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ABSTRACT  

 
Traditional data prediction techniques like AutoRegressive 

Integrated Moving Average (ARIMA) and Numerical forecasting 

have experienced decreased accuracy and reliability over time. 

This has been largely attributed to their inefficiency in handling 

the changing climatic patterns. These methods have challenges in 

accommodating non-linear and complex interactions between 

different climatic factors. They are highly sensitive to data 

quality and resolution; hence, small errors in the initial conditions 

result in low precision forecasts. They also struggle with 

forecasting small-scale weather phenomena like localized storms 

based on their limited temporal and spatial resolution. There is 

therefore the need to develop more robust and accurate 

techniques for weather forecasting to enhance safety and 

preparedness. This study employs machine learning (ML) models 

namely Random Forest (RF), Support Vector Machines (SVM) 

and Gradient Boosting (GB) for weather forecasting. It focuses 

on short- and medium-term weather patterns specific to humidity, 

windspeed and daily temperatures targeting Nairobi County. 

Experimental results show that Gradient Boosting (74.28%) 

perform better than the other models in predicting temperature, 

followed closely by Random Forest (72.72%). For humidity, 

SVM (68.60%) and GB (68.37%) performed well, while ARIMA 

performed poorly across both variables. These findings highlight 

the superior performance of ensemble and kernel-based machine 

learning algorithms for weather forecasting compared to the 

traditional methods.   

 

Key words: Machine Learning, Support Vector Machines, 

Gradient Boosting, ARIMA model, Random Forest, Forecast, 

Accuracy, Traditional Weather Forecasting.  

 

1. INTRODUCTION  

Accurate weather prediction is important for areas with growing 

population and urbanization that increase vulnerability to extreme 

weather conditions. For instance, Nairobi County experienced 

unusual extreme rainfall between April and May, an issue that is 

attributed to inaccurate and unreliable weather forecast by the 

current methods [1]. With such extreme conditions, urban areas 

risk disruption in their socioeconomic activities citing the need 

for accurate forecasts. Precise weather forecasts help urban 

managers to plan, enhance safety, mitigate delays in traffic, and 

make informed adaptive strategies encountering climate change 

[1]. Such strategies include resource allocation, infrastructural 

development, and policy formulation tailored at improving the 

county’s resilience to climate related risks.   

Traditional weather methods, Numerical weather prediction 

(NWP) and synoptic forecasting, have setbacks accommodating 

non-linear and complex interactions between different climatic 

factors. NWP depends on technical mathematical models that 

simulate atmospheric behavior through fluid dynamics and 

thermodynamics principles which is resource intensive [2]. 

Equally, the NWP models’ accuracy diminishes when forecasting 

short-range, climate-enhanced weather events more so in areas 

with complex geographical set up like Nairobi [4]. The technique 

is highly sensitive to data quality and resolution; hence, small 

errors in the initial conditions result in low precision forecasts, a 

scenario known as butterfly effect. The method also struggles in 

forecasting small-scale weather phenomena like localized storms 

based on their limited temporal and spatial resolution. Synoptic 

weather prediction is subject to recognition of nature patterns and 

dependence on historical analogs making the technique less 

precise more so with the changing climatic and weather 

conditions. The rising variability in patterns of weather because 

of climate change makes this technique less precise. The third 

method, climatology, lacks precision as it provides general trends 

making it less useful; it does not accurately forecast extreme 

weather conditions, making it unreliable [2]. Finally, the 

analogue method presents a challenge as getting exact analogs in 

unique and unprecedented weather conditions is difficult [3]. 

There is therefore, the need to deploy better techniques that 

solves the unreliability and inaccuracy challenges.  

 

Machine learning can be used to fill these gaps. The flexibility of 

machine learning models in adapting non-linear relationships and 

high dimensional data makes them suitable in weather prediction 

[5]. Models such as Support Vector Machine, Random Forest, 

and Gradient Boosting have shown great promise in weather 

prediction applications. Random Forest has high precision 

considering the multiple decision trees. The method constructs 

multiple decision trees on numerous data subsets and averages 

their predictions, thus mitigating overfitting and improving 

reliability of the forecast [6]. On the other hand, gradient 

boosting sequentially builds models with every new model 

amending the errors from the previous ones thus improving the 

overall accuracy and robustness. Support Vector Machines 

(SVM), SVM constructs hyperplanes that maximize the margin 

between various data classes; this makes it relevant and accurate 

at establishing patterns and trends within large, complex datasets. 

In this study, the three ML models (SVM, GB, and RF) are 
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selected for analysis because of the weather data that is non-

linear and complex, a problem that they solve. In addition, the 

techniques are known for their robustness and capability to 

manage high-dimensional data without overfitting. The models as 

well offer flexibility in hyperparameter tuning, enabling tailored 

optimization of models based on the given weather dataset 

characteristics [7]. While machine learning models are 

computationally complex, advancement in cloud computing and 

the existence of open-source libraries like scikit-learn, 

statsmodels, matplotlib, seaborn, and joblib have made them 

more feasible to implement even with limited resources [8].   

 

The aim of this research is to use machine learning models to 

enhance weather forecasting for short and medium weather 

patterns. In this research, we assess and compare the accuracy 

and reliability of forecasting short and medium range weather 

patterns in Nairobi County using Machine Learning and ARIMA 

models. We conduct review of existing prediction methods and 

modes, develop and implement machine learning models namely 

RF, GB, and SVM for weather forecasting. We also evaluate the 

effectiveness of the machine learning models in terms of 

performance in comparison with other traditional models. The 

study therefore addresses the drawbacks of traditional weather 

prediction techniques in Nairobi County. This will enhance 

preparedness for disaster and improve risk management. It will 

also help reduce the effect of extreme weather conditions on 

social activities, healthcare service provision, and educational 

services, transport within and outside the county, and general 

economic activities. By accurately predicting weather, the county 

team will make proper and timely planning that will help avoid 

disasters like the recently experienced floods. Finally, through 

this study, advancement of weather prediction methods will be 

enhanced through the provision of models that can be replicated 

in other regions with similar problems.  

 

2. LITERATURE REVIEW  

In current years, the application of machine learning (ML) in 

weather forecasting has gathered significant attention. This 

attention has specifically been driven by the need for more 

accurate and reliable prediction amidst changing climate change. 

Several research works originally acknowledged traditional 

prediction techniques as better in giving accurate forecasts. This 

has transformed over time considering the irregular weather 

patterns being experienced. As such, current studies display the 

challenges of previous results by justifying the traditional 

techniques’ incapacity to accurately forecast the patterns of short- 

and medium-term weather. In response, current studies advocate 

for the use of more robust ML algorithms to accurately predict 

patterns and trends in weather. This literature review evaluates 

how ML methods can enhance precision in forecasting weather. It 

explores the capacity by Random Forest, Gradient Boosting, and 

Support Vector Machines (SVM) to enhance accuracy prediction 

in comparison to Autoregressive Integrated Moving Average 

models.   

2.2 Traditional Weather Forecasting Methods  

There are many traditional methods used in predicting weather. 

These include Synoptic forecasting, Numerical Weather 

Prediction (NWP), climatology, persistence, and analog 

predictions [9]. The methods are discussed in the following 

subsections.   

2.2.1. Numerical Weather Prediction  

Numerical Weather Prediction technique employs complex 

mathematical models to simulate atmospheric patterns in 

accordance with the observed initial conditions. The method 

forecasts future weather through solving fluids and 

thermodynamics equations. The NWP models require high-

quality and high-resolution data; they are also computationally 

intensive [3] making it difficult to employ them in forecasting. 

