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ABSTRACT 

Identification of Rotor parameters plays a major role in 
vector controlled induction motor drives. Among those 
parameters rotor resistance identification has been well 
recognized as one of the most critical factors affecting the 
theoretical study and applications of AC motor’s control for 
high performance variable frequency speed tuning. This 
paper presented in this article can support the state of some 
related researches. It summarizes many previous works on 
online identification of rotor resistance. Finally estimation of 
rotor resistance of vector controlled IM drive by using 
Artificial Neural Network has been presented. The trained 
back propagation network, applied in the identification 
model, is able to efficiently predict the rotor resistance in high 
accuracy. The simulation and experimental results show that 
the proposed method owns extensive adaptability and 
performs. Very well in its application to vector controlled 
induction motor 
 
Key words: Induction motor, scalar control, vector control, 
voltage model, current model, Artificial Neural Network, 
Back propagation 
 

1. INTRODUCTION 
  Induction machines have several advantages over DC 

machines such as low cost, robustness, high reliability. 
Although traditionally DC machines have been used for high 
performance adjustable speed applications. From last two 
decades development power electronics have been increased 
sharply. This development in power electronics has 
contributed to the use of advanced control techniques that 
have made it possible to extend to use of induction machines 
in those applications. Basically there are two types of control 
techniques in induction motor. One is scalar control another 
one is vector control.  
Scalar control as the name indicates is due to the magnitude 
variation of control variables only and disregards the coupling 
effects in the machine. Scalar control drives gives somewhat 
inferior performance, but they are easy to implement. Scalar 

 
 

control drives have been widely used in industry. However its 
importance has reduced recently because of the superior 
performance of the vector controlled drives which is 
demanded in many applications. 

                    The vector control allows not only control of 
the voltage amplitude and frequency, like in the scalar control 
methods, but also the instantaneous position of the voltage, 
current and flux vectors. This improves significantly the 
dynamic behavior of the induction motor. However, induction 
motor has a nonlinear behavior and there exist a coupling in 
the motor, between flux and the produced electromagnetic 
torque. Therefore, several methods have been proposed for 
decoupling torque and flux. These algorithms are based on 
different ideas and analysis the first vector control method of 
induction motor was Field Oriented Control (FOC) presented 
by K. Hasse (Indirect FOC) [1] and F. Blaschke (Direct FOC) 
[2] in early of 70s. 

         Vector control is becoming a standard tool for industrial 
motor drives. There are two different approaches in the area 
of vector control: the direct vector control in which the rotor 
flux position and amplitude are estimated, and the indirect 
vector control in which only the rotor flux position is used 
[2,3] . The indirect rotor flux oriented control method 
(IRFOC) offers the most interesting characteristics and is thus 
widely used in high performance drives. The main features of 
the IRFOC are the simplicity of its implementation and the 
linearity of its steady state torque-slip characteristics. So it 
constitutes a judicious and attractive choice for a generalized 
implementation of high performance adjustable speed ac 
drives using induction motors.  
          In vector control for induction motor the key point lies 
in the magnetic field orientation, but one of the important 
factors affecting the field orientation is the accuracy of rotor 
parameters. While an AC motor is running, motor parameters 
may change with the influence of inner and outer conditions. 
The changes of the slip frequency and motor temperature can 
affect rotor resistance value. This will change the rotor time 
constant value. The decoupling conditions of the torque and 
flux control are destroyed when the rotor time constant 
deviates from actual value largely. In order to improve the 
performance of induction motor vector control System, it is 
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necessary to initiate the online identification of motor 
parameters. 

Mainly there are three categories on the online 
parameter identification: spectrum analysis technology, the 
observer- based technology, and the model reference adaptive 
identification technology. 

