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Abstract: The rapidly developing field of nanomechanics is 
providing new insight in the study of properties of materials by 
simulating fundamental atomic mechanisms. For broad application 
of nanomechanics, computational multi-scale methods are 
necessary to link macroscopic behavior of materials with the 
underlying atomic processes which are originally responsible for the 
material behavior.The current work aims to study various 
multi-scale approaches, with the focus on the linking of Finite 
Element Method with the Molecular Dynamics Model, developed 
over time along with their pros and cons and attempts to arrive at the 
most computationally efficient and effective approach.  

This is followed with the identification of the areas of improvement 
in the selected approach and further continues to model the 
approach along with the modifications. While achieving the 
objective, that is the modified approach, the accuracy of the 
conventional approach may be compromised to some extent but 
with a good amount of computational space requirement reduction. 
During the whole process, a detailed study and modeling of 
conventional Finite Element Method and Molecular Dynamics is 
also undertaken which are the essential constituent of the 
Multi-scale model. During Finite Element Analysis, the effect of 
mesh on the method is also shown and hence, the optimum 
distribution of elements is obtained from the study.  

INTRODUCTION 
The introduction of computation in the field of material 
analysis has reduced significantly the amount of pain, for the 
engineers, involved in the process. With manual 
calculations, it would have never been possible to design such 
complex and large structures, which we sees in everyday life 
without any feeling of amazement. Such is the power of 
computation, that it has established itself as a parallel 
approach to the theoretical studies. It has also proven its 
effectiveness in both the fields of continuum mechanics and 
the newly emerging field of nanomechanics.   

Nanomechanics is the field where the strength of 
computation can be observed. It basically deals with the study 
of interaction of atoms or molecules as one of many other 
different phenomenon, from where behavior of the material 
as whole unit originates. Without computational tools, it is 
impossible to simulate even a very small unit of material. 
Various methods are used to study nanomechanics using 
computational science, Molecular Dynamics (MD) is one of 
these. Although Molecular Dynamics has been able to predict 
complex physical phenomenon using numerical methods, 
but it has some limitations in terms of length and time scales. 

 
 

The application of the Finite Element Method (FEM), widely 
used in the industries and academic research, to a wide and  
complex range of structures is a reality because of the advent 
of era of computational technology. It has made the work of  
engineers a lot easier. But the accuracy of the method, while 
dealing with certain specific kind of problems, cannot be 
trusted completely. This gives indication that something is 
not right with the way, the problem is being dealt with. 
 
Different Scales of Analysis 
It can be observed that computational techniques are 
essential component of both microscopic and macroscopic 
analysis of materials now-a-days. Depending on the objective 
of the analysis, we apply different scale approach, for 
example, to study stress distribution in large aircraft 
components, we cannot afford to go for analysis using 
microscopic approach as it neither desirable nor affordable 
for the commercial industry, while to study crack 
propagation in a very small region, it is advised to go for 
microscopic analysis of the region rather than using 
macroscopic methods like FEM which does not have 
required level of accuracy. 

The above discussion highlights the importance of proper 
scale of analysis to achieve required accuracy and efficiency. 
Wrong choice of scale during the material analysis can lead 
to confusing and misguiding results. We can broadly classify 
different scales involved in the material study as- 

i. Nano-scale 
ii. Micro-scale 

iii. Macro-scale 

    
 
 
At different scales, the nature of basic laws of physics 
responsible for the material behavior also changes 
(continuum for macroscopic while discrete atomic physics 
for atomic scale) and hence different methods are used for the 
analysis, as shown in the above figure. A brief description of 
the various methods is given below: 
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a) Finite Element Method:  This method is generally used in 
analysis of macroscopic structures. It is based on principles of  
continuum mechanics which at macroscopic scale usually  
yields results of sufficient accuracy. Most of the industries 
prefer this method as it is computationally efficient, 
inexpensive as compared to others and effective enough for 
the industrial requirements. The accuracy deficiency can be 
dealt by introducing factor of safety in the analysis. 

But this has also got certain limitations. Since the mechanics 
involved is continuum in nature, it cannot model the 
phenomenon which involves effects of defects in lattice, 
cracks or some other atomic scale factors (discrete nature of 
material atoms has to be considered). 
 
b) Molecular Dynamics:   This method is used for analysis 
at micro or nano-scale. It is based on the fact that material 
behavior originates from the molecular or atomic behavior in 
solids (neglecting intra-molecular degree of freedom). This 
approach predicts the trajectories of molecules or atoms by 
using simple Newton’s second law of motion. In the process, 
for calculation of inter-atomic force distribution interatomic 
potential is utilized. Some of the commonly used interatomic 
potentials are Lennard Jones 6-12 potential, Morse potential 
and Embedded Atom Model (EAM) potential. It makes this 
approach a suitable candidate for application in areas like 
study of composite behavior, crack propagation etc. There is 
no doubt that this method provides extra accuracy over FEM.  

