
 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 117- 123 (2015)
 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati

 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp24.pdf

117

ISSN 2347 - 3983

ABSTRACT

SaaS provides a flexible environment through which
application service providers allowed to host their
applications in a distributed environment, so that users can
access the hosted services in a easier way. As the
environment is sharing in nature there is more scope for SaaS
clouds vulnerable to malicious attackers. In this paper
IntTest a new integrity attestation scheme is introduced that
can use graph analysis scheme to achieve higher Pinpointing
of attackers. Here also automatically correcting the results of
malicious attackers with results provided by benign service
providers technique called auto correction is introduced.
Also we implemented IntTest and tested on a production
cloud infrastructure, the experimental results show that this
scheme achieved higher accuracy than previous schemes.
IntTest does not require any secure kernel support and
hardware and it also supports for large scale cloud computing
infrastructure.

Keywords: Distributed service integrity attestation, cloud
computing, secure distributed data processing.

1. INTRODUCTION

Cloud computing is emerged mainly to provide two
advantages ease-of-use and cost-effectiveness. It is storing
and accessing data and programs over the internet instead of
your computer hard-drive. Software-as-a-service (SaaS)
clouds mainly build on the concepts of software as a service
and service-oriented architecture (SOA), this allows different
application service providers (ASPs) to deliver their
applications via the large cloud computing infrastructure.
Some of SaaS clouds are e.g., Amazon Web Service and
Google App Engine. In this, paper mainly our work focuses
on data stream processing services that are considered to be
one class of killer applications for clouds with many
real-world applications in security surveillance, scientific
computing, and business intelligence. As, cloud computing
infrastructures are shared by ASPs from different security
domains, there is a scope for them vulnerable to malicious
attackers. For example, attackers can pretend to be
authorized service providers to provide fake service
components, and the service components provided by benign

service providers may contain security holes that can be use
by attackers. Here mainly we focuses on service integrity
attacks that cause the user to receive corrupted data
processing results.

 Previous schemes provided various software integrity
attestation solutions but those techniques are difficult to
deploy for large scale cloud computing infrastructure because
those require special trusted hardware or secure kernel
support. One of the traditional technique is Byzantine fault
tolerance (BFT), it can detect arbitrary misbehaviors using
full-time majority voting (FTMV) over all replicas, however
it is high overhead to the cloud system.

Here, we present IntTest, a novel integrated service integrity
attestation framework for multitenant cloud systems. IntTest
does not assume trusted entities on third-party service
provisioning sites or require application modifications rather
provides a practical service integrity attestation scheme.
IntTest builds upon previous work RunTest and AdapTest
but can provide stronger malicious attacker Pinpointing
power than previous tests. Specifically, both RunTest and
AdapTest as well as traditional majority voting schemes need
to assume that benign service providers take majority in
every service function, assumption makes the test easier to
get the solution. To invalidate this assumption multiple
malicious attackers may launch colluding attacks on certain
targeted service functions, in large-scale multitenant cloud.
In order to overcome this, IntTest takes a holistic approach by
systematically examining both consistency and inconsistency
relationships among different service providers within the
entire cloud system. The per-function consistency graph
analysis can limit the scope of damage which is caused by
colluding attackers, while the global inconsistency graph
analysis can effectively show those attackers that try to
compromise service functions. Hence, IntTest can still
Pinpoint malicious attackers even if they become majority for
some service functions.

By taking an integrated approach, IntTest can not only
Pinpoint attackers more efficiently but also can suppress
aggressive attackers and limit the scope of the damage caused
by colluding attacks. Moreover, IntTest provides result auto
correction that can automatically replace corrupted data

Detecting Suspicious Nodes Using IntTest For SaaS Clouds

K.Renuka1 , N.Phani Kumar2

1M.Tech CSE Student, S.V. College of Engineering, Tirupati, AP, India
kandrarenuka@gmail.com

 2Assistant Professor, Dept. of CSE, S.V. College of Engineering, Tirupati, AP, India,
Phani6@gmail.com

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 117- 123 (2015)
 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati

 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp24.pdf

118

ISSN 2347 - 3983

processing results produced by malicious attackers with good
results produced by benign service providers.
Specifically, this paper makes the following contributions:

 We provide a scalable and efficient distributed
service integrity attestation framework for
large-scale cloud computing infrastructures.