In spectral analysis methods are based on the measured 
response to a specific injected signal or a characteristic 
harmonic in the voltage or current spectrum. By the spectral 
analysis of the stator current or voltage measurements we can 
obtain the required parameters. As mentioned in [5], based on 
 axis component into ݍ model in frequency domain, the ݍ-݀
the negative sequence signal remains zero, so that the motor 
torque is not disturbed. The fast Fourier transform is used to 
analyze the fundamental component of current and voltage as 
well as the samples spectral values, and the results were used 
to determine the parameters of the motor. 

         Several proposed m e t h o d s  using extended Kalman 
f i l t e r s  or extended    Luenberger observers have been 
developed to estimate the rotor resistance in induction 
mach ines in this technology, the motor’s parameters are 
processed as the system extended state. With the condition of 
the induction motor normal operating, the extended motor 
model and the EKF method on the motor parameter 
estimation are described in [6]. This method requires the 
motor ending signal and rotor speed measurement. Reference 
[7] adopts the wideband harmonic contained in the PWM 
inverter output voltage to estimate the rotor time constant 
with EKF algorithm. The extended Luenberger observer for 
estimating the critical state and parameters in the motor is 
explained in [8–10]. The main problem of EKF and ELO is 
the strength of the calculation. The more the numbers of 
parameters estimation of the expansion are, the more the 
strength calculation increases rapidly. The main drawbacks 
o f  these methods are computational c o s t    and   the   fact   
that   the inductances are considered constant. 

The characteristics of the model reference adaptive 
identification technique are simple, but its accuracy depends 
on the accuracy of the system model. The method depends on 
other parameters of the sensitivity, it is better to guesstimate 
some other parameters during the adaptive adjustment. When 
the order of the magnetizing inductance variation with the 
degree of saturation of the motor is considered, the 
identification accuracy of the stator and the rotor resistance 
are further enhanced [11–16]. Additionally, online 
identification of rotor resistance for vector controlled 
induction motor has been focused on more and more. A 
time-varying parameter identification algorithm is presented 
in [17], which is simple and easy for online estimation of the 
rotor resistance for induction motor with the rapidly 
convergence in spite of measurement disturbances (like noise, 
discretization effects, parameter uncertainties, and modeling 

inaccuracies). But the acquisition of reference model always 
has difficulties. 

         Model reference adaptive control techniques have been 
used frequently to estimate the rotor resistance due to their 
simple implementation. Some of the best known are The 
Torque Reference Model uses the torque equation to estimate 
the rotor resistance [18].This estimation   can be used even 
under transient torque conditions.  However, there is a 
necessitate to know the stator   resistance ( also variable 
with temperature), the magnetizing inductance and the rotor 
inductance.  Although the implementation of this m e t h o d    
is analyzed and the convergence is not studied in detail. 

          The   Reactive-Power    Reference   Model   uses   the 
reactive-power equation t o estimate the rotor resistance [19]. 
This  method  uses the motor parameters like stator 
inductance, rotor inductance and magnetizing inductance,  
but  there  is no  need  to  know  the  stator resistance.  A 
systematic analysis of the convergence of the resistance 
estimate to its actual value shows a strong dependency on the 
operating point (supply frequency and load torque).  This 
issue needs further investigation and is one of the 
contributions of this paper. 

(a) The D-Axis and  Q-Axis Voltage  Reference  Models  

          Use t h e    d-axis v o l t a g e    equation   and   the  q-axis 
voltage equation, respectively, to estimate the rotor 
resistance.  Both approaches use stator resistance, 
magnetizing inductance, stator and rotor    inductances.  The 
error between the estimated voltage and the actual val ue  is 
analyzed in steady state i n  [20]. This error is used   to   drive   
the   adaptive    mechanism    which provides estimation of the 
rotor resistance. It is demonstrated that  the  load  torque  and  
the   frequency  of the also  affect the  algorithm  convergence  
in this case. 

           The MRAC methods are strongly dependent on the 
accuracy of the machine model and estimation is usually 
based on the steady-state machine model. Furthermore, in 
most cases, the adaptation process does not work at zero 
rotor speed and at zero load torque.   

