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ABSTRACT

Traditional data prediction techniques like AutoRegressive
Integrated Moving Average (ARIMA) and Numerical forecasting
have experienced decreased accuracy and reliability over time.
This has been largely attributed to their inefficiency in handling
the changing climatic patterns. These methods have challenges in
accommodating non-linear and complex interactions between
different climatic factors. They are highly sensitive to data
quality and resolution; hence, small errors in the initial conditions
result in low precision forecasts. They also struggle with
forecasting small-scale weather phenomena like localized storms
based on their limited temporal and spatial resolution. There is
therefore the need to develop more robust and accurate
techniques for weather forecasting to enhance safety and
preparedness. This study employs machine learning (ML) models
namely Random Forest (RF), Support Vector Machines (SVM)
and Gradient Boosting (GB) for weather forecasting. It focuses
on short- and medium-term weather patterns specific to humidity,
windspeed and daily temperatures targeting Nairobi County.
Experimental results show that Gradient Boosting (74.28%)
perform better than the other models in predicting temperature,
followed closely by Random Forest (72.72%). For humidity,
SVM (68.60%) and GB (68.37%) performed well, while ARIMA
performed poorly across both variables. These findings highlight
the superior performance of ensemble and kernel-based machine
learning algorithms for weather forecasting compared to the
traditional methods.

Key words: Machine Learning, Support Vector Machines,
Gradient Boosting, ARIMA model, Random Forest, Forecast,
Accuracy, Traditional Weather Forecasting.

1. INTRODUCTION

Accurate weather prediction is important for areas with growing
population and urbanization that increase vulnerability to extreme
weather conditions. For instance, Nairobi County experienced
unusual extreme rainfall between April and May, an issue that is
attributed to inaccurate and unreliable weather forecast by the
current methods [1]. With such extreme conditions, urban areas
risk disruption in their socioeconomic activities citing the need
for accurate forecasts. Precise weather forecasts help urban
managers to plan, enhance safety, mitigate delays in traffic, and
make informed adaptive strategies encountering climate change
[1]. Such strategies include resource allocation, infrastructural
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development, and policy formulation tailored at improving the
county’s resilience to climate related risks.

Traditional weather methods, Numerical weather prediction
(NWP) and synoptic forecasting, have setbacks accommodating
non-linear and complex interactions between different climatic
factors. NWP depends on technical mathematical models that
simulate atmospheric behavior through fluid dynamics and
thermodynamics principles which is resource intensive [2].
Equally, the NWP models’ accuracy diminishes when forecasting
short-range, climate-enhanced weather events more so in areas
with complex geographical set up like Nairobi [4]. The technique
is highly sensitive to data quality and resolution; hence, small
errors in the initial conditions result in low precision forecasts, a
scenario known as butterfly effect. The method also struggles in
forecasting small-scale weather phenomena like localized storms
based on their limited temporal and spatial resolution. Synoptic
weather prediction is subject to recognition of nature patterns and
dependence on historical analogs making the technique less
precise more so with the changing climatic and weather
conditions. The rising variability in patterns of weather because
of climate change makes this technique less precise. The third
method, climatology, lacks precision as it provides general trends
making it less useful; it does not accurately forecast extreme
weather conditions, making it unreliable [2]. Finally, the
analogue method presents a challenge as getting exact analogs in
unique and unprecedented weather conditions is difficult [3].
There is therefore, the need to deploy better techniques that
solves the unreliability and inaccuracy challenges.

Machine learning can be used to fill these gaps. The flexibility of
machine learning models in adapting non-linear relationships and
high dimensional data makes them suitable in weather prediction
[5]. Models such as Support Vector Machine, Random Forest,
and Gradient Boosting have shown great promise in weather
prediction applications. Random Forest has high precision
considering the multiple decision trees. The method constructs
multiple decision trees on numerous data subsets and averages
their predictions, thus mitigating overfitting and improving
reliability of the forecast [6]. On the other hand, gradient
boosting sequentially builds models with every new model
amending the errors from the previous ones thus improving the
overall accuracy and robustness. Support Vector Machines
(SVM), SVM constructs hyperplanes that maximize the margin
between various data classes; this makes it relevant and accurate
at establishing patterns and trends within large, complex datasets.
In this study, the three ML models (SVM, GB, and RF) are
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selected for analysis because of the weather data that is non-
linear and complex, a problem that they solve. In addition, the
techniques are known for their robustness and capability to
manage high-dimensional data without overfitting. The models as
well offer flexibility in hyperparameter tuning, enabling tailored
optimization of models based on the given weather dataset
characteristics [7]. While machine learning models are
computationally complex, advancement in cloud computing and
the existence of open-source libraries like scikit-learn,
statsmodels, matplotlib, seaborn, and joblib have made them
more feasible to implement even with limited resources [8].

The aim of this research is to use machine learning models to
enhance weather forecasting for short and medium weather
patterns. In this research, we assess and compare the accuracy
and reliability of forecasting short and medium range weather
patterns in Nairobi County using Machine Learning and ARIMA
models. We conduct review of existing prediction methods and
modes, develop and implement machine learning models namely
RF, GB, and SVM for weather forecasting. We also evaluate the
effectiveness of the machine learning models in terms of
performance in comparison with other traditional models. The
study therefore addresses the drawbacks of traditional weather
prediction techniques in Nairobi County. This will enhance
preparedness for disaster and improve risk management. It will
also help reduce the effect of extreme weather conditions on
social activities, healthcare service provision, and educational
services, transport within and outside the county, and general
economic activities. By accurately predicting weather, the county
team will make proper and timely planning that will help avoid
disasters like the recently experienced floods. Finally, through
this study, advancement of weather prediction methods will be
enhanced through the provision of models that can be replicated
in other regions with similar problems.

2. LITERATURE REVIEW

In current years, the application of machine learning (ML) in
weather forecasting has gathered significant attention. This
attention has specifically been driven by the need for more
accurate and reliable prediction amidst changing climate change.
Several research works originally acknowledged traditional
prediction techniques as better in giving accurate forecasts. This
has transformed over time considering the irregular weather
patterns being experienced. As such, current studies display the
challenges of previous results by justifying the traditional
techniques’ incapacity to accurately forecast the patterns of short-
and medium-term weather. In response, current studies advocate
for the use of more robust ML algorithms to accurately predict
patterns and trends in weather. This literature review evaluates
how ML methods can enhance precision in forecasting weather. It
explores the capacity by Random Forest, Gradient Boosting, and
Support Vector Machines (SVM) to enhance accuracy prediction
in comparison to Autoregressive Integrated Moving Average
models.

2.2 Traditional Weather Forecasting Methods

There are many traditional methods used in predicting weather.
These include Synoptic forecasting, Numerical Weather
Prediction (NWP), climatology, persistence, and analog
predictions [9]. The methods are discussed in the following
subsections.
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2.2.1. Numerical Weather Prediction

Numerical Weather Prediction technique employs complex
mathematical models to simulate atmospheric patterns in
accordance with the observed initial conditions. The method
forecasts future weather through solving fluids and
thermodynamics equations. The NWP models require high-
quality and high-resolution data; they are also computationally
intensive [3] making it difficult to employ them in forecasting.
NWP is highly dependent on the initial atmospheric state,
showing that observational data errors can multiply and expand
during the prediction phase [2]. Categorically, this is mostly
observed in areas with sparse observational networks and
complex topography, like Nairobi County, resulting in low
prediction precision using NWP [9]. In support of the challenge,
[38], being specific on Africa, emphasized that NWP had low
precision, making the forecast unreliable. This, as they claimed,
is based on its northerly biases in the upper troposphere,
meridional wind inconsistencies and cool prejudice in the
northern latitudes that need not be employed on predicting
weather in dense regions like Nairobi County.