 We present a novel integrity attestation scheme that
can achieve higher Pinpointing accuracy than
previous techniques.

 We describe a result auto correction technique that
can automatically correct the corrupted results that
are produced by malicious attackers.

 We conduct both analytical study and experimental
results to quantify the accuracy and overhead of the
scheme.

Fig. 1: Service integrity attack in cloud-based data
processing.

2. PRELIMINARY

Here we introduce the software-as-a service (SaaS) cloud
system model. Then we describe our problem formulation
including the service integrity attack model and our key
assumptions.

2.1 SaaS Cloud System Model

It develops upon the concepts of Software as a Service (SaaS)
and Service Oriented Architecture (SOA) which allows
application service providers (ASPs) to deliver their
applications via large-scale cloud computing infrastructures.
Amazon Web Service (AWS) and Google App Engine are
examples to provide a set of application services supporting
enterprise applications and big data processing. A distributed
application service can be dynamically composed from
individual service components provided by different ASPs.
For example, a disaster assistance claim processing
application consists of voice-over-IP (VoIP) analysis
component, email analysis component, community discovery

Component, and clustering and joins components. Our work
focuses on data processing services which have become
increasingly popular with applications in any real world
usage domains such as business intelligence, security
surveillance, and scientific computing. Each service
component, denoted by ci, provides a specific data processing
function, denoted by fi, such as sorting, filtering, correlation,
or data mining utilities. Each service component can have
one or more input ports for receiving input data tuples,
denoted by di, and one or more output ports to emit output
tuples.

In a large-scale SaaS cloud, the same service function can be
provided by different ASPs. Those functionally equivalent
service components exist because: i) service providers may
create replicated service components for load balancing and
fault tolerance purposes; and ii) popular services may attract
different service providers for profit. To support automatic
service composition, we can deploy a set of portal nodes that
serve as the gateway for the user to access the composed
services in the SaaS cloud. The portal node can aggregate
different service components into composite services based
on the user’s requirements. For security protection, the portal
node can perform authentication on users to avoid malicious
users from disturbing normal service provisioning.

Different from other open distributed systems such as
peer-to-peer networks and volunteer computing
environments, SaaS cloud systems possess a set of unique
features. First, third-party ASPs typically do not want to
reveal the internal implementation details of their software
services for intellectual property protection. Thus, it is
difficult to only rely on challenge-based attestation scheme
where the verifier is assumed to have certain knowledge
about the software implementation or have access to the
software source code. Second, both the cloud infrastructure
provider and third-party service providers are autonomous
entities. It is impractical to impose any special hardware or
secure kernel support on individual service provisioning
sites. Third, for privacy protection, only portal nodes have
global information about which service functions are
provided by which service providers in the SaaS cloud.
Neither cloud users nor individual ASPs have the global
knowledge about the SaaS cloud such as the number of ASPs
and the identifiers of the ASPs offering a specific service
function.

2.2 Problem Formulation

For a given SaaS system, the goal of IntTest is to Pinpoint
any malicious service provider that offers an untruthful
service function. IntTest treats all service components as
black-boxes, which does not require any special hardware or
secure kernel support on the cloud platform. We now
describe our attack model and our key assumptions as follows

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 117- 123 (2015)
 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati

 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp24.pdf

119

ISSN 2347 - 3983

Attack model: A malicious attacker can pretend to be a
legitimate service provider or take control of vulnerable
service providers to provide untruthful service functions.
Malicious attackers can be stealthy, which means they can
misbehave on a selective subset of input data or service
functions while pretending to be benign service providers on
other input data or functions. The stealthy behavior makes
detection more challenging due to the following reasons:

1) The detection scheme needs to be hidden from the
attackers to prevent attackers from gaining knowledge on the
set of data processing results that will be verified and
therefore easily escaping detection;
2) The detection scheme needs to be scalable while being able
to capture misbehavior that may be both unpredictable and
occasional.