           In recent years, new algorithms to estimate rotor 
resistance have been developed using non linear control 
theory, power electronic technology developed and the wide 
use of DSP’s   control of induction Machine. 

 
2. DYNAMIC MODELLING OF INDIRECT ROTOR 
FLUX ORIENTED CONTROL OF IM 

          At first, the mathematics model in the 2-phase 
synchronous rotating coordinate system of the induction 
motor is presented. The 2-phase synchronous rotating 
coordinate system is a special case of two arbitrary rotation 
coordinates rotating in synchronous speed. Mathematical 
model equations with this system of the induction motor are 
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shown below. 
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Fig.1.Block diagram of indirect vector control of an IM 

Following equations are valid for rotating frame  
equivalent circuits 

                                                    
      (1) 

                                                 
       (2) 

For decoupling control it is desirable that  

                 
               

                                             
Substituting the first two conditions, Eqn (1) and (2) can be 
simplified as 

                                      
 
3. ESTIMATION OF ROTOR RESISTANCE BY ANN 

         Artificial neural network is increasingly used for 
parameter identification in recent times. It is demonstrated 
systematically that the neural networks are applied to 
electrical drive systems in [18] and give valuable instruction 
of their online and offline. These studies proved neural 
network’s applicability to motor parameter identification 
theoretically and practically. 

           The model of rotor resistance identification based on 
back propagation neural network is proposed in this paper.  It 
was invented independently several times Bryson an Ho 
[1969] , Werbos [1974],  Parker [1985], Rumelhart et al. 
[1986] 

It is a popular learning method and capable of 
handling large learning problems. It has been one of the most 
studied and used algorithms for neural networks learning ever 
since. The algorithm gives an instruction for changing the 
weights Wij in any feed forward network to learn a training 
set of input output pairs {xd, td}. 

In this paper, a new type of induction motor rotor 
resistance estimator based on the artificial neural network 

technology has been presented. It can adjust the weights of 
neural network through the flux error between neural network 
model and a typical motor model to achieve the purpose of 
identification of rotor resistance parameters. 

3.1. Principle and structure of observer 

Fig.1. describes the basic structure of a rotor resistance 
estimation model. There are two modules in the model. One is 
rotor flux linkages estimation module; here rotor flux is 
estimated from the input voltages and currents of induction 
machine. The other is rotor flux linkages current ANN 
module, here the flux linkages are obtained from input 
currents and speed of the machine. Two independent modules 
are used to estimate the rotor flux vector of the induction 
motor. The flux linkage error between two modules inputs 
into MLPANN. Back propagation algorithm can adjust 
weights. At last, the output of the later tail after the output of 
former. At this time, the progress of training is fulfilled. The 
weight of MLPANN relate to the parameter of motor. The 
identical of real and estimate rotor resistance can be achieved 
by the indirect method. 

Rotor flux current ANN 
model

Rotor f lux estimation 
model

B.P. Algorithm
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Vds Vqs
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Fig. 1.Estimation of rotor flux linkages from voltage model 

In the proposed system, the outputs of the neural 
networks are fluxes (i.e. d-axis & q-axis fluxes). These fluxes 
are compared with fluxes from the voltage model. So these 
fluxes must be estimated. It is possible to establish a flux 
which does not use the monitored speed, but uses only the 
monitored values of stator voltages and currents. This model 
does not depend on rotor resistance. So the estimated flux is 
accurate and correct, even if the rotor resistance has some 
variation due to temperature variation and skin effect. 

The following equations of stator voltages and fluxes can be 
written from stationary frame equivalent circuits. 
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The rotor currents can be derived from stator voltages and 
currents as: 

                                                                   

 
                                                

 
The rotor fluxes can be written as: 

                     

                      
The rotor flux equation is 

                 =  

The rotor flux equations from the current model are obtained 
from the following equations 

                                                 

 
                                                

   
   

3.2. Rotor Resistance identity 

Two independent estimators of rotor flux vector of 
the induction motor parallel two independent equation of rotor 
flux vector. Equation (1) is based on stator voltages and 
currents, which is referred as voltage model of the induction 
and equation (2) is based on stator currents and rotor speed, 
which is referred as current model of the induction motor. 

