

 Jagadeesh B N et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 211-215

211

FILE SYNCHRONIZATION : TOWARDS AN EFFICIENT FILE

SYNCHRONIZATION BETWEEN DIGITAL SAFES

Prof.Jagadeesh B N1, Usha A2, Shriraksha B Rao3 , Sheethal Gowda K4, Sahana H S5

1Assistant professor EWIT, India, jagadeesh.nagaraj.nl@gmail.com
2Student, EWIT, India, ushagowda10@gmail.com 3Student, EWIT, India, shreeraksharao05@gmail.com 4Student, EWIT, India, sheethalgowdak13@gmail.com

5Student, EWIT, India, 14sahanahs@gmail.com

ABSTRACT

The paper’s goal is to develop a secure framework that
ensures file synchronization with high quality and minimal
resource consumption. As a first step towards this goal, we
propose the SyncDS protocol with its associated architecture.
The synchronization protocol efficiency raises through the
choice of the used networking protocol as well as the strategy
of changes detection between two versions of file systems
located in different devices. Our experiment results show that
adopting the Hierarchical Hash Tree to detect the changes
between two file systems and adopting the. WebSocket
protocol for the data exchanges improve the efficiency of the
synchronization protocol.

Key words: File synchronization, Digital Safe, HTML5
Local
Storage API, WebSocket, Hierarchical Hash Tree, Web
services.

1. INTRODUCTION

major need of defining a standardized architecture for file
synchronization with efficiency considerations. First, we
focus
on the synchronization between the Client Digital Safe and
the
Cloud Digital Safe. Second, we address the efficiency in this
context by the choice of the used networking protocol as
well as the strategy of changes detection between two
versions of file systems.
With the invasion of used smart objects, the cross-device
data management remains the concern of multiple research
and industrial works. Various devices, owned by the same
user or different one, rely on synchronization protocols in
order to maintain data consistency. Several Cloud storage
solutions are
proposed to handle this issue. However, the commercialized
products are usually based on proprietary solutions. They
obviously lack transparency for the users how their data are
managed in the client and Cloud side. These closed solutions
depend heavily on the used machine.

2.NETWORK PROTOCOLS FOR FILE
SYNCHRONIZATION

A standardized Cloud storage solution with the probative
value is introduced by the Safe Box As A Service (SBaaS) .
It is a standardized architecture that provides a secure
environment to store sensitive documents. The conception of
this safe follows the AFNOR specifications . It is a standard
that offers the best possible security, integrity and quality to
preserve user’s data. It is characterized by its probative value
as a proof of storage is preserved in a third trusted party.
Introducing the synchronization in a Digital Safe platfo rm
implies the definition of a Client Digital Safe. In our
platform, the client safe is based on HTML5 APIs. The
major interest of using HTML5 is to avoid proprietary
solutions and to adopt standardized one. It offers also the
transparency to the end user
and guaranties the mobility and portability while preserving
an efficient traffic exchange. In this paper, we highlight the

Various networking protocols and architectures are used to
ensure data synchronization including both the notification
and the data transfer. In fact, a part of the infrastructure
sends messages to the concerned connected clients. It
notifies them that changes have occurred and the data
transfer for synchronization should start. For example,
Dropbox uses the HTTP for the data transfer and the long
HTTP polling for the notification. Regarding Google
Chrome synchronization, the data transfer is also based on
HTTP and the notification exploits an existing XMPP-based
Google Talk server. REST API is also used to ensure data
replication in multiple solutions such as CouchDB . Indeed,
RESTful applications are mainly based on HTTP protocol.
Choosing the best protocol for the data exchange is very
important to the synchronization protocol efficiency. In fact,
it is crucial to reduce the amount and the size of messages

 ISSN 2319-2720
Volume 7, No.2, April – June 2018

International Journal of Computing, Communications and Networking
Available Online at http://www.warse.org/ijccn/static/pdf/file/ijccn38722018.pdf

https://doi.org/10.30534/ijccn/2018/38722018

 Jagadeesh B N et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 211-215

212

exchanged between the both end points. In this paper, we
address the introduction of the WebSocket API and protocol
in the architecture of synchronization.

3. EFFICIENT SYNCHRONIZATION
PROTOCOL REQUIREMENTS

In the context of file synchronization, the protocol has to
provide four main key properties that should be respected in
order to guarantee an efficient bandwidth, the fastest data
exchange and an effective computation.
- Property 1: Low computation of the data and metadata at
the client side. This property adds the scalability and
enables simultaneous synchronization.
- Property 2: Efficient change detection between the file
system versions of the client and the server. The goal is to
reduce the time of matching and therefore, the time of whole
synchronization.
- Property 3: Reducing the number of synchronized files by
finding the maximum number of matched content.
- Property 4: Reducing the messages between the client
and the server.

4. EXISTING SYSTEMS AND THEIR DRAWBACKS

The different proposed change detection algorithms can
be classified into three main approaches.

Operation Approach:

This approach is based on recording the different operations
performed on the node A and sending them to the remote
node B. These operations are sent to the node B to update its
replica
Drawback: Storing the operation is a consumption of the
storage memory.

Changes Approach:
The main idea behind this approach is to save a copy of the
last synchronized file system version After a series of
modifications and when the user becomes online, the old
copy and the new version are compared. Actions are
therefore detected and sent to the remote node B .
Drawback: It needs additional storage space for archiving
the file system. In addition there is a lack of automatic
detection since it must be triggered periodically.

