

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

328

 ISSN 2347 - 3983

AN IMPROVED FIXED-POINT LMS & RLS ADAPTIVE FILTER
WITH LOW ADAPTATION-DELAY

Dama Pavan Teja1, Devi Padmaja.T2

1PG Scholar, Dept of VLSI, SV College of Engineering, Tirupati,, AP, India, pavantejadama@gmail.com

2Asst. Professor, Dept of ECE, SV College of Engineering, Tirupati,, AP, India,, devipadmaja.t@svcolleges.edu.in

ABSTRACT

An improved architecture for the
implementation of a delayed least mean square
adaptive filter is proposed in this paper. THE LEAST
MEAN SQUARE (LMS) adaptive filter is the most
popular and most widely used adaptive filter, not
only because of its simplicity but also because of its
satisfactory convergence performance. But
conventional LMS adaptive filter involves a long
critical path due to an inner-product computation to
obtain the filter output. That critical path is required
to be reduced by pipelined implementation called
delayed LMS (DLMS) adaptive filter. The
conventional delayed LMS adaptive filter
architecture occupies more area, more power wastage
and less performance then compare with this
proposed architecture. The proposed LMS design
offers less area-delay product (ADP) and energy-
delay product (EDP). Moreover, the proposed
adaptive filter design is extended by replacing LMS
algorithm to RLS (Recursive least squares) algorithm
which leads to better performance, and also by
adding bit-level pruning of the proposed architecture,
which improves ADP and EDP further.

Keywords: adaptive filter, LMS, DLMS, RLMS,
area-delay product and energy-delay product

I. INTRODUCTION

THE LEAST MEAN SQUARE (LMS)
adaptive filter is the most popular and most widely
used adaptive filter [1]. The direct-form LMS
adaptive filter involves a long critical path due to an
inner-product computation to obtain the filter output.
The critical path is required to be reduced by
pipelined implementation when it exceeds the desired

sample period. Since the conventional LMS
algorithm does not support pipelined implementation
because of its recursive behavior, it is modified to a
form called the delayed LMS (DLMS) algorithm [2],
which allows pipelined implementation of the filter.
A lot of work has been done to implement the DLMS
algorithm in systolic architectures to increase the
maximum usable frequency but, they involve an
adaptation delay of N cycles for filter length N,
which is quite high for large order filters. Since the
convergence performance degrades considerably for
a large adaptation delay, Visvanathan have proposed
a modified systolic architecture to reduce the
adaptation delay. A transpose-form LMS adaptive
filter is suggested in [3], where the filter output at any
instant depends on the delayed versions of weights
and the number of delays in weights varies from 1 to
N.

The existing work on the DLMS adaptive
filter does not discuss the fixed-point implementation
issues, e.g., location of radix point, choice of word
length, and quantization at various stages of
computation, although they directly affect the
convergence performance, particularly due to the
recursive behavior of the LMS algorithm. Therefore,
fixed-point implementation issues are given adequate
emphasis in this paper. Besides, we present here the
optimization of our previously reported design [4],
[5] to reduce the number of pipeline delays along
with the area, sampling period, and energy
consumption. The proposed design is found to be
more efficient in terms of the power-delay product
(PDP) and energy-delay product (EDP) compared to
the existing structures.

In the next section, we review the DLMS
algorithm, and in Section III, we describe the

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

329

 ISSN 2347 - 3983

proposed optimized architecture for its
implementation. Section IV deals with fixed-point
implementation considerations. Section V contains
RLS. Section VI deals with results analysis and
Conclusions are given in Section VII.

II. REVIEW OF DELAYED LMS ALGORITHM

LMS adaptive filter is used worldwide
because of its easy computation and flexibility. This
algorithm is a member of stochastic gradient
algorithm , and because of its robustness and low
computational complexity it is used worldwide. The
algorithm using the steepest distance is as given
below.

ାଵݓ = ݓ + .ߤ ݁ ((1a)ݔ.