Molecular Dynamics approach is expensive as it requires a 
lot of computational resources. With the present set of 
resources, it can be performed only over a very small domain. 
This sets a check on this approach and it is the basic reason 
why industries do not usually prefer it for general analysis, 
unless required specifically. Also it faces some difficulties in 
distribution of external load over the whole domain. 

 
c) Tight Binding Method:   This is one of the finest method 
in terms of resolution. It is based on the principles of 
quantum mechanics which is very interesting field in itself. 
This method calculates the electronic structure by assuming 
wave functions. The results obtained from this method are 
very accurate but the computation process is quite intense 
which makes this method very expensive.   
 
Analysis at that scale is not required for industrial purposes. 
This restricts the usage of this method for research studies 
only. The above discussion shows that for different scale of 
analysis different methods are used which follows different 
principles. Various methods specified above have certain 
limitations as briefly described and hence cannot be applied 
in all the circumstances. This poses a problem if a reasonably 
large structure with certain defects, which can be modelled 
properly in macroscopic methods, is to be analyzed. Here, 
‘multi-scale approach’ comes to our rescue. 

 
Multi-scale Approach 

In multi-scale approach, different sections or domains of the 
same structures are analyzed on different scales as per 
requirement. This leads to effective and efficient analysis of 
the structure as compared to any particular method. The 
results thus obtained are better qualitatively and the process 
is less expensive compared to any method available. 

This solves our problem to some extent, but the accurate and 
smooth transfer of information between different scales is 
very difficult to achieve. It requires a mechanism which can 
do this without being computationally inefficient. This 
phenomenon of transferring the information between 
different scales using a proper technique is popularly known 
as ‘Multi-Scale Modeling’. The present work attempts to 
study various multi-scale modelling techniques and select 
better technique for the coupling of Finite Element Method 
(FEM) with the Molecular Dynamics (MD) model. 

FEM is widely used in the industry but it has got certain 
limitations and cannot be applied everywhere, for example 
crack propagation, lattice defects etc. Similarly MD model 
can be used for the above stated cases but it requires large 
amount of computational resources. This makes the 
application of MD over whole structure infeasible. Thus 
using multi-scale modeling, only critical part is analyzed 
using MD while the entire remaining structure is studied 
using FEM which makes the analysis more qualitative and 
less expensive as compared to individual approaches.     

Thus, multi-scale modelling can save a lot of time and 
resources for complicated and more accurate material 
analysis. As in our case, if FEM and MD approaches are 
effectively combined, they could help solving some of the 
current problems in Aerospace and Material science like 
behavior of composites and polymers, crack propagation and 
its effect on the structure etc. This can greatly improve the 
quality of the material analysis performed in the industry. 

 

Outline of the work 
Firstly a brief study over various available multi-scale 
modeling techniques is undertaken. In the study the basics of 
the approaches and their limitations are presented. This is 
followed by the selection of a particular technique for the 
coupling of FEM and MD. The detailed description of the 
selected multi-scale model (ESCM) is presented. Some 
improvements are also suggested in the conventional model. 
Results obtained by modifying the model with the suggested 
improvements are also shown for the case of a simple 2D 
plate. 

During this process, FEM and MD tools are developed to 
obtain the results from the multi-scale model. The 
verification of the developed model is done by using software 
like Nastran-Patran. A brief study about the effects of mesh 
on the results of FEM is also undertaken as a matter of 
interest.  
At last, factors affecting the obtained results from the 
modified form of the conventional model are stated in order 
to account for the discrepancy in the results obtained. 
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MULTI-SCALE MODELING: 

A brief discussion about the Multi-Scale modeling approach 
is already presented. In the present work the focus is on 
selecting a suitable model for coupling of FEM with MD. 
MD and FE methods are well suited to a particular level of 
accuracy on atomistic and continuum simulations, 
respectively. In general, MD cannot be used for macro-scale 
problems due to the restrictions on the number of atoms that  
can be simulated simultaneously, along with the timescale 
limit. On the other hand, usage of FE method for atomic scale 
problems is not accurate for many reasons mainly because 
continuum mechanics assumes that the substance of body is 
distributed continuously throughout the space of body and 
lacks atomic degrees of freedom. These inherent limitations 
make connecting these two methods essential but also  

 
challenging. It must be pointed out that MD does not have 
any electronic degrees of freedom. 
 
Challenges in Coupling of FEM and MD 
The basic difference lies in the nature of physical laws 
followed in both methods. FEM is entirely based on 
continuum mechanics while MD derives its nature from 
observation of molecular behaviour. These differences leads 
to many problems in communication of information between 
these methods during the Multi-scale simulation. Some of 
the major challenges are listed below: 
 The very nature of displacements is different in both cases. 

In FEM, the displacement is averaged (continuous) 
while in MD the displacement is discrete and can take 
any value without continuity. 

 The nature of oscillation is also different. The oscillation 
are slow and swift in FEM while they are fast in MD 
model. This leads to difference in the order of velocities 
involved in both methods. 