In a large-scale cloud system, we need to consider colluding
attack scenarios where multiple malicious attackers collude
or multiple service sites are simultaneously compromised
and controlled by a single malicious attacker. Attackers
could sporadically collude, which means an attacker can
collude with an arbitrary subset of its colluders at any time.
We assume that malicious nodes have no knowledge of other
nodes except those they interact with directly. However,
attackers can communicate with their colluders in an
arbitrary way. Attackers can also change their attacking and
colluding strategies arbitrarily.

Fig. 2. Replay-based consistency check

Assumptions:

1. We first assume that the total number of malicious service
components is less than the total number of benign ones in
the entire cloud system. Without this assumption, it would be
very hard, if not totally impossible, for any attack detection
scheme to work when comparable ground truth processing
results are not available. However, different from RunTest,
AdapTest, or any previous majority voting schemes, IntTest
does not assume benign service components have to be the
majority for every service function, which will greatly
enhance our Pinpointing power and limit the scope of service
functions that can be compromised by malicious attackers.

2. Second, we assume that the data processing services are
input-deterministic, that is, given the same input, a benign
service component always produces the same or similar
output (based on a user defined similarity function). Many
data stream processing functions fall into this category. We
can also easily extend our attestation framework to support
stateful data processing services, which however is outside
the scope of this paper. Third, we also assume that the result
inconsistency caused by hardware or software faults can be
marked by fault detection schemes and are excluded from our
malicious attack detection.

3. DESIGN AND ALGORITHMS

In this, we present the basis of the IntTest system:
probabilistic replay-based consistency check and the
integrity attestation graph model, then describe the
integrated service integrity attestation scheme in detail. Also
we present the result autocorrection scheme.

3.1 Baseline Attestation Scheme

Our algorithm uses replay-based consistency check to derive
the consistency/inconsistency relationships of service
providers to Pinpoint the malicious attackers. Fig. 2 shows
the consistency check scheme for attesting three service
providers p1, p2, and p3 that offer the same service function
f. The portal sends the original input data d1 to p1 and gets
back the result f(d1). Next, the portal sends d1', a duplicate of
d1 to p3 and gets back the result f(d1'). The portal then
compares f(d1) and f(d1') to see whether p1 and p3 are
consistent.”

The suspicion behind our approach is that if two service
providers disagree with each other then at least one should be
malicious in that note that we do not send an input data item
and its duplicates (i.e., attestation data) concurrently. After
receiving the processing result of the original data we replay
the attestation data on different service providers. Thus, the
malicious attackers cannot avoid the risk of being detected
when they produce false results on the original data.
Although the replay scheme may cause delay in a single tuple
processing, we can overlap the attestation and normal
processing of consecutive tuples in the data stream to hide the
attestation delay from the user.For all the input data if two
service providers give the same output results then, there
exists consistency relationship between them. Otherwise, if
they generate different outputs on at least one input data,
there is inconsistency relationship between them. We do not
limit the consistency relationship to equality function since
two benign service providers may produce similar results but
not exactly the same results. For example, the credit scores
for the same person may give small difference when obtained
from different credit bureaus. To quantify the biggest
tolerable result difference we allow the user to define a
distance function.

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 117- 123 (2015)
 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati

 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp24.pdf

120

ISSN 2347 - 3983

Definition 1: For two output results, r1 and r2, which come
from two functionally equivalent service providers,
respectively, result consistency is defined as either r1=r2, or
the distance
between r1 and r2 according to user-defined distance
function D(r1, r2) falls within a threshold δ

we propose randomized probabilistic attestation, an
attestation technique that randomly replays a subset of input
data for attestation for scalability. For composite data-flow
processing services consisting of multiple service hops, each
service hop is composed of a set of functionally equivalent
service providers. Specifically, for an incoming tuple di, the
portal may decide to perform integrity attestation with
probability pu. If the portal decides to perform attestation on
di, the portal first sends di to a pre-defined service path p1→
p2 → ..pl providing functions f1 → f2 →....→ fl. After
receiving the processing result for di, the portal replays the
duplicate(s) of di on alternative service path(s) such as p1' →
p2'.... → pl',

where pj' provides the same function fj as pj. The portal may
perform data replay on multiple service providers to perform
concurrent attestation..