Where
݁ = ݀ − ݕ ݕ = ்ݓ ݔ (1b)

Where the input vector xn, and the weight vector wn
at the nth iteration are, respectively, given by

ݔ = ݔ] ,ିଵݔ, … … … … … . . , ݔ −ܰ + 1]்

ݓ = ,(1)ݓ,(0)ݓ] … … … … … . . ܰ)ݓ, − 1)]்

dn is the desired response, yn is the filter output, and
en denotes the error computed during the nth
iteration. μ is the step-size, and N is the number of
weights used in the LMS adaptive filter. In the case
of pipelined designs with m pipeline stages, the error
en becomes available after m cycles, where m is
called the “adaptation delay.” The DLMS algorithm
therefore uses the delayed error en−m, i.e., the error
corresponding to (n − m)th iteration for updating the
current weight instead of the recent-most error. The
weight-update equation of DLMS adaptive filter is
given by

wn+1 = wn + μ · en−m · xn−m. (2)

The above (1a) (1b) two equations are required
output of LMS algorithm where yn is the filter output
and en is the error. Figure below shows the block
diagram of adaptive filter

Figure 1: Structure of the conventional delayed LMS
adaptive filter.

If the values of dn and yn will become equal we will
get zero error (en). This filter could be used in
combination of various other applications. There are
number of parameters related to LMS adaptive filter,
which could differently play an important role in
order to reduce the error. Various applications are
also there, which can also be analyzed using LMS
filter. The block diagram of the DLMS adaptive filter
is shown in Fig. 1, where the adaptation delay of m
cycles amounts to the delay introduced by the whole
of adaptive filter structure consisting of finite impulse
response (FIR) filtering and the weight-update
process. The adaptation delay of conventional LMS
can be decomposed into two parts: one part is the
delay introduced by the pipeline stages in FIR
filtering, and the other part is due to the delay
involved in pipelining the weight update process.

III. PROPOSED ARCHITECTURE

Figure 2: Structure of the modified delayed LMS

adaptive filter.

The DLMS adaptive filter can be implemented by a
structure shown in Fig. 2. Assuming that the latency
of computation of error is n1 cycles, the error

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

330

 ISSN 2347 - 3983

computed by the structure at the nth cycle is en−n1 ,
which is used with the input samples delayed by n1
cycles to generate the weight-increment term. The
weight- update equation of the modified DLMS
algorithm is given by

wn+1 = wn + μ · en-n1· xn-n1 (3a)

Where
en-n1= dn-n1− yn-n1 (3b)

And

yn = wT
n-n2· xn (3c)

We notice that, during the weight update, the error
with n1 delays is used, while the filtering unit uses
the weights delayed by n2 cycles. The modified
DLMS algorithm decouples computations of the
error-computation block and the weight-update block
and allows us to perform optimal pipelining by feed
forward cut-set retiming of both these sections
separately to minimize the number of pipeline stages
and adaptation delay.

As shown in Fig. 2, there are two main computing
blocks in the adaptive filter architecture:
1) The error-computation block, and
2) weight-update block.
In this Section, we discuss the design strategy of the
proposed structure to minimize the adaptation delay

A. Pipelined Structure of the Error-Computation
Block

Fig. 3. Proposed structure of the error-computation block.

The proposed structure for error-computation unit of
an N-tap DLMS adaptive filter is shown in Fig. 3. It
consists of N number of 2-b partial product
generators (PPG) corresponding to N multipliers and
a cluster of L/2 binary adder trees, followed by a
single shift–add tree. Each sub block is described in
detail.

1) Structure of PPG:

Fig. 4. Proposed structure of PPG.

The structure of each PPG is shown in Fig. 4. It
consists of L/2 number of 2-to-3 decoders and the
same number of AND/OR cells (AOC).1 Each of the
2-to-3 decoders takes a 2-b digit (u1u0) as input and
produces three outputs b0 = u0 · . u1, b1 = . u0 · u1,
and b2 = u0 · u1, such that b0 = 1 for (u1u0) = 1, b1
= 1 for (u1u0) = 2, and b2 = 1 for (u1u0) = 3. The
decoder output b0, b1 and b2 along with w, 2w, and
3w are fed to an AOC, where w, 2w, and 3w are in
2’s complement representation and sign-extended to
have (W + 2) bits each. To take care of the sign of the
input samples while computing the partial product
corresponding to the most significant digit (MSD),
i.e., (uL−1uL−2) of the input sample, the AOC (L/2 −
1) is fed with w, −2w, and −w as input since
(uL−1uL−2) can have four possible values 0, 1, −2,
and −1.