2.2.2. Synoptic Forecast

Synoptic weather prediction involves weather patterns and
systems analysis via upper-air and surface observations.
Meteorologists interpret patterns in this technique to predict
future events with respect to their skills and experiences.
Findings highlighted that synoptic prediction, when integrated
with progressive observational data, can substantially improve
short-term weather forecasts through providing comprehensive
insights into weather systems [5]. Nonetheless, the method
remains limited to individual explanations and the integral
complexity of meteorological patterns, requiring the
incorporation of machine learning models to improve prediction
reliability and accuracy. This method gives important insights;
nevertheless, its precision is limited to the subjective nature of
identifying patterns and dependence on historical analogs [7].
Besides, growing weather inconsistency in weather patterns as a
result of climate change obscures further the synoptic technique
as historical comparison growingly becomes less dependable
[11]. In justification to this limitation, depending on long-term
historical weather to predict short- and medium-term conditions
results in low accuracy because of the ever-changing weather
patterns, a factor that applies in Nairobi weather conditions [9].
2.2.3. Climatology

Climatology depends on historical weather data to forecast future
weather events based on long-term averages and patterns. This
method has been shown to be effective in providing baseline
forecasts, as demonstrated by studies such as those by [5], which
utilized historical climate data to generate reliable long-term
weather predictions. However, climatology can fall short in
capturing short-term variability and recent climatic shifts, which
can be addressed by integrating more dynamic techniques like
machine learning to enhance forecast accuracy and adapt to
recent changes in weather patterns. This is mainly useful in long
term predictions like forecasting seasonal patterns and trends [8].
Nevertheless, its precision reduces for short term predictions in
areas that experience substantial climatic changes [15]. Assuming
that future weather conditions will be like the historical average
usually fails in the case of rising climate variability[37]. With
respect to Ethiopia and East Africa region, climatology technique
as obsolete in a period where rapid changes in climatic and
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weather conditions are experienced due to urbanization.
Specifically, they state that with the construction of skyscrapers,
the prevailing weather patterns adjust and cannot thus be
forecasted on historical averages.

2.2.4. Analog forecasting

Analog forecasting entails the comparison of current weather
patterns with the historical patterns that gave similar weather
conditions. Here, forecasters check on historical analogs to
forecast the possible outcome of existing conditions. This
technique has been effectively used in studies [19], which
demonstrated that identifying historical analogs can provide
valuable insights into future weather events [6]. However, analog
forecasting can be limited by its reliance on historical data, which
may not account for recent climatic changes or emerging trends,
making it beneficial to combine this approach with machine
learning techniques to capture more complex and current weather
dynamics. Whereas analog technique can be important, it is
limited by the existence of same historical patterns and the ability
by the predictor to recognize and interpret accurately these
analogs [33]. They further state that some weather events are
unique, such as extreme floods, which render the technique
ineffective. Justifying the above limitation the swiftly changing
weather patterns in urban areas within East Africa renders analog
forecasting less effective as current weather patterns are to a
better percentage, not like the historical patterns [32].

2.2.5. Autoregressive Integrated Moving Average (ARIMA)
ARIMA modeling has extensively been employed in weather
forecasting specifically on linear time series data. ARIMA model
forecasted visibility based on existing historical data [12].
Another application was done by Tektas (2010) in Instabul for
general weather predictions [13]. ARIMA modeling is designed
for univariate data and focusses on a single variable such as
rainfall, wind speed or humidity [10]. The model, as explained by
[45], incorporates autoregressive, integrated, and moving average
components to capture trend and seasonality patterns making it
important for predicting short term weather. The model
dependence on past data allows it to forecast coming weather
conditions with moderate to high accuracy in case of consistent
conditions [17]. Nonetheless, ARIMA lacks the capacity to
handle non-linear weather conditions with sudden changes like
storms, hurricanes and atmospheric pressure [12]. Thus, being a
linear model, ARIMA struggles to precisely forecast complex and
non-linear interactions. In a different study, ARIMA modelling,
being univariate, does not account for interdependence among
numerous variables, which is key in accurate prediction [28]. The
study indicated that while ARIMA can account for time series
trends, it cannot establish relationships between weather
variables such as temperature vs humidity or rainfall vs
hurricanes hence another limitation. ARIMA assumes
stationarity, as such, it only works best with data having constant
statistical properties over time, a case that is rare considering the
volatile weather patterns [13].

2.3 Machine Learning

Machine learning models are classified into three including
supervised learning, unsupervised learning, and reinforcement
learning [18]. The three categories are applied depending on the
available data and nature of the task. In supervised learning,
models are trained based on labeled datasets. Models learn
through associating input data with corresponding output labels
[19]. Supervised learning is effective in regression and
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classification tasks where the target is to forecast results of new,
unseen data. Some of the commonly used supervised models
include support vector machines, decision trees, Random Forest,
Neural Networks and Gradient Boosting. Supervised learning is
applied in different domains considering its capacity to generalize
from the training data [23]. Nonetheless, it requires large, labeled
datasets which is difficult to get in fields like weather forecasting
hence a limitation. On the other hand, unsupervised learning
algorithms identifies patterns and relationships in unlabeled
dataset without predefined output labels. Some of the used
unsupervised methods include dimensionality reduction and
clustering to explore data structures [11]. While unsupervised
machine learning is important in exploratory data analysis, is less
effective in making actionable forecasts thus a limitation [28].
The final machine learning technique is reinforcement learning,
where an agent learns through environmental interaction and
feedback received in the form of penalties or rewards. Therefore,
reinforcement learning is mainly important in tasks requiring
sequential decision-making since the agent performance
improves continuously based on previous experiences [24].
Reinforcement learning is successful in domains such as robotics
and games [13]. Nonetheless, the study established that the
application of reinforcement learning in predicting weather is
limited based on the sequential nature of prediction in which
future weather patterns relieve past patterns. For this study,
supervised machine learning is selected because it gives room for
developing predictive models based on labeled datasets, in which
historical weather data is associated with known outcomes. The
technique is specifically effective in establishing complex
patterns and associations within the data, improving forecasting
accuracy for short and medium-term weather conditions. Unlike
unsupervised learning seeking to find hidden structures in
unlabeled data, and reinforcement learning depending on
feedback from actions taken in an environment, supervised
learning gives a direct mapping from inputs to outputs making it
relevant for this study [11]. The direct design, alongside its
ability to fine-tune algorithms and validate them using
performance metrics, makes supervised machine learning models
robust and reliable for making forecasts in a real world context,
thus highly suitable for weather forecasting.