After receiving the attestation results, the portal compares
each intermediate result between pairs of functionally
equivalent service providers Pi and Pi. If Pi and Pi' receive
the same input data but produce different output results, we
say that Pi and Pi' are inconsistent. Otherwise, we say that Pi
and Pi' are consistent with regard to function fi. For example,
let us consider two different credit score service providers p1
and p0

1. Suppose the distance function is defined as two credit score
difference is no more than 10. If p1 outputs 500 and p1'
outputs 505 for the same person, we say p1 and p1' are
consistent. However, if p1 outputs 500 and p1' outputs 550
for the same person, we would consider p1 and p1' to be
inconsistent. We evaluate both intermediate and final data
processing results between functionally equivalent service
providers to derive the consistency/ inconsistency
relationships. For example, if data processing involves a sub
query to a database, we evaluate both the final data
processing result along with the intermediate sub query
result. Note that although we do not attest all service
providers at the same time, all service providers will be
covered by the randomized probabilistic attestation over a
period of time.

Definition 2: Two service providers who always give
consistent output for the same input data during attestation
then a consistency link exists between them. In the same way
if two service providers who give at least one inconsistent
output for the same input data during attestation then an

inconsistency link exists between them. After that we then
construct consistency graphs for each function to capture
consistency relationships among the service providers
provisioning the same function. Figure 3(a) shows the
consistency graphs for two functions and the service
providers are giving the results. Note that two service
providers that are consistent for one function are not
necessarily consistent for another function. This is the reason
why we confine consistency graphs within individual
functions.

 Fig. 3: Attestation graphs.
.
Definition 3: A per-function consistency graph is an
undirected graph, with all the attested service providers that
provide the same service function as the vertices and
consistency links as the edges.

We use a global inconsistency graph to capture inconsistency
relationships among all service providers. Two service
providers are said to be inconsistent as long as they disagree
in solution of detecting and eliminating the resources on the
cloud is possible.

3.2 Integrated Attestation Scheme

We now present our integrated attestation graph analysis
algorithm.

Step 1: Consistency graph analysis. In order to find
suspicious service providers, we first check the per-function
consistency graph. In a specific service function, to tell which
set of service providers are consistent with each other; we use
the consistency links which are available in per-function
consistency graph. Benign service providers will not be
available in the consistency graph, it is because, the benign
service providers will always be consistent for any service
provider. For instance, in Figure 3(a), p1, p3 and p4 are
always forming a consistency group. So, we can call p1, p3
and p4 as benign service providers.

In traditional schemes, an algorithm has been developed to
find out malicious service providers. If the number of benign
service providers is greater than that of the malicious ones, a
benign node will always stay in a network formed by all
benign nodes, which has size larger than ⌊k/2⌋, where k is the
number of service providers provisioning the service
function. Thus, we can find out malicious nodes by
identifying nodes that are outside of all groups whose size is

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 117- 123 (2015)
 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati

 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp24.pdf

121

ISSN 2347 - 3983

larger than ⌊k/2⌋. To understand it clearly, consider Figure
3(a), where, p2 and p5 are identified as suspicious because
they are excluded from the clique of size 3.

Fig. 4: Inconsistency graph G and its residual graph.

Strategically saying, In order to escape the detection, the
attackers will try to take the majority in specific service
function after the colluding. Therefore, it is not very efficient
to examine the per-function graph alone. In order to
overcome this drawback, we have to integrate the consistency
graph analysis with the inconsistency graph analysis so that
we can get wholesome on integrity attestation.