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

331

 ISSN 2347 - 3983

2) Structure of AOCs:

Fig. 5. Structure and function of AND/OR cell. Binary
operators · and + in (b) and (c) are implemented using
AND and OR gates, respectively.
The structure and function of an AOC are depicted in
Fig. 5. Each AOC consists of three AND cells and
two OR cells. The structure and function of AND
cells and OR cells are depicted by Fig. 5(b) and (c),
respectively. Each AND cell takes an n-bit input D
and a single bit input b, and consists of n AND gates.
It distributes all the n bits of input D to its n AND
gates as one of the inputs. The other inputs of all the
n AND gates are fed with the single-bit input b. As
shown in Fig. 5(c), each OR cell similarly takes a
pair of n-bit input words and has n OR gates. A pair
of bits in the same bit position in B and D is fed to
the same OR gate.

The output of an AOC is w, 2w, and 3w
corresponding to the decimal values 1, 2, and 3 of the
2-b input (u1u0), respectively. The decoder along
with the AOC performs a multiplication of input
operand w with a 2-b digit (u1u0), such that the PPG
of Fig. 5 performs L/2 parallel multiplications of
input word w with a 2-b digit to produce L/2 partial
products of the product word wu.

3) Structure of Adder Tree

 Conventionally, we should have performed the
shift-add operation on the partial products of each
PPG separately to obtain the product value and then
added all the N product values to compute the desired
inner product. However, the shift-add operation to

obtain the product value increases the word length,
and consequently increases the adder size of N − 1
additions of the product values. To avoid such
increase in word size of the adders, we add all the N
partial products of the same place value from all the
N PPGs by one adder tree. All the L/2 partial
products generated by each of the N PPGs are thus
added by (L/2) binary adder trees. The outputs of the
L/2 adder trees are then added by a shift-add tree
according to their place values. Each of the binary
adder trees require log2 N stages of adders to add N
partial product, and the shift–add tree requires log2 L
− 1 stages of adders to add L/2 output of L/2 binary
adder trees.2 The addition scheme for the error-
computation block for a four-tap filter and input word
size L = 8 is shown in Fig. 6.

Fig. 6. Adder-structure of the filtering unit for N = 4 and L
= 8.

For N = 4 and L = 8, the adder network requires four
binary adder trees of two stages each and a two-stage
shift–add tree. In this figure, we have shown all
possible locations of pipeline latches by dashed lines,
to reduce the critical path to one addition time. If we
introduce pipeline latches after every addition, it
would require L(N − 1)/2 + L/2 − 1 latches in log2 N
+ log2 L − 1 stages, which would lead to a high
adaptation delay and introduce a large overhead of
area and power consumption for large values of N

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

332

 ISSN 2347 - 3983

and L. On the other hand, some of those pipeline
latches are redundant in the sense that they are not
required to maintain a critical path of one addition
time.

The final adder in the shift–add tree
contributes to the maximum delay to the critical path.
Based on that observation, we have identified the
pipeline latches that do not contribute significantly to
the critical path and could exclude those without any
noticeable increase of the critical path. The location
of pipeline latches for filter lengths N = 8, 16, and 32
and for input size L = 8 are shown in Table I. The
pipelining is performed by a feed forward cut-set
retiming of the error-computation block.

TABLE I

N ERROR
COMPUTATION

BLOCK

WEIGHT
UPDATE
BLOCK

ADDER
TREE

SHIFT
ADD
TREE

SHIFT
ADD
TREE

8 STAGE 2 STAGE 1
AND 2

STAGE 1

16 STAGE 3 STAGE 1
AND 2

STAGE 1

32 STAGE 3 STAGE 1
AND 2

STAGE 2

LOCATION OF PIPELINE LATCHES FOR L=8 AND
N=8, 16, 32

B. Pipelined Structure of the Weight-Update
Block

The proposed structure for the weight-update block is
shown in Fig. 7. It performs N multiply-accumulate
operations of the form (μ × e) × xi + wi to update N
filter weights.

Fig. 7. Proposed structure of the weight-update block.