NWP is highly dependent on the initial atmospheric state, 

showing that observational data errors can multiply and expand 

during the prediction phase [2]. Categorically, this is mostly 

observed in areas with sparse observational networks and 

complex topography, like Nairobi County, resulting in low 

prediction precision using NWP [9]. In support of the challenge, 

[38], being specific on Africa, emphasized that NWP had low 

precision, making the forecast unreliable. This, as they claimed, 

is based on its northerly biases in the upper troposphere, 

meridional wind inconsistencies and cool prejudice in the 

northern latitudes that need not be employed on predicting 

weather in dense regions like Nairobi County.  

2.2.2. Synoptic Forecast  

Synoptic weather prediction involves weather patterns and 

systems analysis via upper-air and surface observations. 

Meteorologists interpret patterns in this technique to predict 

future events with respect to their skills and experiences. 

Findings highlighted that synoptic prediction, when integrated 

with progressive observational data, can substantially improve 

short-term weather forecasts through providing comprehensive 

insights into weather systems [5]. Nonetheless, the method 

remains limited to individual explanations and the integral 

complexity of meteorological patterns, requiring the 

incorporation of machine learning models to improve prediction 

reliability and accuracy. This method gives important insights; 

nevertheless, its precision is limited to the subjective nature of 

identifying patterns and dependence on historical analogs [7]. 

Besides, growing weather inconsistency in weather patterns as a 

result of climate change obscures further the synoptic technique 

as historical comparison growingly becomes less dependable 

[11]. In justification to this limitation, depending on long-term 

historical weather to predict short- and medium-term conditions 

results in low accuracy because of the ever-changing weather 

patterns, a factor that applies in Nairobi weather conditions [9].  

2.2.3. Climatology  

Climatology depends on historical weather data to forecast future 

weather events based on long-term averages and patterns. This 

method has been shown to be effective in providing baseline 

forecasts, as demonstrated by studies such as those by [5], which 

utilized historical climate data to generate reliable long-term 

weather predictions. However, climatology can fall short in 

capturing short-term variability and recent climatic shifts, which 

can be addressed by integrating more dynamic techniques like 

machine learning to enhance forecast accuracy and adapt to 

recent changes in weather patterns. This is mainly useful in long 

term predictions like forecasting seasonal patterns and trends [8]. 

Nevertheless, its precision reduces for short term predictions in 

areas that experience substantial climatic changes [15]. Assuming 

that future weather conditions will be like the historical average 

usually fails in the case of rising climate variability[37]. With 

respect to Ethiopia and East Africa region, climatology technique 

as obsolete in a period where rapid changes in climatic and 
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weather conditions are experienced due to urbanization. 

Specifically, they state that with the construction of skyscrapers, 

the prevailing weather patterns adjust and cannot thus be 

forecasted on historical averages.   

2.2.4. Analog forecasting  

Analog forecasting entails the comparison of current weather 

patterns with the historical patterns that gave similar weather 

conditions. Here, forecasters check on historical analogs to 

forecast the possible outcome of existing conditions. This 

technique has been effectively used in studies [19], which 

demonstrated that identifying historical analogs can provide 

valuable insights into future weather events [6]. However, analog 

forecasting can be limited by its reliance on historical data, which 

may not account for recent climatic changes or emerging trends, 

making it beneficial to combine this approach with machine 

learning techniques to capture more complex and current weather 

dynamics. Whereas analog technique can be important, it is 

limited by the existence of same historical patterns and the ability 

by the predictor to recognize and interpret accurately these 

analogs [33]. They further state that some weather events are 

unique, such as extreme floods, which render the technique 

ineffective. Justifying the above limitation the swiftly changing 

weather patterns in urban areas within East Africa renders analog 

forecasting less effective as current weather patterns are to a 

better percentage, not like the historical patterns [32].   

2.2.5. Autoregressive Integrated Moving Average (ARIMA)  

ARIMA modeling has extensively been employed in weather 

forecasting specifically on linear time series data. ARIMA model 

forecasted visibility based on existing historical data [12]. 

Another application was done by Tektas (2010) in Instabul for 

general weather predictions [13]. ARIMA modeling is designed 

for univariate data and focusses on a single variable such as 

rainfall, wind speed or humidity [10]. The model, as explained by 

[45], incorporates autoregressive, integrated, and moving average 

components to capture trend and seasonality patterns making it 

important for predicting short term weather. The model 

dependence on past data allows it to forecast coming weather 

conditions with moderate to high accuracy in case of consistent 

conditions [17]. Nonetheless, ARIMA lacks the capacity to 

handle non-linear weather conditions with sudden changes like 

storms, hurricanes and atmospheric pressure [12]. Thus, being a 

linear model, ARIMA struggles to precisely forecast complex and 

non-linear interactions. In a different study, ARIMA modelling, 

being univariate, does not account for interdependence among 

numerous variables, which is key in accurate prediction [28]. The 

study indicated that while ARIMA can account for time series 

trends, it cannot establish relationships between weather 

variables such as temperature vs humidity or rainfall vs 

hurricanes hence another limitation. ARIMA assumes 

stationarity, as such, it only works best with data having constant 

statistical properties over time, a case that is rare considering the 

volatile weather patterns [13].  

2.3 Machine Learning   

Machine learning models are classified into three including 

supervised learning, unsupervised learning, and reinforcement 

learning [18]. The three categories are applied depending on the 

available data and nature of the task. In supervised learning, 

models are trained based on labeled datasets. Models learn 

through associating input data with corresponding output labels 

[19]. Supervised learning is effective in regression and 

classification tasks where the target is to forecast results of new, 

unseen data. Some of the commonly used supervised models 

include support vector machines, decision trees, Random Forest, 

Neural Networks and Gradient Boosting. Supervised learning is 

applied in different domains considering its capacity to generalize 

from the training data [23]. Nonetheless, it requires large, labeled 

datasets which is difficult to get in fields like weather forecasting 

hence a limitation. On the other hand, unsupervised learning 

algorithms identifies patterns and relationships in unlabeled 

dataset without predefined output labels. Some of the used 

unsupervised methods include dimensionality reduction and 

clustering to explore data structures [11]. While unsupervised 

machine learning is important in exploratory data analysis, is less 

effective in making actionable forecasts thus a limitation [28]. 

The final machine learning technique is reinforcement learning, 

where an agent learns through environmental interaction and 

feedback received in the form of penalties or rewards. Therefore, 

reinforcement learning is mainly important in tasks requiring 

sequential decision-making since the agent performance 

improves continuously based on previous experiences [24]. 

Reinforcement learning is successful in domains such as robotics 

and games [13]. Nonetheless, the study established that the 

application of reinforcement learning in predicting weather is 

limited based on the sequential nature of prediction in which 

future weather patterns relieve past patterns.  For this study, 

supervised machine learning is selected because it gives room for 

developing predictive models based on labeled datasets, in which 

historical weather data is associated with known outcomes. The 

technique is specifically effective in establishing complex 

patterns and associations within the data, improving forecasting 

accuracy for short and medium-term weather conditions. Unlike 

unsupervised learning seeking to find hidden structures in 

unlabeled data, and reinforcement learning depending on 

feedback from actions taken in an environment, supervised 

learning gives a direct mapping from inputs to outputs making it 

relevant for this study [11]. The direct design, alongside its 

ability to fine-tune algorithms and validate them using 

performance metrics, makes supervised machine learning models 

robust and reliable for making forecasts in a real world context, 

thus highly suitable for weather forecasting.  