2.3.1 Classification Techniques in Machine Learning
Classification techniques are critical in machine learning for tasks
such as classification and prediction of weather patterns. Three
supervised machine learning techniques including Random
Forest, Gradient Boosting, and Support Vector Machine are
discussed in this section.

i. Random Forest

Random Forest (RF) is an ensemble machine learning method
that builds numerous decision trees during training; it outputs the
classification mode or mean regression (prediction) of the single
trees. RF is specifically efficient in mitigating overfitting and
capturing non-linear associations in the data [21] The method has
widely been applied in weather forecasting in developed nations
to forecast weather conditions as precipitation, temperature, and
wind speed [8]. In the United States for example, a blend of the
Storm Prediction Center’s (SPC’s) convective outlooks and RF
outlooks significantly outperformed the SPC outlooks alone,
suggesting that use of RFs can improve operational severe
weather forecasting throughout the Day 1-3 period, which is
short term [44]. In the same study, random forest machine
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learning model recorded minimum error values of 0.750 MSE
and R2 score of 0.97 relative to regression models and SVM ML
model showing that this technique is more accurate in short-,
medium- and long-term weather patterns [44]. Therefore, it is
worth noting that the application of RF in forecasting short- and
medium-term weather patterns within Nairobi County will result
in a more accurate result. While the technique offers robust
solution, it has computational limitations including high cost and
memory usage due to the large number of decision trees, issues
that can be solved through hyperparameter tuning to optimize the
number of trees. It also requires significant training time when
using complex data and may experience parallelization
challenges that further affect the efficiency of real-time weather
forecasts [22].

ii. Gradient Boosting

Gradient Boosting (GB) is a powerful machine learning method
that sequentially builds models. Here, every new model corrects
errors of the previous ones thus enhancing the overall accuracy
and robustness of the previous model, specifically in handling
complex data relationships and outliers. Friedman introduced the
Gradient Boosting Machines (GBMs) concept in 2001 [23]. This
has since been used to forecast meteorological variables with
high precision. In a study by Anwar et al. (2021) involving 7-year
period historical weather, the gradient boosting model produced
an accurate daily rainfall forecast with training RMSE of 2.7 mm
and the testing MAE of 8.8 mm. Nonetheless, they experienced
longer duration of implementation which is a challenge. In a
different study on wind speed forecast, the results displayed that
after using 300 features in different layers and heights, GB
resulted in more accurate results than weather and research
forecasting (WRF) models like decision tree regression (DTR)
and multi-layer perceptron regression (MLPR) [27]. Particularly,
GB reduced root mean squared error (RMSE) of the predicted
wind speed from 2.7-3.5 ms™ in the original WRF. It also
improved the index of agreement (IA) by 0.10-0.18 and Nash-
Sutcliffe efficiency (NSE) by 0.06 — 06. Stating the technique
limitation, they experienced high computational cost and memory
usage due to sequential training of trees. In a different study on
SYM-H index, GB resulted in more accurate and consistent
prediction with physical understanding [16]. Specifically, GB
yielded a more statistically significant improvement in root mean
squared error relative to Burton equation and black-box neural
network schemes. Like the last two studies, they also experienced
problems with computation time and cost rendering the technique
resource intensive. Despite these limitations, this technique is
among the important machine learning algorithms that should be
employed in forecasting short- and medium-term weather
patterns within Nairobi County.

iii. Support Vector Machines

Support Vector Machines (SVM) are supervised learning models;
SVM analyzes data for regression and classification analysis. The
technique is effective for high-dimensional spaces; it can also
handle non-linear data through kernel functions [24]. In weather
prediction, SVMs have been used to forecast phenomena like
temperature, precipitation, and wind speed. Introduced by Vapnik
(1995), SVM algorithm has since been adapted in various
applications, including meteorology. SVMs have the capacity to
establish subtle patterns in large and complex sets of data that
traditional methods might miss, thus enhancing forecasts
involving short and medium-range weather conditions [25]. SVM
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model improved the spatial representation of hourly precipitation,
increasing correlation coefficient from 0.39 to 0.49 in January
and 0.24 to 0.30 in July in the cross-validation experiment in
Japan [21]. The technique nonetheless underestimated the hourly
precipitation variability same as extreme precipitation events, a
factor attributed to the non-linearity of precipitation data,
suboptimal feature selection, sensitivity to noise, and complex
atmospheric interactions that are hard to model accurately. In a
different study, forecasting humidity, wind speed, temperature,
and rainfall in Indonesia, a precision value of 82% rain was
obtained with an evaluation ROC score of 0.74 further showing
the ML algorithm’s enhancement of forecasting accuracy [19].
The method, nonetheless, recorded high cost of computation, a
factor that was solved using kernel approximation to reduce
complexity, as reported by the authors, giving an insight that
machine learning models are generally expensive to employ in
weather forecasting. Nonetheless, alongside Gradient Boosting
and Random Forest, Support Vector Machine algorithms need to
be employed in quest to establish the most accurate forecasting
technique for Nairobi County Weather.

2.3.2 Data Representation in Machine Learning

Representing multidimensional data that change over time and
across geographical location involves the use of time series,
spatial and tabulation. Time series data is key in weather
prediction; it captures temporal progression of atmospheric
variables including wind speed, precipitation, and temperature
among others. Time series representation allows machine
learning models to account for longitudinal changes, thus
important for forecasting future weather patterns [15]. Over time,
traditional models like ARIMA have widely employed time series
to forecast weather considering its ability to model time
dependencies and linear relationships [44]. Nonetheless, the
models struggle to capture non-linear and complex relationships
thus limiting the forecasting accuracy [42]. The use of machine
learning techniques like Long Short-Term Memory (LSTM)
networks that are particularly designed to solve both short and
long-term fluctuations in sequential data solves this problem.
Through effectively learning the weather patterns and handling
longer data sequences, LSTMs have enhanced accuracy in
weather prediction [14]. The second representation, spatial data,
captures geographic variability in the weather system more so for
phenomenon like cloud formation or storms. Spatial information
is extracted from radar data, satellite imagery, and meteorological
stations, providing data on atmospheric conditions within given
locations [30].

Handling spatial data has majorly been done using Convolutional
Neural Networks (CNNs) that process images [44]. CNN is
preferred as they identify local patterns of weather; it also
forecasts the changes or movements in the patterns over time.
CNN successfully identifies complex weather patterns such as
hurricanes and storms, thus enhancing accuracy in region-
specific predictions [21]. The technique, however, experience a
problem in integrating spatial information with temporal
dependencies, presenting a gap for research [24]. The final
representation is tabular data that represents weather components
in structured format. Here, every row corresponds to a specific
observation and each column a variable. Tabular data is mostly
employed for simpler machine learning models such as support
vector machine and decision trees [14]. Despite being easy to
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manage, extensive preprocessing is required alongside feature
engineering to capture relationships between variables [43].