 Also the nature of forces is different. Forces are continuous 
and distributed at the continuum level (FEM) while they 
are discrete at atomistic scale. Thus the force has to be 
evaluated for each molecule or atom in MD while they 
can be easily predicted in FEM. 

 Another major and most important difference is that of the 
time scale involved. In FEM, it is of order of 
microsecond or millisecond while it is of the order of 
femtosecond in case of MD. Thus MD system can be 
simulated at maximum for few microseconds which 
make it not useful for real life simulations. 

Different Multi-Scale Methods 
A literature survey has been done on the various Multi-Scale 
models developed till now. A brief summary of each of those 
models is presented here. 
a) Macroscopic Atomistic Ab-initio Dynamics (MAAD): 
This method is one of the earliest successful methods 
developed for Multi-scale modeling and received a lot of 
attention. It was developed by Abraham and his colleagues in 
around 1999. The fundamental idea is to make concurrent 
links between tight-binding (TB) method, molecular 
dynamics (MD), and finite element method (FEM). In this 
method, tight binding method is used for quantum mechanics 
level degrees of freedom. Molecular dynamics is used for the 
representation of atomistic degrees of freedom. Finite 
element method is used for the deformation of continuum 
mechanics. Here, all three simulations run at the same time, 
and dynamically communicate required information between 
the simulations. The interactions among three analyses are 
taken into account by the total Hamiltonian of the system.  

In this model, ‘handshake’ region was adopted to couple 
regions with each other in FE/MD. A very thin hand shake 
region is used. FE mesh is graded down to the atomic size for 
the reduction of wave reflection between MD and FE. 
However, when connecting molecular dynamics and 
continuum mechanics by using MD simulation and FE 
method respectively, this technique uses the atomic scale 
mesh size for FE. 

Limitation  
Simulation time of FE slows down to picosecond to match the 
MD time step when the mesh is graded down to atomic level. 
The other issue is that atomic scale FE simulation is 
physically unreasonable because the constitutive equation of 
FE is based on continuum mechanics. Since, time step in FE 
region depends on the element size, the atomic sized mesh 
makes the time step too short for realistic engineering 
problems. 

Also there is reflection of short wavelength at the FE/MD 
interface as atoms on FE side are stationary while that on MD 
side are constantly vibrating. 

b) Quasi Continuum (QC) Method:    Another pioneering 
approach for multi-scale methods is the quasi-continuum 
(QC) method by Tadmor (1996). The QC method is an 
approach coupling continuum mechanics with atomistic 
simulation for the mechanical response of poly-crystalline 
materials at zero temperature. This is one of most popular 
method in multi-scale modeling. 
The QC method is based on an entirely atomistic description 
of the material domain. To reduce the computational cost, 
two assumptions are adapted: one is the reduction of degrees 
of freedom, and another is the Cauchy–Born rule: in a 
crystalline solid subject to a small strain, the positions of the 
atoms within the crystal lattice follow the overall strain of the 
mediums. The Cauchy–Born rule assumes that the 
continuum energy density W can be obtained by using an 
atomistic potential, with the link to the continuum being the 
deformation gradient F given by:  



International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.10, Pages : 07 – 19 (2015) 
Special Issue of ICCEEM  2015 - Held on October 21, 2015, Hyderabad, India 
http://www.warse.org/IJETER/static/pdf/Issue/icceem2015sp02.pdf 

10 
 

 

                                                             
ISSN   2347 - 3983 

 F = 1+ (du/dX)                                                             ………(1) 
Where u is the displacement, dX is an undeformed line 
segment. 
By using the Cauchy–Born rule, a continuum stress tensor 
and tangent stiffness can be acquired from the interatomic 
potential W, which allows the usage of nonlinear FE 
techniques. The continuum stress tensor and tangent 
stiffness are given by:  

P = ∂W/ ∂F                                                                                ……(2) 

C = ∂2W/ (∂FT ∂FT)                                                               …..(3) 
Where P is the first Piola–Kirchoff stress tensor and C is the 
Lagrangian tangent stiffness. 
 
The particular representation is determined by the local 
deformation gradient and dictates a small fraction of the 
atoms (called representative atoms or “repatoms”). In this 
approach, the non-local repatoms are used to represent the 
atomistic behaviors, 
and the local 
repatoms are used to 
simulate the 
continuum domain 
by using the 
Cauchy–Born rule in 
the FE method as 
shown in the figure.  

Limitations 
Although QC method suggested a new approach for 
multi-scale modeling, this method suffers from the same 
issues as MAAD that are the wave reflection and the total 
simulation time limit.  