2.3.1 Classification Techniques in Machine Learning  
Classification techniques are critical in machine learning for tasks 

such as classification and prediction of weather patterns. Three 

supervised machine learning techniques including Random 

Forest, Gradient Boosting, and Support Vector Machine are 

discussed in this section.   

i. Random Forest  

Random Forest (RF) is an ensemble machine learning method 

that builds numerous decision trees during training; it outputs the 

classification mode or mean regression (prediction) of the single 

trees. RF is specifically efficient in mitigating overfitting and 

capturing non-linear associations in the data [21] The method has 

widely been applied in weather forecasting in developed nations 

to forecast weather conditions as precipitation, temperature, and 

wind speed [8]. In the United States for example, a blend of the 

Storm Prediction Center’s (SPC’s) convective outlooks and RF 

outlooks significantly outperformed the SPC outlooks alone, 

suggesting that use of RFs can improve operational severe 

weather forecasting throughout the Day 1–3 period, which is 

short term [44]. In the same study, random forest machine 
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learning model recorded minimum error values of 0.750 MSE 

and R2 score of 0.97 relative to regression models and SVM ML 

model showing that this technique is more accurate in short-, 

medium- and long-term weather patterns [44]. Therefore, it is 

worth noting that the application of RF in forecasting short- and 

medium-term weather patterns within Nairobi County will result 

in a more accurate result. While the technique offers robust 

solution, it has computational limitations including high cost and 

memory usage due to the large number of decision trees, issues 

that can be solved through hyperparameter tuning to optimize the 

number of trees. It also requires significant training time when 

using complex data and may experience parallelization 

challenges that further affect the efficiency of real-time weather 

forecasts [22].   

ii. Gradient Boosting  

Gradient Boosting (GB) is a powerful machine learning method 

that sequentially builds models. Here, every new model corrects 

errors of the previous ones thus enhancing the overall accuracy 

and robustness of the previous model, specifically in handling 

complex data relationships and outliers. Friedman introduced the 

Gradient Boosting Machines (GBMs) concept in 2001 [23]. This 

has since been used to forecast meteorological variables with 

high precision. In a study by Anwar et al. (2021) involving 7-year 

period historical weather, the gradient boosting model produced 

an accurate daily rainfall forecast with training RMSE of 2.7 mm 

and the testing MAE of 8.8 mm. Nonetheless, they experienced 

longer duration of implementation which is a challenge.  In a 

different study on wind speed forecast, the results displayed that 

after using 300 features in different layers and heights, GB 

resulted in more accurate results than weather and research 

forecasting (WRF) models like decision tree regression (DTR) 

and multi-layer perceptron regression (MLPR) [27]. Particularly, 

GB reduced root mean squared error (RMSE) of the predicted 

wind speed from 2.7-3.5 ms
-1 

in the original WRF. It also 

improved the index of agreement (IA) by 0.10-0.18 and Nash-

Sutcliffe efficiency (NSE) by 0.06 – 06. Stating the technique 

limitation, they experienced high computational cost and memory 

usage due to sequential training of trees. In a different study on 

SYM-H index, GB resulted in more accurate and consistent 

prediction with physical understanding [16]. Specifically, GB 

yielded a more statistically significant improvement in root mean 

squared error relative to Burton equation and black-box neural 

network schemes. Like the last two studies, they also experienced 

problems with computation time and cost rendering the technique 

resource intensive. Despite these limitations, this technique is 

among the important machine learning algorithms that should be 

employed in forecasting short- and medium-term weather 

patterns within Nairobi County.  

iii. Support Vector Machines  

Support Vector Machines (SVM) are supervised learning models; 

SVM analyzes data for regression and classification analysis. The 

technique is effective for high-dimensional spaces; it can also 

handle non-linear data through kernel functions [24]. In weather 

prediction, SVMs have been used to forecast phenomena like 

temperature, precipitation, and wind speed. Introduced by Vapnik 

(1995), SVM algorithm has since been adapted in various 

applications, including meteorology. SVMs have the capacity to 

establish subtle patterns in large and complex sets of data that 

traditional methods might miss, thus enhancing forecasts 

involving short and medium-range weather conditions [25]. SVM 

model improved the spatial representation of hourly precipitation, 

increasing correlation coefficient from 0.39 to 0.49 in January 

and 0.24 to 0.30 in July in the cross-validation experiment in 

Japan [21]. The technique nonetheless underestimated the hourly 

precipitation variability same as extreme precipitation events, a 

factor attributed to the non-linearity of precipitation data, 

suboptimal feature selection, sensitivity to noise, and complex 

atmospheric interactions that are hard to model accurately. In a 

different study, forecasting humidity, wind speed, temperature, 

and rainfall in Indonesia, a precision value of 82% rain was 

obtained with an evaluation ROC score of 0.74 further showing 

the ML algorithm’s enhancement of forecasting accuracy [19].  

The method, nonetheless, recorded high cost of computation, a 

factor that was solved using kernel approximation to reduce 

complexity, as reported by the authors, giving an insight that 

machine learning models are generally expensive to employ in 

weather forecasting. Nonetheless, alongside Gradient Boosting 

and Random Forest, Support Vector Machine algorithms need to 

be employed in quest to establish the most accurate forecasting 

technique for Nairobi County Weather.  

2.3.2 Data Representation in Machine Learning  

Representing multidimensional data that change over time and 

across geographical location involves the use of time series, 

spatial and tabulation. Time series data is key in weather 

prediction; it captures temporal progression of atmospheric 

variables including wind speed, precipitation, and temperature 

among others. Time series representation allows machine 

learning models to account for longitudinal changes, thus 

important for forecasting future weather patterns [15]. Over time, 

traditional models like ARIMA have widely employed time series 

to forecast weather considering its ability to model time 

dependencies and linear relationships [44]. Nonetheless, the 

models struggle to capture non-linear and complex relationships 

thus limiting the forecasting accuracy [42]. The use of machine 

learning techniques like Long Short-Term Memory (LSTM) 

networks that are particularly designed to solve both short and 

long-term fluctuations in sequential data solves this problem. 

Through effectively learning the weather patterns and handling 

longer data sequences, LSTMs have enhanced accuracy in 

weather prediction [14]. The second representation, spatial data, 

captures geographic variability in the weather system more so for 

phenomenon like cloud formation or storms. Spatial information 

is extracted from radar data, satellite imagery, and meteorological 

stations, providing data on atmospheric conditions within given 

locations [30].  

Handling spatial data has majorly been done using Convolutional 

Neural Networks (CNNs) that process images [44]. CNN is 

preferred as they identify local patterns of weather; it also 

forecasts the changes or movements in the patterns over time. 

CNN successfully identifies complex weather patterns such as 

hurricanes and storms, thus enhancing accuracy in region-

specific predictions [21]. The technique, however, experience a 

problem in integrating spatial information with temporal 

dependencies, presenting a gap for research [24]. The final 

representation is tabular data that represents weather components 

in structured format. Here, every row corresponds to a specific 

observation and each column a variable. Tabular data is mostly 

employed for simpler machine learning models such as support 

vector machine and decision trees [14]. Despite being easy to 
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manage, extensive preprocessing is required alongside feature 

engineering to capture relationships between variables [43].   

 

2.3.3 Evaluation Metrics for Classification Models  

Model evaluation in machine learning is critical in establishing 

their performance, reliability and accuracy. Evaluating machine 

learning models entails different techniques including bootstrap, 

cross validation, and performance metrics like precision, 

accuracy, recall, F1-score, and root mean square error 

(RMSE)[9]. Cross validation is employed in evaluating 

generalizability in machine learning models.  According to the 

study by Roberts et al. (2021), cross validation involves splitting 

data into k folds, training the model on k-1 subsets and testing it 

using the remaining sets. The process is repeated k times, then 

the mean performance metric reported. In weather forecasting, as 

reported by Merz et al. (2020), cross validation is used to 

mitigate overfitting, a crucial aspect considering the complex 

nature of weather data. However, according to Lamptey et al. 