2.3.3 Evaluation Metrics for Classification Models

Model evaluation in machine learning is critical in establishing
their performance, reliability and accuracy. Evaluating machine
learning models entails different techniques including bootstrap,
cross validation, and performance metrics like precision,
accuracy, recall, Fl-score, and root mean square error
(RMSE)[9]. Cross validation is employed in evaluating
generalizability in machine learning models. According to the
study by Roberts et al. (2021), cross validation involves splitting
data into k folds, training the model on k-1 subsets and testing it
using the remaining sets. The process is repeated k times, then
the mean performance metric reported. In weather forecasting, as
reported by Merz et al. (2020), cross validation is used to
mitigate overfitting, a crucial aspect considering the complex
nature of weather data. However, according to Lamptey et al.
(2024), K-fold requires keenness when using time series data to
ensure there is no data leakage between training and test subsets.
As reported by Roberts et al. (2021), the keenness can be attained
through models like time series cross validation, in which data is
divided along temporal axis. The second evaluation metric,
bootstrap, is a resampling method that repeatedly sample data
with replacement, hence applicable in evaluating the variability
of model forecasts. The technique was introduced by Efron and
Tibshirani (1994) to solve small, noisy datasets, making it
important in cases of limited or incomplete datasets [26]. While
bootstrap reduces bias, it is computationally intensive when
applied to large dataset; the method may not capture fully
variability in cases of complex weather datasets [24]. Another
measure of performance is accuracy is the percentage of correctly
forecasted instances of the possible outcomes [27]. Accuracy has
been employed in meteorology to assess the performance of
machine learning models and to make comparisons between
different models. The technique alone, however, can be
misleading when data is imbalanced like during storms and
tornadoes. In such cases, models can attain higher percentage
accuracy without effectively capturing critical but rare conditions
[28]. Therefore, additional metrics like precision and recall are
used to comprehensively forecast weather patterns. In an
explanation, while precision measures the percentage of correct
positive predictions, recall measures the actual number of
correctly predicted positive cases [29]. Precision and recall are
important when forecasting extreme weather events such as
hurricanes and thunderstorms unlike bootstraps and cross
validation [33]. Another evaluation technique, F1-score, refers to
harmonic precision and recall mean, thus balancing the tradeoffs
between false negatives and positives. Flscore is applicable to
rare but impactful weather events like flash floods where over-
forecasting an event or missing it have substantial impact [28].
For regression specific tasks, metrics like mean absolute error
(MAE), and root mean squared error (MAPE) are used [29]. The
methods are sensitive to large errors capturing extreme deviations
like in cases of excess rainfall. Hence, RMSE is crucial in
forecasting outlier weather conditions that causes significant
disruption such as extreme weather patterns [27]. With different
shortcomings, evaluating machine learning models requires
integrating various techniques to provide a holistic view [24].
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2.3.4 Feature Selection

In machine learning, feature selection entails establishing and
choosing the most relevant features from a dataset. The process is
important in high-dimensional datasets like weather where
several weather condition variables are recorded. In such cases,
feature selection eliminates redundant or irrelevant variables thus
reducing model complexity, enhance accuracy and improve
interpretability [30]. Feature selection methods include filter,
wrapper, and embedded methods. Discussing the filter
techniques, researchers stated that the method assesses feature
relevance by their intrinsic properties; this method is mainly used
as a preprocessing step [31]. Common examples of filtering
techniques include correlation coefficients, chi-square tests and
mutual connection. Another study reported that while filtering
methods are effective computationally, they do not consider
model-feature interactions [30]. The next feature selection
method is the wrapper; this evaluates subset features by assessing
model performance using those subsets [14]. Wrapper techniques
such as Recursive Feature Elimination (RFE) and forward/
backward selection iteratively remove features that are least
significant and evaluate model performance to establish most
significant ones [36]. In predicting weather, RFE is better than
filter methods as it considers feature interactions [14]. The third
method, embedded, integrates feature selection into the process
of model training, enabling concurrent feature selection and
model training [38]. The commonly used embedded featuring
selection techniques include decision trees and Lasso (Least
Absolute Shrinkage and Selection Operator). Another study
reports that Lasso employs L1 regularization to punish features
that are less important; this has long been used in handling high-
dimensional data like in weather forecasts [30]. On the other
hand, decision trees such as Random Forest naturally conduct
feature selection via assessing feature importance during the
process of tree building [37]. The study report further showed
that feature selection done using Random Forest can guide in
choosing relevant variables thus mitigating overfitting while
enhancing forecasting accuracy. Combination of feature selection
techniques and Principal Component Analysis (PCA) in
extracting features from weather dataset successfully extracted
main features thus improving model accuracy and efficiency
[24]. Further, they established that integrating feature selection
techniques with Machine Learning models such as RF and SVM
results in enhanced weather forecasting outcome by mitigating
the effect of irrelevant features; this also reduces the cost of
computation. While beneficial, feature selection experiences the
challenge of balancing tradeoff between retaining important
features and reducing dimensionality [34]. Here, over-selection
may result in losing important data whereas under-selection may
lead to missing important predictors. Therefore, they suggested a
hybrid technique integrating numerous feature selection
techniques is recommended to achieve an effective and
comprehensive selection process.

2.3.5 Machine Learning in Weather Forecasting

Integration of machine learning in weather forecasting has
resulted in significant improvements towards attaining accuracy
[5]. In countries like the US, a proven forecast effectiveness for
short term precipitation, temperature and wind speed conditions
through Random Forest, which aggregates numerous decision
trees to make robust forecasts [44]. The method, however,
requires a high-level interpretability, making it hard for
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meteorologists to extract important information from the output.
As such, it is recommended tha development of hybrid models
involving Random Forest and dimensionality reduction methods
to improve interpretability while reducing the cost of
computation [27]. The second widely used method is Gradient
Boosting Machine (GBM), specifically XGBoost applies an
iterative approach by refining forecasts based on previous errors;
this makes it important in forecasting extreme weather patterns
[15]. In a practical scenario using employed XGBoost in
forecasting heavy rainfall which showed a significant
improvement in accuracy after iteratively learning the process
[34]. The method, however, requires extensive hyperparameter
tuning and is computationally extensive [12]. Another ML
technique used in forecasting is support vector machines that
classify weather events and forecast storm occurrences. A study
in Asia employed SVM to classify weather patterns based on
different conditions thus improving forecasting accuracy for
storm events [34]. They however reported that while SVM
managed to handle complex, nonlinear data, it struggled with
very large sets and required careful tuning of parameters.
Nevertheless, advanced kernel and approximation methods
overcome these limitations thus making SVMs more efficient and
more scalable while handling large climate data [36]. Another
method that has been employed in weather forecasting is Neural
Networks, which includes deep learning models capable of
capturing complex patterns in weather [25]. A different study
employed Neural Networks and Long Short-Term Memory
(LSTM) networks to forecast for typhoons in Japan; these
resulted in enhanced prediction accuracy [39]. The models,
however, required extensive cost of computation and large
datasets hence limitations. Whereas individual ML models have
high accuracy and precision in weather forecasting, a different
study recommended the use of ensemble method combining
forecasts from several models to attain the best prediction [38].
The combination of techniques including SVMs, GBMs, and RF
can enhance accuracy by averaging the forecasts from different
models thus reducing individual bias; this also solves individual
cases of underfitting, and overfitting.

2.3.6 Machine Learning Models vs. Traditional Methods
Table 1 compares Machine Learning Models and Traditional
Foresting techniques based on strengths and weaknesses.

Table 1: ML-Traditional models’ Summary table

Handling ARIMA: Assumes

Complex and linear relationships | Capability to Model

Nonlinear and stationary data Complex Dynamics [15]

Patterns [34].

Computational | ARIMA: High Resource

Demand Computationally less | Requirements [15]
demanding [30].

Predictive ARIMA: Effective for

Framework well understood lineaj Robustness in Well-

Based on time series data [30]. | Defined Scenarios [30]

L. Traditional Weatheri  ©achine Learning
Criteria Forecasting Models Models
Data ARIMA: Requires
Requirements less data, works with | Large Data Needs [25]
q smaller datasets [5].
ARIMA: Handles Efficient Processing of
Scalability smaller datasets Large Datasets [31]
effectively [13].
Enhanced ARIMA: May not Enhanced Performance
Accuracy in perform well in highly in
Nonlinear volatile weather Complex Weather
Systems scenarios [26]. Phenomena [25]

Historical Data

ARIMA: Provides
clear, interpretable

Interpretability results with model Black Box Nature [35]
parameters [12].