In this method, even though Cauchy–Born rule connects 
atoms in MD region with repatoms in FE, in which the mesh 
size of FE gradually increases from MD region, the wave 
reflection still exists in MD region. The result leads to 
spurious energy accumulation in MD region, non-physical 
heating of the crystal in the MD region, and as a result the 
solution in MD region becomes unreliable. Moreover, since 
this method is implemented in MD and FE regions 
simultaneously, the time step of MD dominates the total 
simulation time, which is very short for any practical 
engineering problem.  
 
c) Bridging Domain Method:   Xiao and Belytschko (2004) 
have developed this method for coupling of molecular 
dynamics and continuum mechanics. In this approach, the 
system consists of three domains: ΩMD (molecular dynamics), 
ΩCM (continuum mechanics), and ΩHS (hand shake region) 
which can be seen in the figure. The main idea of the model is 
using a linear combination of Hamiltonian of MD and FE 
region in the hand shake region, ΩHS. Hamiltonian is defined 
by:  
 
H = (1− α)HMD + αHCM                                                   ……(4) 
Where the parameter α = 0 in ΩMD−ΩHS region, and α = 1 in 
ΩCM−ΩHS region while α = [0,1] (linear) in ΩHS .  

The energy within the hand shake region goes from entirely 
atomistic at MD boundary to entirely continuum at FE 
boundary. The effect of this energy transition is that short 
wavelength atomic scale energy is filtered but results have 
shown that a minimum hand shake distance is required for 
the method to eliminate wave reflection effectively. 

Limitation 
The minimum hand shake distance in this method is 
relatively long, as a result increasing the computational cost 
and decreasing the size of MD zone. 
 
 
 
 
 
 
d) Bridging Scale Method:    This method was developed by 
Wagner and Liu (2003), and Park and Liu (2004). The basic 
idea is to resolve the total displacement u(x) in terms of 
course scale (x) and fine scale u’(x) at the position x. The 
coarse scale is governed by the continuum mechanics and 
simulates the entire field, while the fine scale is used to 
simulate the region of high interest is governed by molecular 
dynamics. 

Bridging scale method starts from an entire molecular 
system. For better efficiency, the system area of MD is 
reduced from the entire region to a small area of interest. An 
entire molecular system can be changed into the reduced MD 
system along with external forces that act on the boundaries 
of the reduced lattice. The latter represents the combined 
effects of all the atomistic degrees of freedom accounted for 
by using the generalized Langevin equation (GLE). Effect of 
using GLE with FE mesh is the dissipation of small 
wavelength which FE cannot capture due to its mesh size. 

This approach does not scale down the mesh of FE to atomic 
size and thus provide different simulation time scales for 
both FE and MD. Thus the coarse scale variables can evolve 
on different time scale than the fine scale variables. The wave 
reflection results are also good with this method. 

Limitations 
This method does not have the problem of wave reflection 
and time scale dependency. But the computations involve are 
complex in multiple dimensions and hence, brings additional 
computational cost in MD simulation. 
 
Embedded Statistical Coupling Model (ESCM) 
 
This is rather a new approach to MD-FEM coupling, 
developed by E. Saether (2009), which is based on a 
restatement of the standard boundary value problem used to 
define a coupled domain. The method replaces a direct 
linkage of individual MD atoms and finite element (FE) 
nodes with a statistical averaging of atomistic displacements 
in local atomic volumes associated with each FE node in an 
interface region. The FEM and MD computational systems 
are effectively independent and communicate only through 
an iterative update of their boundary conditions. 
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With the use of statistical averages of the atomistic quantities 
to couple the two computational schemes, the developed 
approach is referred to as an embedded statistical coupling 
method (ESCM). ESCM provides an enhanced coupling 
methodology that is inherently applicable to 
three-dimensional domains, avoids discretization of the 
continuum model to atomic scale resolution, and permits 
finite temperature states to be applied. 
This is the model which is being followed during this work. 
The detailed description and areas of improvement are 
discussed here. 

Why ESCM? 
The ESCM model has got many advantages over the other 
multi-scale models some of which are listed below- 
 While most of the methods are based on one to one relation 

between FE nodes and atoms (Direct coupling) which 
makes resolution of FE mesh to atomic level necessary, it 
can be avoided in ESCM. 

 The time scale of FE domain and the MD region are 
different and hence, the variables of both domain can 
evolve on their own time steps. 

 It involves an iterative procedure at the interface between 
MD displacement and the FE reaction forces which 
ensures continuity at the interface. 

 It can be used for 3D structures and for any temperature 
while some of the methods require the analysis to be 
performed at 0 K. 

 Less computational space is required as compared to other 
methods for the same structure as simple statistical 
averaging is involved. 
 

ESCM Model and Improvements 
ESCM approach is focused on coupling of MD-FEM 
system. The approach is based on solving a coupled 
boundary value problem (BVP) at the MD/FE interface for  
MD region embedded within a FEM region. Since, this 
method uses statistical averaging over both time and   
volume in atomistic sub domains at the MD/FE interface 
to determine nodal displacement boundary conditions for 
the continuum FE model, it is efficient computationally as 
compared to other methods. These enforced displacements, 
when applied to FE analysis, generate interface reaction 
forces that are again applied as constant traction boundary 
conditions between updates of the FEM solution to the 
atoms within the localized MD sub domains. Thus, the 
present approach relates local continuum nodal quantities 
with nonlocal statistical averages of atomistic quantities 
over selected atomic sub domains. 