(2024), K-fold requires keenness when using time series data to 

ensure there is no data leakage between training and test subsets. 

As reported by Roberts et al. (2021), the keenness can be attained 

through models like time series cross validation, in which data is 

divided along temporal axis. The second evaluation metric, 

bootstrap, is a resampling method that repeatedly sample data 

with replacement, hence applicable in evaluating the variability 

of model forecasts. The technique was introduced by Efron and 

Tibshirani (1994) to solve small, noisy datasets, making it 

important in cases of limited or incomplete datasets [26]. While 

bootstrap reduces bias, it is computationally intensive when 

applied to large dataset; the method may not capture fully 

variability in cases of complex weather datasets [24]. Another 

measure of performance is accuracy is the percentage of correctly 

forecasted instances of the possible outcomes [27]. Accuracy has 

been employed in meteorology to assess the performance of 

machine learning models and to make comparisons between 

different models. The technique alone, however, can be 

misleading when data is imbalanced like during storms and 

tornadoes. In such cases, models can attain higher percentage 

accuracy without effectively capturing critical but rare conditions 

[28].  Therefore, additional metrics like precision and recall are 

used to comprehensively forecast weather patterns. In an 

explanation, while precision measures the percentage of correct 

positive predictions, recall measures the actual number of 

correctly predicted positive cases [29]. Precision and recall are 

important when forecasting extreme weather events such as 

hurricanes and thunderstorms unlike bootstraps and cross 

validation [33]. Another evaluation technique, F1-score, refers to 

harmonic precision and recall mean, thus balancing the tradeoffs 

between false negatives and positives. F1score is applicable to 

rare but impactful weather events like flash floods where over-

forecasting an event or missing it have substantial impact [28]. 

For regression specific tasks, metrics like mean absolute error 

(MAE), and root mean squared error (MAPE) are used [29]. The 

methods are sensitive to large errors capturing extreme deviations 

like in cases of excess rainfall. Hence, RMSE is crucial in 

forecasting outlier weather conditions that causes significant 

disruption such as extreme weather patterns [27]. With different 

shortcomings, evaluating machine learning models requires 

integrating various techniques to provide a holistic view [24].   

 

2.3.4 Feature Selection  

In machine learning, feature selection entails establishing and 

choosing the most relevant features from a dataset. The process is 

important in high-dimensional datasets like weather where 

several weather condition variables are recorded. In such cases, 

feature selection eliminates redundant or irrelevant variables thus 

reducing model complexity, enhance accuracy and improve 

interpretability [30]. Feature selection methods include filter, 

wrapper, and embedded methods. Discussing the filter 

techniques, researchers stated that the method assesses feature 

relevance by their intrinsic properties; this method is mainly used 

as a preprocessing step [31]. Common examples of filtering 

techniques include correlation coefficients, chi-square tests and 

mutual connection. Another study reported that while filtering 

methods are effective computationally, they do not consider 

model-feature interactions [30]. The next feature selection 

method is the wrapper; this evaluates subset features by assessing 

model performance using those subsets [14]. Wrapper techniques 

such as Recursive Feature Elimination (RFE) and forward/ 

backward selection iteratively remove features that are least 

significant and evaluate model performance to establish most 

significant ones [36]. In predicting weather, RFE is better than 

filter methods as it considers feature interactions [14]. The third 

method, embedded, integrates feature selection into the process 

of model training, enabling concurrent feature selection and 

model training [38]. The commonly used embedded featuring 

selection techniques include decision trees and Lasso (Least 

Absolute Shrinkage and Selection Operator). Another study 

reports that Lasso employs L1 regularization to punish features 

that are less important; this has long been used in handling high-

dimensional data like in weather forecasts [30]. On the other 

hand, decision trees such as Random Forest naturally conduct 

feature selection via assessing feature importance during the 

process of tree building [37]. The study report further showed 

that feature selection done using Random Forest can guide in 

choosing relevant variables thus mitigating overfitting while 

enhancing forecasting accuracy. Combination of feature selection 

techniques and Principal Component Analysis (PCA) in 

extracting features from weather dataset successfully extracted 

main features thus improving model accuracy and efficiency 

[24]. Further, they established that integrating feature selection 

techniques with Machine Learning models such as RF and SVM 

results in enhanced weather forecasting outcome by mitigating 

the effect of irrelevant features; this also reduces the cost of 

computation. While beneficial, feature selection experiences the 

challenge of balancing tradeoff between retaining important 

features and reducing dimensionality [34]. Here, over-selection 

may result in losing important data whereas under-selection may 

lead to missing important predictors. Therefore, they suggested a 

hybrid technique integrating numerous feature selection 

techniques is recommended to achieve an effective and 

comprehensive selection process.   

2.3.5 Machine Learning in Weather Forecasting  

Integration of machine learning in weather forecasting has 

resulted in significant improvements towards attaining accuracy 

[5]. In countries like the US, a proven forecast effectiveness for 

short term precipitation, temperature and wind speed conditions 

through Random Forest, which aggregates numerous decision 

trees to make robust forecasts [44]. The method, however, 

requires a high-level interpretability, making it hard for 
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meteorologists to extract important information from the output. 

As such, it is recommended tha development of hybrid models 

involving Random Forest and dimensionality reduction methods 

to improve interpretability while reducing the cost of 

computation [27]. The second widely used method is Gradient 

Boosting Machine (GBM), specifically XGBoost applies an 

iterative approach by refining forecasts based on previous errors; 

this makes it important in forecasting extreme weather patterns 

[15]. In a practical scenario using employed XGBoost in 

forecasting heavy rainfall which showed a significant 

improvement in accuracy after iteratively learning the process 

[34]. The method, however, requires extensive hyperparameter 

tuning and is computationally extensive [12]. Another ML 

technique used in forecasting is support vector machines that 

classify weather events and forecast storm occurrences. A study 

in Asia employed SVM to classify weather patterns based on 

different conditions thus improving forecasting accuracy for 

storm events [34]. They however reported that while SVM 

managed to handle complex, nonlinear data, it struggled with 

very large sets and required careful tuning of parameters. 

Nevertheless, advanced kernel and approximation methods 

overcome these limitations thus making SVMs more efficient and 

more scalable while handling large climate data [36]. Another 

method that has been employed in weather forecasting is Neural 

Networks, which includes deep learning models capable of 

capturing complex patterns in weather [25]. A different study 

employed Neural Networks and Long Short-Term Memory 

(LSTM) networks to forecast for typhoons in Japan; these 

resulted in enhanced prediction accuracy [39]. The models, 

however, required extensive cost of computation and large 

datasets hence limitations. Whereas individual ML models have 

high accuracy and precision in weather forecasting, a different 

study recommended the use of ensemble method combining 

forecasts from several models to attain the best prediction [38]. 

The combination of techniques including SVMs, GBMs, and RF 

can enhance accuracy by averaging the forecasts from different 

models thus reducing individual bias; this also solves individual 

cases of underfitting, and overfitting.  

 

2.3.6 Machine Learning Models vs. Traditional Methods  

Table 1 compares Machine Learning Models and Traditional 

Foresting techniques based on strengths and weaknesses. 

  

Table 1: ML-Traditional models’ Summary table  

Criteria  
Traditional Weather 

Forecasting Models  
Machine Learning 

Models  

Data 

Requirements  

ARIMA: Requires 

less data, works with 

smaller datasets [5].  

Large Data Needs [25]  

Scalability  

ARIMA: Handles 

smaller datasets 

effectively [13].  

Efficient Processing of 

Large Datasets [31] 

Enhanced 

Accuracy in  

Nonlinear 

Systems  

ARIMA: May not 

perform well in highly 

volatile weather 

scenarios [26].  