Risk of 2)%)1\1/\::[;;"1:'( tI;neSSWpiiﬁne Potential for Overfitting

Overfitting & [8]

simpler models [4].

2.4. Conceptual framework

Independent Variables
Humidity_lagl
Temperature_lagl
Wind speed lagl

Daily Weather data on
Temperature, Humidity,
and Wind Speed

Historical Data

g
Exploratory data Analysis (outlier
and nomality detection)

Data transformation
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Figure 1: Conceptual framework

The above conceptual framework displays the study variables and
the process taken to attain study objectives.

3. METHODOLOGY

In this section, the methodological techniques used to attain study
objectives, that is to enhance short- and medium-term weather
forecasts, are discussed. It provides details regarding research
paradigm, design, and population, sample size, sampling
techniques used, models to be created and ethical consideration
to be considered. The section seeks to provide a systematic
framework for collecting, analyzing, and interpreting data to
accurately develop weather forecasting models for Nairobi
County.

3.1 Research Paradigm

The study adopted a positivist research paradigm. The paradigm
is based on the belief that reality can be objectively observed and
measured using empirical evidence. Positivism highlights how
quantitative techniques are used in data collection and analysis
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[40]; this made it convenient for the study goal which is to
enhance weather forecasting accuracy within Nairobi County. By
integrating machine learning algorithms and statistical analysis,
the study targeted to create models that can give accurate and
dependable weather forecasts. Positivism supports the
hypothesis-testing methodology, in which machine learning
algorithms are trained and assessed against traditional prediction
methods to establish their effectiveness. It also ensures a
systematic and scientific technique, initiating the generation of
replicable and generalizable results [41]. Hence, positivism
aligned with the objective of this study of integrating advanced
forecasting methods to solve real-world problems in weather
prediction, eventually adding to enhanced risk management and
disaster preparedness in Nairobi County.

3.2 Research Design

The study adopted experimental research design. The technique
involves manipulating one or more independent variables to
observe their effect on a dependent variable, typically under
controlled conditions, to establish cause-and-effect relationships
[42]. In this study, the same data was modelled using SVM,
Random Forest, Gradient Boost and ARIMA modelling to
establish which one provides the most accurate forecast in
different weather categories.

The first step involved collection of historical weather data on
wind speed, temperature and humidity based on days in Nairobi
County. Here, the dependent variables included historical data on
wind speed, temperature, and humidity while the independent
variable included windspeed lagl, temperature lagl, and
humidity lagl respectively; the independent variables served as
proxies for temporal effects. The next step was model
development where Autoregressive Integrated Moving Average
(ARIMA), Gradient Boosting (GB), Random Forest (RF), and
Support Vector Machines (SVM) were created and trained using
data. Thereafter, the developed models were evaluated using
metrics such as Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), Mean Squared Error (MSE) and Root
Mean Squared Error (RMSE). Finally, comparative analysis was
done to establish the most suited approach in handling weather
data forecasting within Nairobi County.

3.3 Dataset

The dataset of this study consists of all historical weather records
for Nairobi County; this includes information on wind speed,
temperature, and humidity. Periodically, the population covers
every recorded weather data specific to Nairobi County. The data
was sourced from a secondary database containing publicly
available  weather  dataset, = Weather = Query  Builder
(https://www.visualcrossing.com/weather/weather-dataservices/).
The site is selected considering that it has a real time update on
daily weather values. Also, Visual Crossing provides historical
weather data dating back to January 1, 1970, ensuring a robust
dataset for long-term analysis. Thirdly, the service offers global
geographic availability, making it suitable for studies focusing on
diverse locations, including Nairobi County. Moreover, Visual
Crossing integrates data from over 100,000 weather stations,
employing advanced interpolation methods to maintain data
accuracy and reliability, even in areas with sparse station
coverage. Additionally, the platform provides detailed weather
metrics, including wind speed, humidity, and temperature, which
are crucial for in-depth climatic analyses. Finally, Visual
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Crossing is recognized for its established credibility, as it is
widely used in both academic research and industry applications,
making it a trusted source for meteorological data analysis.
Reliability of the data source was attained through cross-
referencing sampled weather statistics with those from Kenya
Meteorological department to ascertain precision. The data is
acquired for the period between 1994 and 2024 (30 years)
translating to 11312 observations measured in days. The data was
downloaded in CSV format and is available for re-experiment.

The study employed stratified sampling technique to extract three
weather events of interest (humidity, temperature, and wind
speed). These elements were selected considering that they take
place daily and hence daily data available with minimum missing
values hence data quality. This is unlike factors like rainfall and
other precipitations that occur seasonally. From the three
conditions, a sample spanning 30 years (1994-2024) was
extracted. This is considering that the period represents short to
medium term weather data needed for this study. For the stated
period, data was collected on daily frequency resulting in a
sample size of 11312. The size was chosen considering that it is
large enough hence capable of building robust models.

3.5 Modelling Tools

Several libraries were utilized in forecasting short and medium-
term weather conditions in Nairobi County using Gradient
Boosting (GB), Random Forest (RF), Support Vector

Machine (SVM), and ARIMA models in Python. Gradient
Boosting, Random Forest, SVM, and ARIMA were selected due
to their strong performance in regression tasks, ability to model
nonlinear relationships, and suitability for structured and time-
series data. NumPy and Pandas were used to facilitate numerical
operations and data manipulation, whereas Scikit-learn provided
the required tools for implementing RF, GB, and SVM, as well as
evaluation metrics such as Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and R-squared. On the other hand,
Statsmodel was utilized for ARIMA modelling while Matplotlib
and Seaborn helped visualize weather trends and model
performance. Other relevant libraries SciPy for statistical
computations. Finally, Joblib library was used to initiate model
saving and efficiency during training. The above libraries ensured
robust data analysis, modeling, and assessment of forecasting
accuracy.

3.6 The Weather Forecasting Model

The developed model design, shown in figure 2, contains a robust
workflow for short- and medium-term weather prediction in
Nairobi County. The diagram starts with data collection and
preprocessing, entailing cleaning of data and feature engineering
to improve model efficiency. It shows a data split of A 70%-30%
train-test to ensure robust evaluation.