An iterative procedure between the MD statistical 
displacements and the FEM reaction forces ensures 
continuity at the interface. In this way, the problem of 
redefining continuum variables at the atomic scale is 
avoided, and also the time and length scales between the 
MD region and FEM domain are independent. 

With the emphasis of using statistical averages to couple the 
two computational schemes, the developed approach is 

identified as a statistical coupling (SC) approach. Based on 
the SC approach, the developed MD-FEM coupling method 
is referred to as the embedded statistical Coupling Method 
(ESCM). 
 
ESCM Model 
The ESCM approach is developed to reduce computational 
costs incurred while simulating “large” volumes of material 
by embedding an inner atomistic MD system within a 
surrounding continuum FEM domain. In principal, the shape 
of the atomistic region may be arbitrary as shown in figure. 
However, for simplicity, the special case of a circular region 
is utilized in the 
present work. 
Similarly, although 
any constitutive 
behavior may be 
assumed for the 
FEM domain, the 
present study 
considers a linear 
elastic continuum. 

This model can 
really be helpful while studying the processes like void 
nucleation and crack growth in a structure, impact of crack 
on material strength, behavior of composite materials, effect 
of lattice defects on the entire material properties etc. 

The structure of the ESCM model consists of four regions:  
1) Inner MD Region 
2) MD/FE Interface region  
3) Surface MD region 
4) FEM domain 

These four regions are depicted 
in figure shown here. Interface 
region is the region where MD 
and FE domains are 
superimposed. Surface region 
does not interact with FE 
domain but it compensate for 
the atomic free surface effects. 

The individual regions will be discussed in details in next few 
sections. 
 
1. Inner MD and the FEM domain:  
The Inner MD Region is used to model material phenomena 
at the atomistic level. This is basically the region of high 
interest in the simulation and most of the computational 
space is utilized in this region. It should be large enough to 
ensure a statistically smooth transition from a continuum to 
an atomistic representation while modeling any of the types 
of processes (e.g., dislocation formation, void nucleation, or 
crack propagation) that are required by the simulation. 

The Inner, Interface, and Surface MD regions together 
constitute the complete MD system. Here it is important to 
emphasize that the partitioning of the MD system into 
different regions is not a physical separation of the system. 
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An atom assigned to a particular location freely interacts 
with atoms in its interaction neighborhood that may reside in 
a  
 
different region. Thus, the overall simulation is performed 
using any conventional MD technique without any 
imposition of direct kinematic constraints. The only 
difference between the three MD regions is that, while the 
atoms in the Inner MD Region are subject only to their 
interatomic forces, the Interface and Surface MD Regions 
serve the added purpose of facilitating the application of 
external forces involved in the ESCM procedure. 

Here, the addition of a FEM domain permits a large 
reduction in the computational cost of simulations by 
replacing the atomistic representation with a continuum 
model in those parts of the system where the deformation 
gradients are small and atomic-level resolution is not 
necessary. 

The current application uses the FEM domain to simulate an 
extended material model such that the elastic deformation 
and load transfer due to applied far-field boundary conditions 
are accurately transferred to the Inner MD Region. The 
continuum field is currently assumed to be static with linear 
elastic material properties but other applications of ESCM 
might require the incorporation of nonlinear material 
behavior, such as plasticity or general dynamic response, 
where nonlinear processes generated in the Inner MD Region 
can be propagated into the continuum. 
 
2. MD/FE Interface Region: 
The  main  role  of  the  MD/FE  Interface  is  to  provide  a  
computational  linkage between the MD region and FEM 
domain. The atoms that surround a given FE node at the 
interface are partitioned to form a cell in the Interface MD 
Region, called an interface volume cell (IVC) as shown in 
the figure representing the ESCM model. The IVCs compute 
averaged MD displacements at their mass center that are 
then prescribed as displacement boundary conditions to the 
associated interface finite element nodes. The IVCs need not 
coincide in size or shape with the finite element to which 
the FE node belongs.  

In the model, IVCs are formed through a Voronoi-type 
construction by selecting those atoms with a common closest 
finite element node. Typically, one finite element at the 
interface encompasses a region of several hundred to several 
thousand atoms. A lower bound for the number of atoms 
associated with each finite element node is determined by 
the requirement of obtaining a minimally fluctuating 
average of atomic displacements and minimizing the 
magnitude of generated gradients in the MD region 
bordering the FEM domain. With an effective average at this 
scale, the discreteness of the atomic structure is 
homogenized enough so that the FEM domain responds to 
the atomistic region as an extension of the continuum. 

During the coupled MD-FEM simulation, a spatial average 
within each kth IVC is performed to yield the center of mass 
displacement,  , which is further averaged over a 

certain period of M MD time steps to yield the statistical 
displacement vector,   

                                         
                                                                  ………(5) 
Here,    is the center of mass of the 

kth IVC containing Nk atoms at positions  at time tj of the 
jth MD step. The mass center displacement, , in 
Equation (5.1) is calculated relative to the initial 
zero-displacement position of the kth IVC, . 