Enhanced Performance 

in  

Complex Weather 

Phenomena [25] 

Handling 

Complex and  

Nonlinear 

Patterns  

ARIMA: Assumes 

linear relationships 

and stationary data 

[34].  

Capability to Model 

Complex Dynamics [15] 

Computational 

Demand  

ARIMA: 

Computationally less 

demanding [30].  

High Resource 

Requirements [15] 

Predictive 

Framework  

Based on 

Historical Data  

ARIMA: Effective for 

well understood linear 

time series data [30].  

Robustness in Well-

Defined Scenarios [30] 

Interpretability  

ARIMA: Provides 

clear, interpretable 

results with model 

parameters [12].  

Black Box Nature [35] 

Risk of 

Overfitting  

ARIMA: Less prone 

to overfitting with 

simpler models [4].  

Potential for Overfitting 

[8]  

2.4. Conceptual framework 

  

Figure 1: Conceptual framework 

 

The above conceptual framework displays the study variables and 

the process taken to attain study objectives. 

 

3. METHODOLOGY  

In this section, the methodological techniques used to attain study 

objectives, that is to enhance short- and medium-term weather 

forecasts, are discussed. It provides details regarding research 

paradigm, design, and population, sample size, sampling 

techniques used, models to be created and ethical consideration 

to be considered. The section seeks to provide a systematic 

framework for collecting, analyzing, and interpreting data to 

accurately develop weather forecasting models for Nairobi 

County.  

3.1 Research Paradigm   

The study adopted a positivist research paradigm. The paradigm 

is based on the belief that reality can be objectively observed and 

measured using empirical evidence. Positivism highlights how 

quantitative techniques are used in data collection and analysis 
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[40]; this made it convenient for the study goal which is to 

enhance weather forecasting accuracy within Nairobi County. By 

integrating machine learning algorithms and statistical analysis, 

the study targeted to create models that can give accurate and 

dependable weather forecasts. Positivism supports the 

hypothesis-testing methodology, in which machine learning 

algorithms are trained and assessed against traditional prediction 

methods to establish their effectiveness. It also ensures a 

systematic and scientific technique, initiating the generation of 

replicable and generalizable results [41]. Hence, positivism 

aligned with the objective of this study of integrating advanced 

forecasting methods to solve real-world problems in weather 

prediction, eventually adding to enhanced risk management and 

disaster preparedness in Nairobi County.   

3.2 Research Design   

The study adopted experimental research design. The technique 

involves manipulating one or more independent variables to 

observe their effect on a dependent variable, typically under 

controlled conditions, to establish cause-and-effect relationships 

[42]. In this study, the same data was modelled using SVM, 

Random Forest, Gradient Boost and ARIMA modelling to 

establish which one provides the most accurate forecast in 

different weather categories.   

The first step involved collection of historical weather data on 

wind speed, temperature and humidity based on days in Nairobi 

County. Here, the dependent variables included historical data on 

wind speed, temperature, and humidity while the independent 

variable included windspeed_lag1, temperature_lag1, and 

humidity_lag1 respectively; the independent variables served as 

proxies for temporal effects. The next step was model 

development where Autoregressive Integrated Moving Average 

(ARIMA), Gradient Boosting (GB), Random Forest (RF), and 

Support Vector Machines (SVM) were created and trained using 

data. Thereafter, the developed models were evaluated using 

metrics such as Mean Absolute Percentage Error (MAPE), Mean 

Absolute Error (MAE), Mean Squared Error (MSE) and Root 

Mean Squared Error (RMSE). Finally, comparative analysis was 

done to establish the most suited approach in handling weather 

data forecasting within Nairobi County.  

 

3.3 Dataset  

The dataset of this study consists of all historical weather records 

for Nairobi County; this includes information on wind speed, 

temperature, and humidity. Periodically, the population covers 

every recorded weather data specific to Nairobi County. The data 

was sourced from a secondary database containing publicly 

available weather dataset, Weather Query Builder 

(https://www.visualcrossing.com/weather/weather-dataservices/). 

The site is selected considering that it has a real time update on 

daily weather values. Also, Visual Crossing provides historical 

weather data dating back to January 1, 1970, ensuring a robust 

dataset for long-term analysis. Thirdly, the service offers global 

geographic availability, making it suitable for studies focusing on 

diverse locations, including Nairobi County. Moreover, Visual 

Crossing integrates data from over 100,000 weather stations, 

employing advanced interpolation methods to maintain data 

accuracy and reliability, even in areas with sparse station 

coverage. Additionally, the platform provides detailed weather 

metrics, including wind speed, humidity, and temperature, which 

are crucial for in-depth climatic analyses. Finally, Visual 

Crossing is recognized for its established credibility, as it is 

widely used in both academic research and industry applications, 

making it a trusted source for meteorological data analysis. 

Reliability of the data source was attained through cross-

referencing sampled weather statistics with those from Kenya 

Meteorological department to ascertain precision. The data is 

acquired for the period between 1994 and 2024 (30 years) 

translating to 11312 observations measured in days. The data was 

downloaded in CSV format and is available for re-experiment.  

 

The study employed stratified sampling technique to extract three 

weather events of interest (humidity, temperature, and wind 

speed). These elements were selected considering that they take 

place daily and hence daily data available with minimum missing 

values hence data quality. This is unlike factors like rainfall and 

other precipitations that occur seasonally. From the three 

conditions, a sample spanning 30 years (1994-2024) was 

extracted. This is considering that the period represents short to 

medium term weather data needed for this study. For the stated 

period, data was collected on daily frequency resulting in a 

sample size of 11312. The size was chosen considering that it is 

large enough hence capable of building robust models.  

 

3.5 Modelling Tools  

Several libraries were utilized in forecasting short and medium-

term weather conditions in Nairobi County using Gradient 

Boosting (GB), Random Forest (RF), Support Vector  

Machine (SVM), and ARIMA models in Python. Gradient 

Boosting, Random Forest, SVM, and ARIMA were selected due 

to their strong performance in regression tasks, ability to model 

nonlinear relationships, and suitability for structured and time-

series data. NumPy and Pandas were used to facilitate numerical 

operations and data manipulation, whereas Scikit-learn provided 

the required tools for implementing RF, GB, and SVM, as well as 

evaluation metrics such as Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and R-squared. On the other hand, 

Statsmodel was utilized for ARIMA modelling while Matplotlib 

and Seaborn helped visualize weather trends and model 

performance. Other relevant libraries SciPy for statistical 

computations. Finally, Joblib library was used to initiate model 

saving and efficiency during training. The above libraries ensured 

robust data analysis, modeling, and assessment of forecasting 

accuracy.  

 

3.6 The Weather Forecasting Model  

The developed model design, shown in figure 2, contains a robust 

workflow for short- and medium-term weather prediction in 

Nairobi County. The diagram starts with data collection and 

preprocessing, entailing cleaning of data and feature engineering 

to improve model efficiency. It shows a data split of A 70%-30% 

train-test to ensure robust evaluation.  

It then shows model selection phase containing four efficient 

algorithms: Random Forest, Support Vector Machine, Gradient 

Boosting, and ARIMA, all optimized through cross validation 

and hyperparameter tuning. It then shows evaluation metrics such 

as MSE, MAPE, MAE, and RMSE that assesses performance. 