The step size μ is taken as a negative power of 2 to
realize the multiplication with recently available error
only by a shift operation. Each of the MAC units
therefore performs the multiplication of the shifted
value of error with the delayed input samples xi
followed by the additions with the corresponding old
weight values wi . All the N multiplications for the
MAC operations are performed by N PPGs, followed
by N shift– add trees. Each of the PPGs generates L/2
partial products corresponding to the product of the
recently shifted error value μ × e with L/2, the
number of 2-b digits of the input word xi , where the
sub expression 3μ×e is shared within the multiplier.
Since the scaled error (μ×e) is multiplied with the
entire N delayed input values in the weight-update
block, this sub expression can be shared across all the
multipliers as well. This leads to substantial reduction
of the adder complexity. The final outputs of MAC
units constitute the desired updated weights to be
used as inputs to the error-computation block as well
as the weight-update block for the next iteration

C. Adaptation Delay
As shown in Fig. 2, the adaptation delay is
decomposed into n1 and n2. The error-computation
block generates the delayed error by n1 −1 cycles as
shown in Fig. 3, which is fed to the weight-update
block shown in Fig. 8 after scaling by μ; then the
input is delayed by 1 cycle before the PPG to make
the total delay introduced by FIR filtering be n1. In
Fig. 7, the weight-update block generates wn−1−n2, and
the weights are delayed by n2+1 cycle. However, it
should be noted that the delay by 1 cycle is due to the

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

333

 ISSN 2347 - 3983

latch before the PPG, which is included in the delay
of the error-computation block, i.e., n1. Therefore, the
delay generated in the weight-update block becomes
n2. If the locations of pipeline latches are decided as
in Table I, n1 becomes 5, where three latches are in
the error-computation block, one latch is after the
subtraction in Fig. 3, and the other latch is before
PPG in Fig. 7. Also, n2 is set to 1 from a latch in the
shift-add tree in the weight-update block.

IV. FIXED-POINT IMPLEMENTATION,
OPTIMIZATION, SIMULATION, AND
ANALYSIS

In this section, we discuss the fixed-point
implementation and optimization of the proposed
DLMS adaptive filter. A bit level pruning of the
adder tree is also proposed to reduce the hardware
complexity without noticeable degradation of steady
state MSE.

Fig. 8. Fixed-point representation of a binary number (Xi:
integer word length; X f : fractional word-length).
TABLE II
FIXED-POINT REPRESENTATION OF THE SIGNALS
OF THE PROPOSED

Signal Name Fixed-Point Representation
x (L, Li)
W (W,Wi)
p (W + 2, Wi + 2)
q (W + 2 + log2 N, Wi + 2 + log2 N)

y, d, e (W,Wi + Li + log2 N)
μe (W,Wi)
r (W + 2, Wi + 2)
s (W,Wi)

x, w, p, q, y, d, and e can be found in the error-
computation block of Fig. 3. μe, r, and s are defined
in the weight-update block in Fig. 7. It is to be noted
that all the subscripts and time indices of signals are
omitted for simplicity of notation. For fixed-point
implementation, the choice of word lengths and radix
points for input samples, weights, and internal signals
need to be decided. Fig. 8 shows the fixed-point

representation of a binary number. Let (X, Xi) be a
fixed-point representation of a binary number where
X is the word length and Xi is the integer length. The
word length and location of radix point of xn and wn
in Fig. 4 need to be predetermined by the hardware
designer taking the design constraints, such as
desired accuracy and hardware complexity, into
consideration. Assuming (L, Li) and (W,Wi),
respectively, as the representations of input signals
and filter weights, all other signals in Figs. 3 and 7
can be decided as shown in Table II.

The signal pi j , which is the output of PPG block
(shown in Fig. 3), has at most three times the value of
input coefficients. Thus, we can add two more bits to
the word length and to the integer length of the
coefficients to avoid overflow. The output of each
stage in the adder tree in Fig. 6 is one bit more than
the size of input signals, so that the fixed-point
representation of the output of the adder tree with
log2 N stages becomes (W + log2 N + 2,Wi + log2 N
+ 2). Accordingly, the output of the shift–add tree
would be of the form (W+L+log2 N,Wi+Li+ log2 N),
assuming that no truncation of any least significant
bits (LSB) is performed in the adder tree or the shift–
add tree. However, the number of bits of the output
of the shift–add tree is designed to have W bits. The
most significant W bits need to be retained out of (W
+ L + log2 N) bits, which results in the fixed-point
representation (W,Wi + Li +log2 N) for y, as shown in
Table II. Let the representation of the desired signal d
be the same as y, even though its quantization is
usually given as the input. For this purpose, the
specific scaling/sign extension and truncation/zero
padding are required. Since the LMS algorithm
performs learning so that y has the same sign as d, the
error signal e can also be set to have the same
representation as y without overflow after the
subtraction.

