to the final target point with an error
distance less than 3 meters, this error occurred because of the
GPS accuracy and to avoid it using another GPS that provide
more accuracy.

REFERENCES

1. B. Z. Sandier. ROBOTICS Designing the Mechanisms
for Automated Machinery, 2nd ed., Waltham, MA.:
The Academic Press, pp.1, December 1998.

2. C. Veness. Calculate distance, bearing and more
between Latitude/Longitude points. Retrieved from
http://www.movable-type.co.uk/scripts/latlong.html .

3. J. A. Oroko and G. N. Nyakoe. Obstacle Avoidance and
Path Planning Schemes for Autonomous Navigation
of a Mobile Robot: A Review, Mechanical Engineering
conf. on Sustainable Research and Innovation, Vol. 4,
May 2012, pp.315-318. Retrieved from
http://scholar.google.com/scholar?q=Obstacle+Avoidan
ce+and+Path+Planning+Schemes+for+Autonomous+Na
vigation+of+a+Mobile+Robot:+A+Review&hl=en&as_
sdt=0&as_vis=1&oi=scholart&sa=X&ei=KwsoVcacDsf
wsAXH2YHgDg&ved=0CB0QgQMwAA.

4. J. B. Knudsen.The Unofficial Guide to Lego Mind
storms Robots, 1st ed., CA: O'Reilly & Associates, Inc.,
pp. 2, October 1999.

5. J. Giesbrecht. Global Path Planning for Unmanned
Ground Vehicles, Defence R&D Canada – Suffield,
December 2004. Retrieved from
http://www8.cs.umu.se/research/ifor/dl/Path%20plannin
g/GetTRDoc.pdf .

6. J. M. Zogg. GPS Basics, u-blox ag, Switzerland, 2002.

Retrieved from

http://geology.isu.edu/geostac/Field_Exercise/GPS/GPS

_basics_u_blox_en.pdf .

7. M. Kilinçarslan. Implementation of A Path Finding
Algorithm for the Navigation of Visually Impaired
People, M.S. Thesis, Dept. computer Eng., Atilim Univ.,
Ankara, Turkey, September 2007. Retrieved from
http://www.atilim.edu.tr/~nergiz/tezler/i6.pdf .

8. M. W. Abbas. Path Planning of Mobile Robots Using
Genetic Algorithms and Modified Artificial Potential
Field, M.S. thesis, Dept. Mechatronic Eng., Technology
Univ., Baghdad ,Iraq, 2012.

9. T. Yüksel and A. Sezgin. An Implementation Of Path
Planning Algorithms For Mobile Robots On A Grid
Based Map, Dept. Electrical & Electronics Eng.,
Ondokuz Mayıs Univ., Turkey. Retrieved from
http://www.emo.org.tr/ekler/c90885b28e58d1f_ek.pdf .