Visualization of results and accuracy gives insights into model 

precision and trends, whereas techniques for handling 

computational complexity are important for scalability and 

efficiency throughout the modeling process.  The contribution to 

https://www.visualcrossing.com/weather/weather-data-services/
https://www.visualcrossing.com/weather/weather-data-services/
https://www.visualcrossing.com/weather/weather-data-services/
https://www.visualcrossing.com/weather/weather-data-services/
https://www.visualcrossing.com/weather/weather-data-services/
https://www.visualcrossing.com/weather/weather-data-services/
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knowledge is reflected in the comparative integration of machine 

learning models (Random Forest, Gradient Boosting, SVM) with 

a traditional time series model (ARIMA) within a unified 

framework for localized weather forecasting. In addition, the 

model design introduces a systematic training and evaluation 

pipeline that emphasizes reproducibility and objective 

comparison through standardized train-test splits and the 

application of appropriate error metrics. Performance 

enhancement was achieved by tuning model hyperparameters and 

ensuring data integrity through preprocessing steps, which 

collectively improved prediction accuracy without reliance on 

manual or heuristic interventions. By situating the model 

specifically in the context of Nairobi County, the study addresses 

a contextual research gap in the application of hybrid predictive 

algorithms to weather forecasting in Sub-Saharan urban settings.  

 

 
 

Figure 2: Model process 

 

3.7 Experimental Setup  

Model development involved a hybrid strategy, integrating both 

machine learning and classical time series methods [39], to 

evaluate and compare prediction performance across different 

techniques. The first step involved performing Augmented 

Dickey-Fuller (ADF) stationarity test, a critical assumption for 

time series modeling to understand whether temperature, 

humidity, and windspeed series exhibited unit roots.  The test 

resulted in p-values lower than 5% level of significance (p < 

.001) for all three, justifying the use of ARIMA models without 

differencing. A further automated grid search was performed 

using SARIMAX to establish the optimal ARIMA(p,d,q) orders 

for each dependent variable based on the lowest AIC. This 

resulted in the ARIMA order 1,0,1 for all the three weather 

conditions, the order that was selected while performing ARIMA 

modelling. Next, the data was split into 70% training and 30% 

testing set, a split that was chronological. Time-based split was 

key in preserving temporal ordering of observations, thus 

mitigating data leakage and simulating real-world prediction 

conditions where models forecast future values based on 

historical trends. The next step involved introducing lag features 

to capture temporal dependencies that are integral in weather to 

enhance the predictive capacity of machine learning models. For 

every weather variable (temperature, humidity, and windspeed), a 

lag of one-time step (temp_lag1, humidity_lag1, and 

windspeed_lag1) which served as predictor variables for 

forecasting their respective current values. Lag 1 was selected 

considering the short-term temporal dependency assumption 

usually observed in daily weather patterns. Further, an 

autocorrelation test was done on individual variables to assess the 

presence of temporal dependence. This was visualized as 

displayed in figure 3 which displayed strong autocorrelation for 

temperature and humidity and a weak one for windspeed.  

 
Figure 3: Autocorrelation results 

 

The significance of autocorrelation was further tested for the 

three and this is displayed in table 2 below. 

  

Table 2: Autocorrelation results 

 
Autocorrelation analysis revealed statistically significant lag-1 

dependencies for temperature, humidity, and windspeed (p < 

0.05), justifying the inclusion of one-period lag features as 

predictors in the modeling process. Using the 70% training set, 

Support Vector Regression (SVM), Random Forest (RF), and 

Gradient Boosting (GB) were trained independently for 

temperature, wind speed and humidity.    

3.8 Model Evaluation   

Model evaluation assesses the performance of the trained 

machine learning models. The effectiveness of each model was 

measured using four performance metrics including Mean  

Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean 

Absolute Percentage Error (MAPE), and R-squared. These 

metrics provided insights into the accuracy and reliability of the 

models' forecasts. The performance of machine learning models 

was compared to traditional forecasting methods to determine 

which approach offers the most accurate predictions for 

temperature, humidity, and wind speed. This evaluation ensured 

that the chosen models deliver reliable weather forecasts, 

contributing to better decision making and risk management.  
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4. RESULTS  

The chapter presents the findings of the prediction models 

employed to forecast short and medium-term weather patterns in 

Nairobi County, covering between 1994 and 2024. The study 

applied four models including Gradient Boosting (GB), Support 

Vector Machine (SVM), Random Forest (RF), and ARIMA 

models to project humidity, temperature, and windspeed. The 

models were trained and tested through lagged input variables 

extracted from historical weather data, with a clear distinction 

between training and testing periods; this ensured unbiased 

evaluation. Evaluating model performance was done using four 

primary metrics including Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), and the R-squared (R²) statistic. Of the four, the best-

performing machine learning model was established for 

temperature, humidity, and windspeed separately, then compared 

to the primary traditional method, ARIMA values. each weather 

variable, followed by a comparative analysis with ARIMA 

forecasts. Using best performing models, prediction 

visualizations were created for every weather condition compared 

to actual values. Besides, the section displays forecasted weather 

patterns for the first 10 days of 2025 and the average monthly 

forecasts for the entire 2025. Besides, the section chapter 

discusses the relevance of model selection criteria, including 

consistency, accuracy, and interpretability. Issues experienced 

during modeling, like the existence of negative R² values, are 

addressed to give a transparent account regarding the modeling 

process.  

4.1 Exploratory Data Analysis  

Summary statistics  

The daily values for the three elements were summarized using 

mean, standard deviation and five-number summary as displayed 

in table 3 below.  

 

Table 3: Descriptive Statistics results 

Weather 

Element  

Count  Mean  Std  Min  25%  50%  75%  Max  

Temperature 

(F) 

11312  66.83  2.98  55.4  64.8  66.9  68.9  77.3  

Humidity  11312  70.33  9.73  34.5  63.9  70.9  77.4  97.3  

Windspeed  11312  15.7  6.1  0  12  15  18.3  135.8  

 

In the last 30 years, Nairobi County experienced an average 

temperature of 66.83 (SD = 2.98)
0
C. The lowest temperature was 

55.4 recorded in 7/2/2004 while the highest temperature was 77.3 

as recorded on 3/2/1998, suggesting an inconsistency in 

temperature change patterns. While the value of standard 

deviation is low (2.98) suggesting a small variation around the 

mean, this is large enough to disrupt ecosystems by accelerating 

biodiversity loss, changing species distributions, and intensifying 

climate-related stresses like drought, wildfires, and habitat 

degradation, calling for accurate forecasts. The county 

experienced an average humidity level of 70.33 (9.73) with the 

value of standard deviation expressing a wider variation around 

the mean, suggesting over-time disparity in daily humidity 

values. This was further displayed by the minimum and 

maximum values that were 34.5 (2/22/2000) and 97.3 

(11/4/2001) respectively, resulting in a range of 62.8 in a span of 

1 year. This shows a huge difference in a short time, suggesting 

the need for accurate models that can handle sharp spikes in 

weather patterns over time. Finally, the county had an average 

windspeed of 15.7 (SD = 6.1) ms
-1

, which is way higher than the 

recommended figures. The county recorded a single day with 

0m/s (1/15/1998) and 4795 days within and below the desired 

10.8 – 13.8 m/s range suggesting that in most cases (6516 days), 

it experienced higher speeds that may pause danger. For instance, 

some days like 3/14/2011 experienced 135.8m/s windspeed, a 

similar case with 4/29/2010 (117.4), 2/5/2014 (115.9), 9/25/2022 

(114.1), 2/26/2016 (110.9), 7/6/2018 (108.3), 8/29/2015 (100.9), 

and 10/22/2015 (100.8), values that are extreme and dangerous 

for the county environment and infrastructure. It can be insighted 

from the date figures that no linear trend was followed, calling 

for forecasting models that can handle non-linear patterns 

effectively.   