V. RECURSIVE LEAST SQUARES
The Recursive least squares (RLS) is an

adaptive filter which recursively finds the
coefficients that minimize a weighted linear least
squares cost function relating to the input signals.
This is in contrast to other algorithms such as the

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

334

 ISSN 2347 - 3983

least mean squares (LMS) that aim to reduce the
mean square error. In the derivation of the RLS, the
input signals are considered deterministic, while for
the LMS and similar algorithm they are considered
stochastic. Compared to most of its competitors, the
RLS exhibits extremely fast convergence. However,
this benefit comes at the cost of high computational
complexity.Instead of LMS if we use RLMS in the
same optimized architecture of proposed adaptive
filter which leads to betterment in area, power and
delay.

VI. EXPERIMENTAL RESULTS ANALYSIS

Below figure shows area slices and delay of delayed
least mean square filter

Below figure shows area slices and delay of delayed
Recursive least mean square filter

Table III Experiment Results
Adaptive

filters
Area Delay power

DLMS 604 slices 186.712ns 0.034W
DRLMS 539 slices 186.704ns 0.034W

VII. CONCLUSION

We proposed an area–delay-power
economical low adaptation delay design for fixed-
point implementation of LMS adaptive filter. We
have a tendency to used a unique PPG for economical
implementation of general multiplications and inner-
product computation by common sub expression
sharing. Besides, we've proposed AN economical
addition theme for inner-product computation to cut
back the variation delay considerably so as to realize
quicker convergence performance and to cut back the
important path to support high input-sampling rates.
Other than this, we have a tendency to propose a
method for optimized balanced pipelining across the
long blocks of the structure to cut back the variation
delay and power consumption, as well. The proposed
structure concerned considerably less adaptation
delay and provided vital saving of ADP and EDP
compared to the prevailing structures. We have a
tendency to propose a fixed-point implementation of
the proposed design, and derived the expression for
steady-state error. We have a tendency to found that
the steady-state MSE obtained from the analytical
result matched well with the simulation result. We
also discussed a pruning scheme that provides better
ADP and EDP over the proposed structure before
pruning, without a noticeable degradation of steady-
state error performance.

ACKNOWLEDGEMENT

I would like to express my sincere
gratitude and thanks to Smt. N.Suguna, M.Tech
Assistant Professor in Electronics and
Communication Engineering department, Sri
Venkateswara College Of Engineering, Tirupati,
for her constant help, valuable guidance and
useful suggestions, which helped me in the
Completion of the work.

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 328 - 335 (2015)

 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati
 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp62.pdf

335

 ISSN 2347 - 3983

REFERENCES
[1] B. Widrow and S. D. Stearns, Adaptive Signal
Processing. Englewood Cliffs, NJ, USA: Prentice-
all, 1985.
[2] M. D. Meyer and D. P. Agrawal, “A modular
pipelined implementation of a delayed LMS
transversal adaptive filter,” in Proc. IEEE Int.
Symp.Circuits Syst., May 1990, pp. 1943–1946.
[3] Y. Yi, R. Woods, L.-K. Ting, and C. F. N. Cowan,
“High speed
FPGA-based implementations of delayed-LMS
filters,” J. Very Large Scale Integr. (VLSI) Signal
Process., vol. 39, nos. 1–2, pp. 113–131, Jan. 2005.
[4] P. K. Meher and S. Y. Park, “Low adaptation-
delay LMS adaptive filter part-I: Introducing a novel
multiplication cell,” in Proc. IEEE Int. Midwest
Symp. Circuits Syst., Aug. 2011, pp. 1–4.
[5] P. K. Meher and S. Y. Park, “Low adaptation-
delay LMS adaptive filter part-II: An optimized
architecture,” in Proc. IEEE Int. Midwest
Symp.Circuits Syst., Aug. 2011, pp. 1–4.