It then shows model selection phase containing four efficient
algorithms: Random Forest, Support Vector Machine, Gradient
Boosting, and ARIMA, all optimized through cross validation
and hyperparameter tuning. It then shows evaluation metrics such
as MSE, MAPE, MAE, and RMSE that assesses performance.
Visualization of results and accuracy gives insights into model
precision and trends, whereas techniques for handling
computational complexity are important for scalability and
efficiency throughout the modeling process. The contribution to
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knowledge is reflected in the comparative integration of machine
learning models (Random Forest, Gradient Boosting, SVM) with
a traditional time series model (ARIMA) within a unified
framework for localized weather forecasting. In addition, the
model design introduces a systematic training and evaluation

pipeline that emphasizes reproducibility and objective
comparison through standardized train-test splits and the
application of appropriate error metrics. Performance

enhancement was achieved by tuning model hyperparameters and
ensuring data integrity through preprocessing steps, which
collectively improved prediction accuracy without reliance on
manual or heuristic interventions. By situating the model
specifically in the context of Nairobi County, the study addresses
a contextual research gap in the application of hybrid predictive
algorithms to weather forecasting in Sub-Saharan urban settings.
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Figure 2: Model process

3.7 Experimental Setup

Model development involved a hybrid strategy, integrating both
machine learning and classical time series methods [39], to
evaluate and compare prediction performance across different
techniques. The first step involved performing Augmented
Dickey-Fuller (ADF) stationarity test, a critical assumption for
time series modeling to understand whether temperature,
humidity, and windspeed series exhibited unit roots. The test
resulted in p-values lower than 5% level of significance (p <
.001) for all three, justifying the use of ARIMA models without
differencing. A further automated grid search was performed
using SARIMAX to establish the optimal ARIMA(p,d,q) orders
for each dependent variable based on the lowest AIC. This
resulted in the ARIMA order 1,0,1 for all the three weather
conditions, the order that was selected while performing ARIMA
modelling. Next, the data was split into 70% training and 30%
testing set, a split that was chronological. Time-based split was
key in preserving temporal ordering of observations, thus
mitigating data leakage and simulating real-world prediction
conditions where models forecast future values based on
historical trends. The next step involved introducing lag features
to capture temporal dependencies that are integral in weather to
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enhance the predictive capacity of machine learning models. For
every weather variable (temperature, humidity, and windspeed), a
lag of one-time step (temp lagl, humidity lagl, and
windspeed lagl) which served as predictor variables for
forecasting their respective current values. Lag 1 was selected
considering the short-term temporal dependency assumption
usually observed in daily weather patterns. Further, an
autocorrelation test was done on individual variables to assess the
presence of temporal dependence. This was visualized as
displayed in figure 3 which displayed strong autocorrelation for
temperature and humidity and a weak one for windspeed.

Autocorelaton for Temp Autocorelaton for Humidty Autocorrelation for Windspeed
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Figure 3: Autocorrelation results

The significance of autocorrelation was further tested for the
three and this is displayed in table 2 below.

Table 2: Autocorrelation results

TEMP Lag 1 ACF:

Lag ACF CI Lower CI Upper Significant
a | 1 ©.823299 ©.80487 ©.841728 True
HUMIDITY Lag 1 ACF:

Lag ACF CI Lower CI Upper Significant
1 1 ©.796851 ©.778423 ©.81528 True
WINDSPEED Lag 1 ACF:

Lag ACF CI Lower CI Upper Significant
1 1 ©.283742 ©.265313 0.30217 True

Autocorrelation analysis revealed statistically significant lag-1
dependencies for temperature, humidity, and windspeed (p <
0.05), justifying the inclusion of one-period lag features as
predictors in the modeling process. Using the 70% training set,
Support Vector Regression (SVM), Random Forest (RF), and
Gradient Boosting (GB) were trained independently for
temperature, wind speed and humidity.

3.8 Model Evaluation

Model evaluation assesses the performance of the trained
machine learning models. The effectiveness of each model was
measured using four performance metrics including Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean
Absolute Percentage Error (MAPE), and R-squared. These
metrics provided insights into the accuracy and reliability of the
models' forecasts. The performance of machine learning models
was compared to traditional forecasting methods to determine
which approach offers the most accurate predictions for
temperature, humidity, and wind speed. This evaluation ensured
that the chosen models deliver reliable weather forecasts,
contributing to better decision making and risk management.
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4. RESULTS

The chapter presents the findings of the prediction models
employed to forecast short and medium-term weather patterns in
Nairobi County, covering between 1994 and 2024. The study
applied four models including Gradient Boosting (GB), Support
Vector Machine (SVM), Random Forest (RF), and ARIMA
models to project humidity, temperature, and windspeed. The
models were trained and tested through lagged input variables
extracted from historical weather data, with a clear distinction
between training and testing periods; this ensured unbiased
evaluation. Evaluating model performance was done using four
primary metrics including Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and the R-squared (R?) statistic. Of the four, the best-
performing machine learning model was established for
temperature, humidity, and windspeed separately, then compared
to the primary traditional method, ARIMA values. each weather
variable, followed by a comparative analysis with ARIMA
forecasts. Using best performing models, prediction
visualizations were created for every weather condition compared
to actual values. Besides, the section displays forecasted weather
patterns for the first 10 days of 2025 and the average monthly
forecasts for the entire 2025. Besides, the section chapter
discusses the relevance of model selection criteria, including
consistency, accuracy, and interpretability. Issues experienced
during modeling, like the existence of negative R? values, are
addressed to give a transparent account regarding the modeling
process.

4.1 Exploratory Data Analysis

Summary statistics

The daily values for the three elements were summarized using
mean, standard deviation and five-number summary as displayed
in table 3 below.

Table 3: Descriptive Statistics results

Weather Count Mean Std Min 25% 50% 75% Max
Element

Temperature 11312 66.83 298 554 64.8 669 689 773
(F)

Humidity 11312 70.33 9.73 345 639 709 774 973
Windspeed 11312 15.7 6.1 0 12 15 183 1358

In the last 30 years, Nairobi County experienced an average
temperature of 66.83 (SD = 2.98)’C. The lowest temperature was
55.4 recorded in 7/2/2004 while the highest temperature was 77.3
as recorded on 3/2/1998, suggesting an inconsistency in
temperature change patterns. While the value of standard
deviation is low (2.98) suggesting a small variation around the
mean, this is large enough to disrupt ecosystems by accelerating
biodiversity loss, changing species distributions, and intensifying
climate-related stresses like drought, wildfires, and habitat
degradation, calling for accurate forecasts. The county
experienced an average humidity level of 70.33 (9.73) with the
value of standard deviation expressing a wider variation around
the mean, suggesting over-time disparity in daily humidity
values. This was further displayed by the minimum and
maximum values that were 34.5 (2/22/2000) and 97.3
(11/4/2001) respectively, resulting in a range of 62.8 in a span of
1 year. This shows a huge difference in a short time, suggesting
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the need for accurate models that can handle sharp spikes in
weather patterns over time. Finally, the county had an average
windspeed of 15.7 (SD = 6.1) ms™', which is way higher than the
recommended figures. The county recorded a single day with
Om/s (1/15/1998) and 4795 days within and below the desired
10.8 — 13.8 m/s range suggesting that in most cases (6516 days),
it experienced higher speeds that may pause danger. For instance,
some days like 3/14/2011 experienced 135.8m/s windspeed, a
similar case with 4/29/2010 (117.4), 2/5/2014 (115.9), 9/25/2022
(114.1), 2/26/2016 (110.9), 7/6/2018 (108.3), 8/29/2015 (100.9),
and 10/22/2015 (100.8), values that are extreme and dangerous
for the county environment and infrastructure. It can be insighted
from the date figures that no linear trend was followed, calling
for forecasting models that can handle non-linear patterns
effectively.