4.2 Seasonality trend Analysis  

Daily trends  

Establishing trends for temperature, humidity, and windspeed was 

done as shown in figure 4. Here, there is no clear linear pattern 

(negative or positive with respect to time). This suggests 

irregularity in weather patterns that require advanced models that 

can capture nonlinear weather conditions. The highest daily 

disparities were recorded for windspeed that had highest and 

lowest spikes, suggesting greatest difference. Besides, humidity 

also recorded similar trends with lowest disparity emanating from 

daily temperatures. The results suggest that Nairobi County 

weather patterns specific to Temperature, Humidity, and 

Windspeed are irregular with no specific trend, making it difficult 

to project using traditional patterns that do not capture non-linear 

complex data.   

  
Figure 4: Daily weather (Temp, Humidity, Windspeed) trends 

over time (1994 – 2024) 

 

Monthly Seasonal Analysis  

Post normalization seasonality analysis was done establish 

monthly weather patterns  

(temperature, humidity, and wind speed) over time across 

different periods in Nairobi County using boxplots as shown in 

figure 5. The results displayed that in the past 30 years, 

temperatures were lowest between July and August and highest in 

February, March, and October with outliers suggesting that the 

temperatures were not consistent throughout the year, calling for 

advanced analytics to establish the non-linear seasonal patterns. 

For humidity, the highest scores were recorded in April, May, 

November, and December with the lowest scores being in 

February and September. The presence of seasonal outliers 
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exhibited no significant trends making the data complex. Finally, 

windspeed recorded similar trends to that of temperature with 

highest values recorded in the first and last quarters of the year 

and lowest between May and August. Generally, the three 

weather patterns recorded outliers throughout the twelve months 

suggesting inconsistencies in their recorded patterns hence 

complexities, calling for robust models that captures non-linear 

relationships over time.  

 
Figure 5: Seasonal variation of Temperature, Humidity, and 

Wind Speed 

 

Normalization  

The next step involved visualizing data normality, a property 

required to ensure that all input variables contributed equally to 

the machine learning models. This involved boxplots for 

temperature, humidity and windspeed as expressed in figure 6. 

Based on the boxplots, windspeed was strongly skewed to the 

right showing that most values were low with the presence of 

outliers, suggesting non-normality as fulfilled by the Shapiro 

Wilk test result (p < .001). Also, Humidity was skewed to the left 

showing that most values were high. A further normality test 

(Shapiro Wilk), resulted in a p-value of <.001, confirming 

nonnormality. Finally, temperature recorded outliers on both tails 

with a Shapiro Wilk p-value of <.001 suggesting non-normality. 

This non-normality, combined with differences in units and 

scales, necessitated the normalization of data prior to modeling. 

Such differences can bias models that are sensitive to feature 

scaling, like Support Vector Machines (SVM) and Gradient 

Boosting (GB).  

 

 
Figure 6: Temperature, Humidity, and windspeed distribution 

boxplots 

 

Addressing skewness and non-normality involved the use of Min-

Max normalization where all features were rescaled to a standard 

range of [0, 1]. The method preserved the shape of distribution 

while aligning the scales, giving room for the model to more 

efficiently converge during training and enhancing general 

predictive performance.  

Thereafter, histograms were constructed to confirm data 

distribution as shown in figure 6. The results showed attainment 

of normality in temperature and humidity variables. While there 

existed positively skewed values in windspeed, bell shaped was 

attained, allowing for the assumption of normality.   

 

 
Figure 7: Temperature, Humidity, and windspeed distribution 

boxplots after normalization 

 

4.3 Model Evaluation  

The ML models, alongside ARIMA, were then evaluated using 

four metrics (MAE, MAPE, RMSE, and R-squared) as displayed 

in table 4 below.  

 

Table 4: Model Evaluation results 

 

Model     SVM  RF  GB  ARIMA  

Variable  Metric  

Humidity  MAE  0.07  0.08  0.07  0.13  

MAPE  14.95%  16.29%  14.97%  31.65%  

RMSE  0.09  0.10  0.09  0.16  

R²  68.60%  63.22%  68.37%  -3.48%  

Temp  MAE  0.06  0.06  0.05  0.12  

MAPE  10.75%  11.27%  10.45%  21.76%  

RMSE  0.07  0.07  0.07  0.15  

R²  72.72%  69.43%  74.28%  -17.86%  

Windspeed  MAE  0.05  0.03  0.03  0.02  

MAPE  46.32%  23.05%  21.07%  24.03%  

RMSE  0.06  0.05  0.05  0.05  

R²  -53.47%  -8.33%  0.31%  -0.79%  

 

The evaluation results displayed better performance among 

Machine Learning models relative to ARIMA. The performance 

stood out specifically for humidity and Temperature. For 

humidity, lower MAE values were recorded in SVM (.07), GB 

(.08), and RF (.08) compared to ARIMA which recorded .13. 
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Besides, the three ML models recorded Mean Absolute 

Percentage Errors (MAPE) below the required maximum of 20% 

while ARIMA recorded 31.65% which is way higher. From the 

metric, the best performing models were SVM (14.95%) and GB 

(14.97%) followed by RF (16.29%). The same trend was 

confirmed in Root Mean Squared Error where GB and SVM 

recorded .09, RF recorded .10 and ARIMA recorded [16]. The 

final comparison was on the coefficient of determination where 

the highest model variation explained was extracted from SVM 

(68.60%) followed by GB (68.37%) and RF (63.22%). ARIMA 

recorded a negative R-squared which shows it is poor in 

predicting short- and medium-term humidity. Therefore, while 

seeking to establish accurate humidity forecasts, it is 

recommended to apply SVM having outstood in the four metrics. 

The trained model was applied in predicting the testing data and 

this is visualized in figure 8 below.  

  
Figure 8: SVM humidity forecast trend using testing set 

 

For temperature, ML models outperformed ARIMA in terms of 

MAE, MAPE, RMSE, and R-squared. The best performing 

model was GB with a lower MAE of .05, MAPE of 10.45%, 

RMSE of .07 and percentage of the model variation explained of 

74.28%. This was closely followed by SVM with a MAE of .06, 

MAPE of 10.75%, RMSE of .07 and the percentage variance of 

the model explained of 72.72%. Closely following model was RF 

with a MAE of .06, MAPE of 11.27%, RMSE of .07, and the 

percentage variance explained of 69.43%. ARIMA on the other 

hand, recorded a higher MAE of .12, MAPE of 21.76% which is 

above 20%, RMSE of .15 and a negative coefficient of 

determination, suggesting it is not appropriate forecasting 

temperature. Therefore, while seeking to establish accurate 

humidity forecasts, it is recommended to apply GB having 

outstood in the four metrics. The trained model was applied in 

predicting the testing data and this is visualized in figure 9 below.  

  
Figure 9: GB temperature forecast trend using testing set 

While all the ML models were high achievers here, GB is 

recommended for predicting daily short- and medium-term 

temperature conditions in Nairobi County.   

Whereas the first two weather conditions realized better 

forecasting accuracy, no model was effective in predicting 

windspeed, a factor attributable to the high disparity (spikes) in 

the recorded daily conditions even after data standardization. The 

four models performed better in terms of MAE. Nonetheless, 

SVM was the worst performer in terms of MAPE (46.32%) same 

as RF (23.05%), GB (21.07%) and ARIMA (24.03%). This was 

the same case with coefficient of determination where the 

percentage variance of the model explained was highest for GB 

(.31%) and negative for SVM (-53.47%), RF (- 83%), and 

ARIMA (-.79%), suggesting the need for other ML models that 

will accurately capture the data patterns of wind data.   