Step 2: Inconsistency graph analysis. There may be different
combinations of the benign node set and the malicious node
set if there is any inconsistency graph, which contains
inconsistency links. If the total number of malicious service
providers in the whole system is not greater than K, then, a
subset of truly malicious service providers can be identified.
If we want to find any one among the given two service
providers as malicious, then, we have to connect them by
inconsistency link. Since the two service providers should
always agree with each other By examining the minimum
vertex cover of the inconsistency graph. we can derive the
lower bound about the number of malicious service
providers. The minimum set of vertices such as each edge of
the graph is incident to atleast one vertex in the set, can be
identified through minimum vertex cover graph.. For
instance, in Figure 3(b), The minimum vertex cover can be
formed by p2 and p5. As to get this approach clearly, we
present two propositions. These prepositions are explained
clearly as follows:

Proposition 1: Given an inconsistency graph G, let CG be a
minimum vertex cover of G. Then the number of malicious
service providers is no less than |CG|. We now define the
residual inconsistency graph for anode Pi as follows.

Definition 5: The residual inconsistency graph of node Pi is
the inconsistency graph after removing the node Pi and all of
links adjacent to Pi.

For example, Figure 4 shows the residual inconsistency
graph after removing the node p2. Based on the lower bound
of the number of malicious service providers and Definition
5, we have the following proposition for pinpointing a subset
of malicious nodes.

Proposition 2: Given an integrated inconsistency graph G
and the upper bound of the number of malicious service
providers K, a node p must be a malicious service provider if
and only if
 |Np|+| CG′ p’| > K

Where |Np| is the neighbour size of p, and |CG′p | is the size
of the minimum vertex cover of the residual inconsistency
graph after removing p and its neighbours from G.

Step 3: Combining consistency and inconsistency graph
analysis results. Let Gi be the consistency graph generated
for service function fi, and G be the global inconsistency
graph. Let Mi denote the list of malicious nodes by analyzing
per function consistency graph Gi, and Ω denotes the list of
suspicious nodes by analyzing the global inconsistency graph
G, given a particular upper bound of the number of malicious
nodes K. We examine per-function consistency graphs one
by one. Let i denote the subset of that serves function fi. If Ω∩
Mi≠∅, we add nodes in Mito the identified malicious node
set. The idea is that since the majority of nodes serving
function fi have successfully excluded malicious nodes in i,
we could trust their decision on proposing Mi as malicious
nodes.

3.3 Result Auto-Correction
Instead of Pinpointing malicious service providers the
IntTest automatically correct the corrupted data processing
results in order to improve the result quality of the cloud data
processing service. There is no need of our attestation
scheme, because if the original data item is manipulated by
any malicious node then the processing result of that data
item can be corrupted, it will affect the result by degrading
the result quality. IntTest gives the advantages that it take the
result of attestation data and the malicious node
compromised data it takes and automatically correct the
processing result.

 Mainly, after receiving the result f(d) of the original data d
by the portal node, it needs to check the data d which has
been Pinpointed by our algorithm whether it has been
processed by any malicious node or not ? The received data is
checked by the portal node. If the data d has been processed
by any Pinpointed malicious node, it is labelled f (d) as
“suspicious result”. Again the portal node needs to check that
that d has been chosen for attestation, if yes, then again we
will check the attestation copy of d only traverse good nodes.
To replace f(d), we use the result of attestation data but only
then if attestation copy of d traverse good node. For example
you can clearly observe in Figure 5 the Pinpointed malicious
node s6 is processing original data on the other hand benign
node is processing one of its attestation data d.The original
result is replaced by the attestation data result f(d”).

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 117- 123 (2015)
 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati

 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp24.pdf

122

ISSN 2347 - 3983

Fig. 5: Automatic data correction using attestation data
processing results.