In turn, the IVCs distribute reaction forces from the 
interface finite element nodes as external forces applied to 
the corresponding atoms within the IVC. 
 
3. Surface MD Region: 
As discussed above, reaction forces are obtained from FE 
analysis which are applied on the MD model. In order for the 
MD domain to deform freely in response to these applied 
reaction forces, it is modeled using free surface boundary 
conditions.  

However, the existence of a free surface introduces several 
undesirable effects in the MD system. First, it creates surface 
tension forces that must be removed to avoid distorting the 
MD response. Second, because atoms at or near the free 
surface do not have a complete set of interacting 
neighbouring atoms, the coordination number of the surface 
atoms is reduced so they are less strongly bonded to the 
surrounding atomic field than those within the interior. 
Under sufficiently large reaction forces, these atoms may be 
separated from the surface layer causing a surface 
degradation within the MD domain. 

To mitigate these free surface effects and to stabilize the 
atoms in the Interface MD Region, an additional volume of 
outlying atoms constituting a Surface MD Region is 
introduced as shown in Figure representing the ESCM 
model. While the Surface MD Region eliminates the free 
surface effects within the Inner MD region, it also introduces 
an undesirable fictitious stiffness that elastically constrains 
the deformation of the Inner MD Region. The separate effects 
of surface tension and the fictitious stiffness cannot be 
computed independently. However, their combined effect 
may be defined as a resultant force, , which acts at the 
boundary between the Surface MD Region and the Interface 
MD Region, and is given by the sum of two components 
expressed as 

                                                                          . 
.…(6) 
Where      - Elastic reaction of surface region under  
                      deformation 
                 - Force from the surface tension 

To mitigate both the surface tension and the elastic response 
of the Surface MD region  needs to be compensated. In the 
ideal case, when  is fully compensated, the Surface MD 
region acts as if it possesses zero stiffness and experiences no 
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surface tension, thereby mitigating spurious influences on 
the Inner MD Region.  

 
 
For the purpose, Surface MD Region is subdivided into a 
number of SVCs. It helps to follow the variations of  along 
the perimeter of the Interface MD region. For convenience, 
the partitioning of SVCs can be made to follow the IVC 
partitioning of the Interface MD Region. The resultant force 
is then calculated individually for each SVC. To compensate, 

, a counterforce,  , is computed along the IVC/SVC 
interface and then distributed over the atoms of each SVC in 
a similar manner as the nodal reaction forces are applied to 
the IVCs of the Interface MD Region as shown in the figure. 
 
MD-FEM Coupling Algorithm 
The MD-FEM coupling in ESCM is achieved through an 
iterative equilibration scheme between the MD region and 
the FEM domain. In this scheme, iterations begin with 
displacements at the MD/FE Interface that are calculated as 
statistical averages over the atomic positions within each 
IVC and averaged over the time of the MD analysis. These 
average displacements are then imposed as displacement 
boundary conditions on the FEM domain. The resulting FEM 
BVP is then solved to recover new interface reaction forces 
resulting from the applied interface displacements and any 
imposed far-field loading. 

The new interface reaction forces are then distributed to the 
atoms in the IVCs, thus defining new constant traction 
boundary conditions on the MD system. Between the FEM 
solution updates, the traction boundary conditions are 
constant and applied to the MD region to ensure that the 
elastic field from the FEM domain is correctly duplicated in 
the 

atomistic region. The MD-FEM iteration cycle repeats until a 
stable equilibrium of both displacements and forces between 
the atomistic and continuum material fields is established at 
the interface. The whole algorithm is shown above in the 
form of flowchart. 

Improvements in the ESCM Model 
ESCM model has proven itself to be an efficient and effective 
model by overcoming limitations of other methods and 
utilizing less computational space, as compared to other 
methods, at the same time. But the method still requires a lot 
of computational resources to be applicable for large scale 
industrial purposes.  

Although the method is optimized for its objective but still it 
has got some areas where improvements can be made. One 
such area is the calculations involved in surface forces 
compensation. An extra layer of atoms has to be added in the 
MD domain of conventional ESCM model, to counter the 
surface forces involved, while simulating the MD domain. 
This induces an extra pressure on the computational 
resources as force matrix has to be generated for these extra 
atoms. 

This can be avoided if some mechanism other than 
introducing extra atoms is used. On a primitive thought, the 
periodic boundary conditions (PBC) may be used as the 
mechanism to avoid surface forces at the first hand. This can 
greatly reduce the large computations involved in the surface 
MD region of conventional ESCM model. Although the 
accuracy of the model may suffer in introducing the PBC, but 
the reduction in computation time may play an effective role. 

In the present work, it will be tried to study a multi-scale 
model of a simple 2D plate using the modified approach. 
Then the reduction in accuracy along with the reduction in 
the computational space and time, can be observed for that 
case. If the results are sufficiently accurate, then different 
models can be used to check the viability of the proposed 
modification. If confirmed this play a key role in the efficient 
multi-scale modeling. 
 