        =                      (1) 

                                              

= +                                   (2) 

Equation (3) is the discrete form for the rotor fluxes from (2) 

                                              (k)= 
      

(3) 

Where    I=      J=       =  

Where equation (3) can be written as          

                        (k)=         (4) 

                      = =  

        =I (k-1)=  

=J =  

Where the weights are 

                            = ; = ; =T  

Equation (4) is based on the model of MLPANN, Wi is 
the weight of MLPANN and it has to be updated using 

network. Xi is the input to the network.   Is the 
output to the network. 

X1

X2

X3

Y

W1

W2

W3

 
Fig 2.Structure of the neural network elements. 

Here two layer network is used for the estimation of 
rotor resistance. First layer is called input layer which consists 
of three neurons fed from three inputs (i.e. X1, X2, X3). 
Second layer is called output layer.  

Here error back propagation learning algorithm will 
be applied in the ANN system. The essence of the algorithm is 
the error from inputs will be back propagated and the weights 
adjustment are supplemented in the process at last the output 
of the estimate system will converge to the real value. The 
weights automatically adjust itself through the back 
propagation algorithm in the system. 

Finally the rotor resistance can be estimated by using weights   

   = =  

4. SIMULATION RESULTS AND ANALYSIS 

The online identification of rotor resistance for 
vector controlled induction motor drive needs the parameters 
of the stator voltage, stator current and speed which was 
measured by sensors. The main function of observer based on 
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voltage model is to achieve flux observation according to the 
stator voltage and current signals measured by current 
sensors. The current model based on stator current and speed 
measured by sensors carried out identification of rotor 
resistance online by MLPANN. The parameters of the 
simulation model are shown in Table 1 
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Plot of D-axis flux  from voltage model 
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Plot of Q-axis flux from voltage model 
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Plot of Q-axis flux from current model 
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Plot of D-axis flux from current model 

Rotor flux linkages from the current model compares 
with the output rotor flux linkages from the voltage model. If 
they are equal, error will be zero so weights will not be 

updated further. From the final weights we will identify the 
rotor resistance. This is the accurate value of rotor resistance. 
If any changes occurs in the motor parameters due to inner 
and outer conditions then rotor flux linkages of the motor will 
automatically change. This changes can be obtained from the 
voltage model, there by error will be generated automatically. 
By the back propagation algorithm the weights of the neural 
network will be changed in such a way that the output of the 
current model traces the output of the voltage model. From 
these weights we can find the resistance value. For the given 
parameters of an induction motor after 500 epochs the weight 
are W1=1.2834*10^-3 

W2=0.9547  

From these weights we can find the rotor resistance from the 
rotor resistance formula given earlier. During the running 
condition of an induction motor, the resistance is 
continuously varied. By using this back propagation 
algorithm we can identify the rotor resistance continuously. 

 

Table1: 
Rated power P=1000W 

Pole pairs Np=2 
Stator resistance Rs=6.3150 
Rotor resistance Rr=7.1750 

Stator inductance Ls=413.6E-3 
Rotor inductance Lr=413.6E-3 

Mutual inductance Lm=385.5E-3 
Sampling rate T=20E-6 
Learning rate 0.9 
 

Abrivations: 

IM – Induction motor 

ANN – Artificial neural network 

Q-axis – quadrature axis 

D-axis   – direct axis 

 

CONCLUSION  
Rotor resistance changes in the performance of vector 

control have a significant impact. In this paper I have 
presented different techniques of online identification of rotor 
resistance for vectored controlled induction motor drives. 
And also this estimation was done by using back propagation 
algorithm. It will able to track changes in the value of rotor 
resistance. This will help to further research in identification 
of induction motor parameters by using artificial neural 
networks. It also provided an effective way to further enhance 
the performance of vector control.  
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