4.2 Seasonality trend Analysis

Daily trends

Establishing trends for temperature, humidity, and windspeed was
done as shown in figure 4. Here, there is no clear linear pattern
(negative or positive with respect to time). This suggests
irregularity in weather patterns that require advanced models that
can capture nonlinear weather conditions. The highest daily
disparities were recorded for windspeed that had highest and
lowest spikes, suggesting greatest difference. Besides, humidity
also recorded similar trends with lowest disparity emanating from
daily temperatures. The results suggest that Nairobi County
weather patterns specific to Temperature, Humidity, and
Windspeed are irregular with no specific trend, making it difficult
to project using traditional patterns that do not capture non-linear

complex data.
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Figure 4: Daily weather (Temp, Humidity, Windspeed) trends
over time (1994 —2024)

Monthly Seasonal Analysis

Post normalization seasonality analysis was done establish
monthly weather patterns

(temperature, humidity, and wind speed) over time across
different periods in Nairobi County using boxplots as shown in
figure 5. The results displayed that in the past 30 years,
temperatures were lowest between July and August and highest in
February, March, and October with outliers suggesting that the
temperatures were not consistent throughout the year, calling for
advanced analytics to establish the non-linear seasonal patterns.
For humidity, the highest scores were recorded in April, May,
November, and December with the lowest scores being in
February and September. The presence of seasonal outliers
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exhibited no significant trends making the data complex. Finally,
windspeed recorded similar trends to that of temperature with
highest values recorded in the first and last quarters of the year
and lowest between May and August. Generally, the three
weather patterns recorded outliers throughout the twelve months
suggesting inconsistencies in their recorded patterns hence
complexities, calling for robust models that captures non-linear
relationships over time.

efficiently converge during training and enhancing general
predictive performance.

Thereafter, histograms were constructed to confirm data
distribution as shown in figure 6. The results showed attainment
of normality in temperature and humidity variables. While there
existed positively skewed values in windspeed, bell shaped was
attained, allowing for the assumption of normality.
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Figure 5: Seasonal variation of Temperature, Humidity, and
Wind Speed

Normalization

The next step involved visualizing data normality, a property
required to ensure that all input variables contributed equally to
the machine learning models. This involved boxplots for
temperature, humidity and windspeed as expressed in figure 6.
Based on the boxplots, windspeed was strongly skewed to the
right showing that most values were low with the presence of
outliers, suggesting non-normality as fulfilled by the Shapiro
Wilk test result (p <.001). Also, Humidity was skewed to the left
showing that most values were high. A further normality test
(Shapiro Wilk), resulted in a p-value of <.001, confirming
nonnormality. Finally, temperature recorded outliers on both tails
with a Shapiro Wilk p-value of <.001 suggesting non-normality.
This non-normality, combined with differences in units and
scales, necessitated the normalization of data prior to modeling.
Such differences can bias models that are sensitive to feature
scaling, like Support Vector Machines (SVM) and Gradient
Boosting (GB).

Temperatue isrbuton ity Distrbutn Wrdspeed Disrtuton
n{ » §
. '
» y §
H i g
" uf 3¢ !
= 8
" 4‘7
8 ] ol T
Mosth ! 1
e

Figure 6: Temperature, Humidity, and windspeed distribution
boxplots

Addressing skewness and non-normality involved the use of Min-
Max normalization where all features were rescaled to a standard
range of [0, 1]. The method preserved the shape of distribution
while aligning the scales, giving room for the model to more
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Figure 7: Temperature, Humidity, and windspeed distribution
boxplots after normalization

4.3 Model Evaluation

The ML models, alongside ARIMA, were then evaluated using
four metrics (MAE, MAPE, RMSE, and R-squared) as displayed
in table 4 below.

Table 4: Model Evaluation results

Model SVM RF GB ARIMA
Variable = Metric
Humidity MAE 0.07 0.08 0.07 0.13
MAPE | 14.95% 16.29% 14.97% 31.65%
RMSE | 0.09 0.10 0.09 0.16
R? 68.60% 63.22% 68.37% -3.48%
Temp MAE  0.06 0.06 0.05 0.12
MAPE  10.75% 11.27% 10.45%  21.76%
RMSE @ 0.07 0.07 0.07 0.15
R? 72.72%  69.43%  74.28% -17.86%
Windspeed MAE 0.05 0.03 0.03 0.02
MAPE | 46.32% 23.05% 21.07% 24.03%
RMSE @ 0.06 0.05 0.05 0.05
R? -53.47% -833% 0.31%  -0.79%

The evaluation results displayed better performance among
Machine Learning models relative to ARIMA. The performance
stood out specifically for humidity and Temperature. For
humidity, lower MAE values were recorded in SVM (.07), GB
(.08), and RF (.08) compared to ARIMA which recorded .13.
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Besides, the three ML models recorded Mean Absolute
Percentage Errors (MAPE) below the required maximum of 20%
while ARIMA recorded 31.65% which is way higher. From the
metric, the best performing models were SVM (14.95%) and GB
(14.97%) followed by RF (16.29%). The same trend was
confirmed in Root Mean Squared Error where GB and SVM
recorded .09, RF recorded .10 and ARIMA recorded [16]. The
final comparison was on the coefficient of determination where
the highest model variation explained was extracted from SVM
(68.60%) followed by GB (68.37%) and RF (63.22%). ARIMA
recorded a negative R-squared which shows it is poor in
predicting short- and medium-term humidity. Therefore, while
seeking to establish accurate humidity forecasts, it is
recommended to apply SVM having outstood in the four metrics.
The trained model was applied in predicting the testing data and
this is visualized in figure 8 below.

Humidity - Forecast Comparison (Test Set)

— Actual
— SVM Prediction

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Date

Figure 8: SVM humidity forecast trend using testing set

For temperature, ML models outperformed ARIMA in terms of
MAE, MAPE, RMSE, and R-squared. The best performing
model was GB with a lower MAE of .05, MAPE of 10.45%,
RMSE of .07 and percentage of the model variation explained of
74.28%. This was closely followed by SVM with a MAE of .06,
MAPE of 10.75%, RMSE of .07 and the percentage variance of
the model explained of 72.72%. Closely following model was RF
with a MAE of .06, MAPE of 11.27%, RMSE of .07, and the
percentage variance explained of 69.43%. ARIMA on the other
hand, recorded a higher MAE of .12, MAPE of 21.76% which is
above 20%, RMSE of .15 and a negative coefficient of
determination, suggesting it is not appropriate forecasting
temperature. Therefore, while seeking to establish accurate
humidity forecasts, it is recommended to apply GB having
outstood in the four metrics. The trained model was applied in
predicting the testing data and this is visualized in figure 9 below.
Temperature - Forecast Comparison (Test Set)
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Figure 9: GB temperature forecast trend using testing set
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While all the ML models were high achievers here, GB is
recommended for predicting daily short- and medium-term
temperature conditions in Nairobi County.

Whereas the first two weather conditions realized better
forecasting accuracy, no model was effective in predicting
windspeed, a factor attributable to the high disparity (spikes) in
the recorded daily conditions even after data standardization. The
four models performed better in terms of MAE. Nonetheless,
SVM was the worst performer in terms of MAPE (46.32%) same
as RF (23.05%), GB (21.07%) and ARIMA (24.03%). This was
the same case with coefficient of determination where the
percentage variance of the model explained was highest for GB
(.31%) and negative for SVM (-53.47%), RF (- 83%), and
ARIMA (-.79%), suggesting the need for other ML models that
will accurately capture the data patterns of wind data.