 
Results and Conclusion 

In this section, a simple 2D plate of Aluminium is analyzed 
using the ESCM model with the modifications proposed in 
the previous chapter. The model has an embedded circular 
MD region at the center of the plate while the rest of the 
region is analyzed using FEM (FEM domain). Thus the net 
FEM domain looks like a plate with a hole kind of situation 
and the MD domain is a circle of a particular radius. 

First the meshing for the FEM part is done after fixing the 
dimensions of the 2D plate. Special focus has been given on 
the mesh quality perspective as it is very important. Since, 
FEM tool and MD tool are already developed, as discussed in 
the previous chapters, Multi-scale analysis can be performed 
directly after the meshing is done. Here, it must be 
emphasized that the parameters in MD model are very near 
to that of Aluminium parameters but not that much accurate. 
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The focus of the analysis is to reach to an equilibrium state 
and compare the stress pattern thus obtained with that 
obtained from simple FEM analysis. 
 
In the following sections, first dimensions of the coupling 
model (2D plate in this case) are presented. Then FEM 
analysis of 2D plate with a hole at the center is presented 
along with a brief discussion about the mesh quality. This is 
followed by the results obtained from the Multi-scale analysis 
of the plate and the critical analysis of the results. 
 
Coupling Model 

The structure on which the coupling is done in the present 
work is a simple 2D Aluminium plate. The dimension and 
other required parameters for the MD and FEM analysis are 
 

Parameter Value 
Length of plate 4000 Ao 

Breadth of plate 4000 Ao 

Lattice parameter 4 Ao 
Radius of MD 

Domain 
40 Ao 

Number of atoms 960 
Young’s Modulus 70 GPa 

Poisson’s Ratio 0.33 
Material of Plate Aluminium 
Force on Right 
(Nodal force) 

0.01 wton 

 
The FEM domain in the coupling model selected look like a 
2D Aluminium plate with a hole. Thus first FEM analysis of 
2D plate with a hole at center is done and the results are 
compared with the one obtained from Nastran-Patran to 
make sure the quality of FEM tool in the case. This is 
followed by a discussion on the mesh quality. The dimension 
of the plate are given below: 
 
Dimension of the 

plate (square) 
2 m Young’s 

Modulus 
70 

GPa 
Radius of the hole 0.1 m Poisson’s 

Ratio 
0.33 

 
 
FEM Analysis of 2D Plate with hole 
During the FEM analysis of 2D Aluminium plate with a hole 
at center, of the dimensions discussed above, first step is to 
perform the meshing of the structure. The mesh used here 
has 10 elements in radial direction while 8 elements along 

each edge. Thus the total number of elements in the mesh 
are320. For better view, the meshing of the plate before and 
after the deformation respectively are shown below:  
Stress and Displacement distribution  
The stress and displacement distribution obtained for the 
above case using the FEM tool developed is shown here. The 
results are then compared with the one obtained from the 
Nastran-Patran tool to check the applicability of FEM tool for 
use in multi-scale modeling. 

Stress and Displacement pattern respectively (from FEM 
tool) are given below: 
 
Stress and Displacement pattern respectively (from 
Nastran-Patran ) is shown below:                                     
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The above results shows a bit difference in color pattern 
which is mainly due to difference in meshing of the 
Nastran-Patran and the FEM tool model. But order of 
magnitude and stress concentration regions are in 
agreement. Thus the FEM tool can be used in the Multi-scale 
model with sufficient accuracy. The variation in maximum 
stress and displacement is shown for the comparison- 

From the stress plot, 
Maximum stress = 1200 N/m^2    (From the Nastran 
analysis) 
Maximum stress = 1360 N/m^2   (From the matlab code) 
Error = 13.3 % 

From the displacement plot, 
Maximum displacement =1.42e-8 m   (From the Nastran) 
Maximum displacement = 1.35e-8 m   (From the matlab 
code) 
Error = 4.8% 
 
 
Mesh Quality  
 
The mesh quality depends on the number of elements, 
distortion factor and aspect ratio (ideally it should be 1). Out 
of these distortion factor can be ignored as the order of 
deformation is very small. For the case of plate with hole, the 
factors affecting the mesh quality are: number of elements 
along radial direction, number of elements along 
circumference and gradient of element length along radial 
direction.  

To properly observe the quality of mesh, stress concentration 
factor has an important role to play. Stress concentration 
factor, Ktg, is defined as the ratio of maximum stress to the 
reference stress (average stress along the entire cross 
section). 

Ktg=max/                                                                             ……(7) 
Where, max = maximum stress 
             = gross stress along the  cross section of the plate 

According to Pilkey and Pilkey, for 2D plate with a hole 
under biaxial loading as shown in the figure, the theoretical 
value of stress concentration can be formulated as  

   

                                                                           ……… (8)                                                                         

 
 
For the present case, H = 2 m, d = 0.2 m 
Hence, theoretical value of, = 3.035 

Thus the aim of the study is to make the aspect ratio to be 
around unity, stress concentration factor to be around the 
above specified theoretical value. 