4. CONCLUSION

In this paper, we have discussed about the design and
implementation of IntTest, an innovative way of integrated
service integrity attestation framework for multi-tenant
software-as-a-service cloud systems. Without distinguishing
high overhead to the cloud infrastructure, IntTest handles
randomized replay-based consistency check to verify the
integrity of distributed service components. In order to
identify the intriguing attackers more adequately than
existing techniques, IntTest performs integrated analysis on
both consistency and inconsistency attestation graphs. Apart
from that, IntTest also provides auto correction technique,
which is used to correct the compromised results
mechanically and spontaneously. IntTest has also been
implemented and tested on a commercial data stream
processing platform, which has been running inside a
virtualized cloud computing infrastructure. These tests
showed that IntTest has achieved greater Pinpointing
accuracy than most of the existing alternative schemes.
Finally, from this paper, we conclude that IntTest is
light-weight, which assess an impact to the data processing
processing services which runs inside the cloud computing
infrastructure.

5. REFERENCES

[1] Amazon Web Services, http://aws.amazon.com/, 2013.

[2] Google App Engine, http://code.google.com/appengine/,
2013.

[3]SoftwareasaService,http://en.wikipedia.org/wiki/Softwar
e asa Service, 2013.

[4] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web
ServicesConcepts, Architectures and Applications
(Data-Centric Systems andApplications). Addison-Wesley
Professional, 2002.

[5] T. Erl, Service-Oriented Architecture (SOA): Concepts,
Technology, andDesign. Prentice Hall, 2005.

[6] T.S. Group, “STREAM: The Stanford Stream Data
Manager,” IEEEData Eng. Bull., vol. 26, no. 1, pp. 19-26,
Mar. 2003.

[7] D.J. Abadi et al., “The Design of the Borealis Stream
ProcessingEngine,” Proc. Second Biennial Conf. Innovative
Data SystemsResearch (CIDR ’05), 2005.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, You Get Off My Cloud! Exploring Information
Leakage in Third-Party Compute Clouds,” Proc. 16th ACM
Conf. Computer and Communications Security (CCS), 2009.

[11] W. Xu, V.N. Venkatakrishnan, R. Sekar, and I.V.
Ramakrishnan, “A Framework for Building
Privacy-Conscious Composite Web Services,” Proc. IEEE
Int’l Conf. Web Services, pp. 655-662, Sept.
2006.

[12] P.C.K. Hung, E. Ferrari, and B. Carminati, “Towards
Standardized Web Services Privacy Technologies,” IEEE
Int’l Conf. Web Services, pp. 174-183, June 2004.

[13] L. Alchaal, V. Roca, and M. Habert, “Managing and
Securing Web Services with VPNs,” Proc. IEEE Int’l Conf.
Web Services, pp. 236- 243, June 2004.

[14] H. Zhang, M. Savoie, S. Campbell, S. Figuerola, G. von
Bochmann, and B.S. Arnaud, “Service-Oriented Virtual
Private Networks for Grid Applications,” Proc. IEEE Int’l
Conf. Web Services, pp. 944-951, July 2007.

ABOUT AUTHORS

N.Phani Kumar Received
M.Tech Degrees in Computer
Science and Engineering from in
Siddhartha Institute of
Engineering and Sciences,
puttur, JNTUA, in 2011 and
Master of Computer Application
in 2008 respectively. Currently
he is an Assistant Professor in
the Department of Computer
Science and Engineering at SV
College of Engineering-Tirupati

K.Renuka received the B.Tech
Degree in Computer Science and
Engineering from SV College of
Engineering, University of
JNTUA in 2013. She is currently
working towards the Master’s
Degree in Computer Science and
Engineering, in SV College of
Engineering University of
JNTUA. Her interest lies in the
areas of Cloud Computing,

 International Journal of Emerging Trends in Engineering Research (IJETER), Vol. 3 No.6, Pages : 117- 123 (2015)
 Special Issue of NCTET 2K15 - Held on June 13, 2015 in SV College of Engineering, Tirupati

 http://warse.org/IJETER/static/pdf/Issue/NCTET2015sp24.pdf

123

ISSN 2347 - 3983

.

He has published a paper titled “A Flexible Rollback Recovery in
Dynamic Heterogeneous Grid Computing”. in Journals and
refereed Conference Proceedings. Her current interests include
Data Mining, Big Data, Computer Networks and Information.