5. DISCUSSION OF RESULTS

The study sought to explore the predictive power of machine
learning models (RF, GB, and SVM) in short- and medium-term
weather forecasting in comparison to a classical time series
approach (ARIMA). This was done with specific focus Nairobi
County’s daily temperature, humidity, and windspeed data,
covering a period of 30 years (1/1/1994 — 31/12/2024). The
analysis was guided by a rising body of research that
acknowledges the capacity of machine learning in handling
nonlinear, complex data with wider flexibility relative to
traditional statistical techniques. The study results displayed that,
generally, the three ML models outperformed ARIMA modelling
in predicting short- and medium-term humidity and temperature
within this period. For the two weather variables, the ML models
recorded Mean Absolute percentage errors of less than the
recommended 20% maximum while ARIMA recorded values
above 20%. Besides, The ML models explained stronger
coefficient of determination than ARIMA. Specifically, SVM
outstood in predicting humidity followed closely by GB,
suggesting their capacity to handle complex and irregular short-
and medium-term weather data of Nairobi County. For
temperature, GB stood higher in performance followed closely by
SVM and REF, further stressing on the strength to handle complex
data. While the ML models outstand, it is worth highlighting that
they performed differently for dissimilar conditions. Based on
this, SVM and GB models were respectively selected to be the
best predictors of humidity and temperature. The four models,
nonetheless, struggled in predicting short- and medium-term
wind speed patterns with all recording MAPE values above 20%
hence not accurate. This was further confirmed by the lower
value of R-squared where SVM, RF, and ARIMA recorded
negative values and GB a variation close to 0.00%. The
struggling of models predicting windspeed can be attributed to its
low autocorrelation, high variability, and sensitivity to localized,
transient environmental factors that are hard to model. For
instance, while most dates recorded wind speed of between 5 —
20 m/s, some recorded higher above 100 resulting in a wide
disparity even after normalization. Also insighted is that of the
three weather conditions selected, temperature was the most
accurately predicted with lowest Mean Absolute Percentage Error
and strongest percentage weather variation explained by all the
four models, a factor attributable to the strongest autocorrelation
and low data variability recorded.
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Discussing the study findings to the existing works of literature,
then the results largely support the effectiveness of supervised
machine learning models, specifically SVM, RF, and GB in
predicting short- and medium-term weather conditions such as
temperature and humidity. The results align with assertions in the
existing literature that supervised learning models exhibit
substantially better performance in complex forecasting tasks
when there is adequate historical labeled data [11;19]. Referring
to temperature, GB model performed the best, recording the
lowest RMSE and highest R?, a finding that is consistent with
that of Anwar et al. (2021) who established high accuracy of GB
in predicting rainfall over a 7-year period, alongside the finding
by [11] who reported significant enhancements in wind speed
prediction using GB over WRFbased models. Nonetheless, as
reported by [18], GB only works well in situations where data is
not highly seasonal or noisy, a factor that cites model instability
and performance degradation under such conditions as observed
in wind speed prediction performance. For SVM, strong
performance was demonstrated in forecasting humidity in the
study, strongly aligning with [20] and Hayaty et al. (2023) who
established that SVMs are effective and efficient in detecting
subtle patterns in non-linear and complex datasets for short- and
medium-term forecasts. Nonetheless, the model recorded a higher
MAPE for humidity relative to temperature prediction,
suggesting the existence of nonlinear dynamics or feature
limitations, consistent with the findings by Yin et al. (2022), who
highlighted that SVM struggle in handling nonlinearity and
extreme events in precipitation forecasts. The third ML model,
RF, while exhibiting robustness in predicting temperature,
underperformed relative to GB and SVM across all variables.
This result confirms observations that emphasized the strength of
RF in modeling nonlinearity and handling overfitting but also
highlighted its computational demands [44]. Specifically, this
study recorded slightly lower values of R? for RF relative to those
found by Hill et al. (2020), who attained an R? of 0.97 in severe
weather forecasting, a factor attributable to data or regional
differences in weather inconsistency between Nairobi and the
United States. While GB and SVM outperformed RF in making
humidity and temperature forecasts, some literature including
[46] and [47], established that RF models perform more reliably
than boosting methods in small to moderate datasets, a factor
attributed to reduced variance and simpler interpretability,
categorically in resource-limited environments. In contrast,
ARIMA models underachieved across temperature, humidity, and
wind speed, a finding consistent with literature, which suggests
that statistical models struggle to capture complex and nonlinear
patterns, and interactions present in meteorological systems [17].
The finding is further justified by the fact that that ARIMA
modelling, being univariate, does not account for
interdependence among numerous variables, which is key in
accurate prediction thus the low performance in forecasting non-
linear wind speed, temperature, and humidity [28]. Nevertheless,
certain studies express that ARIMA models, when integrated with
exogenous regressors (ARIMAX) or within hybrid frameworks,
can outperform or match ML models in stable climates [12],
something that is not the case with Nairobi County temperature,
wind speed and humidity patterns over time.

From the comparison, it is clear that whereas machine learning
models give clear advantages in short- and medium-term weather
prediction, selectin of models should be specific to variable of
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interest. Besides, model enhancements such as hybridization and
feature tuning may further enhance predictive performance in
future research. In general, this study results authenticate the
rising acknowledgement that machine learning techniques
provide superior precision and adaptability in short- and medium-
term weather predictions in urban settings, specifically in tropical
cities like Nairobi. The research insights, other than reinforcing
theoretical basis for adopting ML in meteorological prediction,
provide practical justification for its usage in sub-Saharan
African settings with limited infrastructure for complex physical

modeling.
6. CONCLUSION AND FUTURE WORK
The research sought to examine the applicability and

performance of three machine learning (ML) models, SVM, RF,
and GB in predicting short- and medium-term daily weather
conditions in Nairobi County compared with classical ARIMA.
Here, daily recordings for humidity, temperature, and windspeed
as the target variables. The results displayed that ML models
outperformed ARIMA in most prediction activities, specifically
in forecasting humidity where SVM emerged the best followed
by GB and temperature, where GB achieved the highest accuracy
followed by SVM; these were evaluated across multiple metrics
(RMSE, MAE, MAPE, and R?). The study, however, showed the
selected ML models as poor in predicting windspeed. The low
performance of ARIMA across the three weather patterns can be
attributed to its inability to capture non-linear complex data
unlike ML models.

The findings stress the ML models’ flexibility in learning
complex temporal patterns and interactions between variables,
which is a clear advantage over ARIMA's linear and univariate
setting. The study also highlighted the value of incorporating
lagged variables to capture temporal dependencies in the data,
enabling the models to learn from past behavior. Besides, RF
performed lower than SVM and GB in making predictions. By
attaining  superior prediction performance using ML
methodologies, the study successfully addressed its main
objectives. It displayed that machine learning models can be
practicable and possibly superior substitutes to classical time
series techniques in the setting of localized weather forecasting.
The study findings, other than contributing to the increasing body
of literature on ML-based prediction, also provide real-world
insights for disaster preparedness, urban planning, and climate
informed decision-making in developing nations like Kenya.
Future studies should build on these findings by exploring multi-
step forecasting strategies, additional predictors, and advanced
deep learning or ensemble architecture.

From the study results, the following recommendations are made
regarding the accurate forecasting of short- and medium-term
weather conditions in Nairobi County, particularly temperature,
windspeed, and humidity: Incorporation of Machine Learning
into National Weather Systems , Application of Hybrid and
Ensemble Machine Learning Models for enhanced Wind Speed
forecasting, Institutionalize =~ Comparative  Evaluation of
Forecasting Models, Replicate and Scale ML-Based Forecasting
Systems Across Counties
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