Changing the number of element along circumference  
The number of elements along the circumference are 
changed while the element along the radial direction are 
same as above (=10). This change leads to change in aspect 
ratio as well as number of elements in the mesh. The 
observed pattern is shown here – 

 

 
Changing the number of elements along radial direction 
Now the number of elements along circumference are kept 

constant while the number of elements along radial direction 
are changed. This lead to change in aspect ratio which is 
plotted below. It is to be noted here that the number of 
elements are nearly the same. 
 For number of elements (on a particular edge) along 

the perpendicular direction = 8 
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 For number of elements (on a particular edge) along 

the perpendicular direction = 10 

 
 
     After fixing the total number of elements depending on 
the computational space, the next step is to obtain the number 
of elements in both directions, such that aspect ratio and the 
stress concentration factor satisfies the required conditions. 
In that step these curves can help in fixing the element 
distribution. 
 
Multi-Scale Simulation Results  
 
After deciding the model of coupling and with, FEM and MD 
tool ready, multi-scale simulation of ESCM model with 
periodic boundary conditions (PBC’s) can be performed. 
From the understanding developed in the previous section we 
can fix the meshing and run the simulation on the coupling 
model specified in previous section. 
 
FEM analysis of model 
But before running the multi-scale simulation, simple FEM 
analysis is done for the model so as to get a rough idea about 
the order and magnitude of the stress and displacement 
distribution. The analysis is done for two cases: 

 FEM analysis of the model of given dimensions 
(simple 2D plate) 

 FEM analysis of the model without the MD domain 
(2D plate with a hole)  

These results roughly gives the range of the stress and 
displacement pattern. The equilibrium values should 
converge somewhere between the values obtained in the 
above two analysis.     
 
For case 1:  Full Coupling Model 
           

 

 
 
 
 
 
 
 

 
 
For Case 2:  Coupling Model without MD domain 
       
 
Meshing and Simulation result 
Based on the understanding, about the mesh quality 
developed in the above section, the number of elements along 
both the perpendicular and the radial direction are fixed such 
that aspect ratio should be around unity and the stress 
concentration factor should be near to its theoretical value. 
The mesh finally has 18 elements along radial direction and 
24 elements along circumference. The aspect ratio of the 
smallest, near to the interface region, is around 1.6 which is 
sufficiently good. The final mesh of the model with enlarged 
central part is shown below – 
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After this the simulation is run utilizing the code written in 
Matlab. The results obtained from the simulation are shown 
here. 

Displacement Pattern 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Stress Distribution 
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Analysis of the results 
The plots of stress and displacement fields obtained above 
have many interesting features.  

The first picture in both field is the distribution at higher 
scale and it is found to be uniform. Thus the order of the 
results obtained is same in most of the region except few very 
small pockets of stress or displacement concentrations. The 
reason for these concentration cannot be predicted at this 
level. Better level of maturity is required with the analysis to 
remove these pockets and obtain uniform and accurate 
distribution. 

 

 

 

 

 

 

Secondly, the color pattern in both of the stress and 
displacement field is more closer to the plate with a hole case, 
which should be closer to the case of simple 2D plate. This 
may be due to the compromise being done in the accuracy of 
the analysis by using PBC’s. But nothing can’t be said 
accurately that the color pattern as the mesh used in the 
reference analysis is different than the one used in the 
multi-scale model FEM domain.  

The most important thing about the results are that the time 
taken and complexity involved has been reduced to great 
deal. This is also the major objective of the present work even 
though it comes with certain compromise with accuracy. 
Another promising thing is that a state of equilibrium has 
been attained by the model even with some anomalies. Thus 
one can assume that the current approach with some 
modifications can give better results.  
 

CONCLUSION 
The results obtained from the modified ESCM model are 
exciting in terms of the opportunity they can provide for 
future work in the area. The level of maturity is not enough to 
study and further modify the model. But if certain level of 
maturity is achieved, it can be very really helpful in making 
the multi-scale methods more efficient and effective.  
      
Although the results obtained are promising in some areas, it 
requires more attention and focus in some other areas also. 
Certain observed things cannot be explained with current 
level of maturity in the topic. But by utilizing the interplay of 
various factors affecting the simulation, one can gain 
experience and, identify and modify the factors so as to 
obtain sufficiently accurate results. 

A conclusion section is not required. Although a conclusion 
may review the main points of the paper, do not replicate the 
abstract as the conclusion. A conclusion might elaborate on 
the importance of the work or suggest applications and 
extensions. There are many factors which directly or 
indirectly influence the coupling of MD and FEM in ESCM 
model. It is very important to understand the behavior of each 
of the factor and the manner in which it is affecting the 
simulation, if anybody wants to gain command over the field. 
Some of the most important factors are listed below. One can 
study the interplay of these crucial factors and come over the 
modifications required in the current model.  
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