 

5. DISCUSSION OF RESULTS 

The study sought to explore the predictive power of machine 

learning models (RF, GB, and SVM) in short- and medium-term 

weather forecasting in comparison to a classical time series 

approach (ARIMA). This was done with specific focus Nairobi 

County’s daily temperature, humidity, and windspeed data, 

covering a period of 30 years (1/1/1994 – 31/12/2024). The 

analysis was guided by a rising body of research that 

acknowledges the capacity of machine learning in handling 

nonlinear, complex data with wider flexibility relative to 

traditional statistical techniques. The study results displayed that, 

generally, the three ML models outperformed ARIMA modelling 

in predicting short- and medium-term humidity and temperature 

within this period. For the two weather variables, the ML models 

recorded Mean Absolute percentage errors of less than the 

recommended 20% maximum while ARIMA recorded values 

above 20%. Besides, The ML models explained stronger 

coefficient of determination than ARIMA. Specifically, SVM 

outstood in predicting humidity followed closely by GB, 

suggesting their capacity to handle complex and irregular short- 

and medium-term weather data of Nairobi County. For 

temperature, GB stood higher in performance followed closely by 

SVM and RF, further stressing on the strength to handle complex 

data. While the ML models outstand, it is worth highlighting that 

they performed differently for dissimilar conditions. Based on 

this, SVM and GB models were respectively selected to be the 

best predictors of humidity and temperature. The four models, 

nonetheless, struggled in predicting short- and medium-term 

wind speed patterns with all recording MAPE values above 20% 

hence not accurate. This was further confirmed by the lower 

value of R-squared where SVM, RF, and ARIMA recorded 

negative values and GB a variation close to 0.00%. The 

struggling of models predicting windspeed can be attributed to its 

low autocorrelation, high variability, and sensitivity to localized, 

transient environmental factors that are hard to model. For 

instance, while most dates recorded wind speed of between 5 – 

20 m/s, some recorded higher above 100 resulting in a wide 

disparity even after normalization. Also insighted is that of the 

three weather conditions selected, temperature was the most 

accurately predicted with lowest Mean Absolute Percentage Error 

and strongest percentage weather variation explained by all the 

four models, a factor attributable to the strongest autocorrelation 

and low data variability recorded.   
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Discussing the study findings to the existing works of literature, 

then the results largely support the effectiveness of supervised 

machine learning models, specifically SVM, RF, and GB in 

predicting short- and medium-term weather conditions such as 

temperature and humidity. The results align with assertions in the 

existing literature that supervised learning models exhibit 

substantially better performance in complex forecasting tasks 

when there is adequate historical labeled data [11;19]. Referring 

to temperature, GB model performed the best, recording the 

lowest RMSE and highest R², a finding that is consistent with 

that of Anwar et al. (2021) who established high accuracy of GB 

in predicting rainfall over a 7-year period, alongside the finding 

by [11] who reported significant enhancements in wind speed 

prediction using GB over WRFbased models. Nonetheless, as 

reported by [18], GB only works well in situations where data is 

not highly seasonal or noisy, a factor that cites model instability 

and performance degradation under such conditions as observed 

in wind speed prediction performance. For SVM, strong 

performance was demonstrated in forecasting humidity in the 

study, strongly aligning with [20] and Hayaty et al. (2023) who 

established that SVMs are effective and efficient in detecting 

subtle patterns in non-linear and complex datasets for short- and 

medium-term forecasts. Nonetheless, the model recorded a higher 

MAPE for humidity relative to temperature prediction, 

suggesting the existence of nonlinear dynamics or feature 

limitations, consistent with the findings by Yin et al. (2022), who 

highlighted that SVM struggle in handling nonlinearity and 

extreme events in precipitation forecasts. The third ML model, 

RF, while exhibiting robustness in predicting temperature, 

underperformed relative to GB and SVM across all variables. 

This result confirms observations that emphasized the strength of 

RF in modeling nonlinearity and handling overfitting but also 

highlighted its computational demands [44]. Specifically, this 

study recorded slightly lower values of R² for RF relative to those 

found by Hill et al. (2020), who attained an R² of 0.97 in severe 

weather forecasting, a factor attributable to data or regional 

differences in weather inconsistency between Nairobi and the 

United States. While GB and SVM outperformed RF in making 

humidity and temperature forecasts, some literature including 

[46] and [47], established that RF models perform more reliably 

than boosting methods in small to moderate datasets, a factor 

attributed to reduced variance and simpler interpretability, 

categorically in resource-limited environments. In contrast, 

ARIMA models underachieved across temperature, humidity, and 

wind speed, a finding consistent with literature, which suggests 

that statistical models struggle to capture complex and nonlinear 

patterns, and interactions present in meteorological systems [17]. 

The finding is further justified by the fact that that ARIMA 

modelling, being univariate, does not account for 

interdependence among numerous variables, which is key in 

accurate prediction thus the low performance in forecasting non-

linear wind speed, temperature, and humidity [28]. Nevertheless, 

certain studies express that ARIMA models, when integrated with 

exogenous regressors (ARIMAX) or within hybrid frameworks, 

can outperform or match ML models in stable climates [12], 

something that is not the case with Nairobi County temperature, 

wind speed and humidity patterns over time.   

From the comparison, it is clear that whereas machine learning 

models give clear advantages in short- and medium-term weather 

prediction, selectin of models should be specific to variable of 

interest. Besides, model enhancements such as hybridization and 

feature tuning may further enhance predictive performance in 

future research. In general, this study results authenticate the 

rising acknowledgement that machine learning techniques 

provide superior precision and adaptability in short- and medium-

term weather predictions in urban settings, specifically in tropical 

cities like Nairobi. The research insights, other than reinforcing 

theoretical basis for adopting ML in meteorological prediction, 

provide practical justification for its usage in sub-Saharan 

African settings with limited infrastructure for complex physical 

modeling.  

6. CONCLUSION AND FUTURE WORK 

The research sought to examine the applicability and 

performance of three machine learning (ML) models, SVM, RF, 

and GB in predicting short- and medium-term daily weather 

conditions in Nairobi County compared with classical ARIMA. 

Here, daily recordings for humidity, temperature, and windspeed 

as the target variables. The results displayed that ML models 

outperformed ARIMA in most prediction activities, specifically 

in forecasting humidity where SVM emerged the best followed 

by GB and temperature, where GB achieved the highest accuracy 

followed by SVM; these were evaluated across multiple metrics 

(RMSE, MAE, MAPE, and R²). The study, however, showed the 

selected ML models as poor in predicting windspeed. The low 

performance of ARIMA across the three weather patterns can be 

attributed to its inability to capture non-linear complex data 

unlike ML models.  

 

The findings stress the ML models’ flexibility in learning 

complex temporal patterns and interactions between variables, 

which is a clear advantage over ARIMA's linear and univariate 

setting. The study also highlighted the value of incorporating 

lagged variables to capture temporal dependencies in the data, 

enabling the models to learn from past behavior. Besides, RF 

performed lower than SVM and GB in making predictions. By 

attaining superior prediction performance using ML 

methodologies, the study successfully addressed its main 

objectives. It displayed that machine learning models can be 

practicable and possibly superior substitutes to classical time 

series techniques in the setting of localized weather forecasting. 

The study findings, other than contributing to the increasing body 

of literature on ML-based prediction, also provide real-world 

insights for disaster preparedness, urban planning, and climate 

informed decision-making in developing nations like Kenya. 

Future studies should build on these findings by exploring multi-

step forecasting strategies, additional predictors, and advanced 

deep learning or ensemble architecture.  

From the study results, the following recommendations are made 

regarding the accurate forecasting of short- and medium-term 

weather conditions in Nairobi County, particularly temperature, 

windspeed, and humidity: Incorporation of Machine Learning 

into National Weather Systems , Application of Hybrid and 

Ensemble Machine Learning Models for enhanced Wind Speed 

forecasting, Institutionalize Comparative Evaluation of 

Forecasting Models, Replicate and Scale ML-Based Forecasting 

Systems Across Counties  
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