Differencing Approach:
The node A sends an abstract of its files and directories to the
remote node. This abstract includes some metadata of files. In
the case of dropbox , the metadata contains the object path,
object type (files or directories) and the hashs of 4Mb file’s
blocks. In the case of Rsync , it sends the hash of file blocks,
and Taper sends the Hierarchical Hash Tree, the hash of file’s
chunks and the hash of file’s blocks. The node B, therefore,

compares its abstract with the one received from A to detect
the changes. It asks A then to send back missing blocks of
files. Drawback: This approach cannot guarantee an
automatic synchronization and sending periodically the
abstract leads to an efficient bandwidth usage.

5. PROPOSED SYSTEM

The goal of our framework is to ensure the data
synchronization between a Local Digital Safe and a Cloud
Digital Safe while considering the probative value. As a first
step, we need to define the architecture as well as the
messages exchanged between its different entities. The
architecture is divided into

Client Storage Layer:
The novelty in the architecture is the non-proprietary
characteristic. The data are stored securely in a Local Digital
Safe. This Safe is based on the HTML5 Local Storage API
with additional security considerations. In fact, we add into
the existent APIs the confidentiality by encrypting the data
locally, the data integrity and metadata integrity. These
security enhancements are the subject of previous work, and
more details can be found in .

Application Layer:
This part includes the web application with the different used
APIs. We introduce two main modules. The first one, Digital
Safe, implements the AFNOR specifications to manage
locally the data stored using the File System API. The
second module, synchronization, is used to detect the user’s
operations applied on the Local Digital Safe and to record
them. It manages then the exchanged messages between the
Local Digital Safe and the Cloud Digital Safe following the
SyncDS protocol.

Synchronization Control Layer :
To go beyond the commercialized solutions and to have the
best performances, we choose the WebSocket protocol to
ensure the bidirectional communication between the local
and the remote Digital Safe. The synchronization
management server handles the different synchronization
requests and responses as well as the conflict resolution. It
also notifies the devices concerned by the modification to
propagate the changes. Our proposed algorithm, based on
HHT, is introduced at this level.

Server Storage Layer:
As introduced in , the Cloud Digital Safe is a standardized
architecture that provides a secure environment for storing
sensitive document. This environment fully fits both the user
requirements and Cloud security challenges. This Cloud
Digital Safe is composed of three main components:
Metadata server, storage servers and Proof Manager.

 Jagadeesh B N et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 211-215

213

Advantages of the proposed system:

 Less on storage space


 Ensures automatic synchronization

6. ARCHITECTURE

Fig 6.1:Digital Safe Synchronization Architecture

7. SYNCDS SYNCHRONIZATION PROTOCOL:

Overview on synchronization steps

After the architecture definition, we need to itemize the syn-
chronization protocol. SyncDS ensures data synchronization
in a standardized Digital Safe context.

Offline phase: when the user goes offline, the Client Digital

Safe stores in a log file the different operations performed
locally. This strategy is the unique which can be used even if
it needs storage capacity. In fact, it guarantees the non-
proprietary characteristic and avoid the use of solutions
which depend on the used operating system. These
operations are detected through the enhanced HTML5
fileSystem APIs specification and the Application cache API.
They are stored then using the HTML5 WebStorage API.

On connection phase: It is a two way synchronization that

includes two steps. In the first step, the client posts changes
performed when it was offline. This step is based on the
operation approach. In fact, the log file is sent to the server. The
server then applies on his version the changes as listed in the log
file. In the second step, the server reveals changes performed on
his side when the user was offline. These changes can be
performed by the same user in a different device or by another
user who shares a part of the file system. In this step, the
differencing approach is adopted.The Client Safe sends an
abstract of its file system to the server. The server then compares
the received abstract with his version, detects changes to send
them back to the user. We propose a new algorithm based on
HHT to detect the changes. This algorithm will be detailed later.
In case of multiple devices

connected at the same time, the problem of conflict resolution is
raised and many techniques are already proposed to solve it.

Online phase: It is a two way synchronization. Changes
made on the client side are sent to the server and changes,
made by different devices and synchronized to the server, are
sent to the user. This step is based on the operation approach.
The novelty and originality of our protocol are the
introduction of the WebSocket to send data from the client to
the server. It is also adopted by the server to send
notifications and data to the client.

Fig 7.1:Overview on the Synchronization Protocol

8.ALGORITHM

1: procedure DETECT MATCHING(T1,T2)
2: Input T1, T2: tree
3: Output T1,T2: tree
4: Traverse T1 in a level order and top-down
5: let∃∈ x be the current node
6: if y T2/ match(x,y)=true then
7: Delete (subtree(x), T1);
8: Delete (subtree(y), T2);
9: if Name(x) _ = Name(y) then
10: Rename(x,Name(y))
11: end∃∈ if
12: if y T2/ Hash(x)=hash(y) and Parent(x)=Parent(y) then

13: Mark (y, x);
14:
15: end if
16: end if
17: End∃∈-traverse
18: if y T2/ Mark(y)=True then
19: Copy (x, Name(y));
20: Delete (subtree(y), T2);
21: end if
22:
23:end procedure

9. IMPLEMENTATION AND PROOF OF CONCEPT

 Jagadeesh B N et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 211-215

214

As a proof of concept and a proof of the protocol efficiency,
we focus mainly on three parts of the synchronization archi-
tecture.

- The Chromium browser: We focus, in this paper, on the
Filesystem API. We add the encryption of files content in th
client side. We add also the data integrity with the
verification of the file hash and the metadata integrity by
encrypting the file
name when stored in the indexed database by the
chromium browser.

- Synchronization in the Web application: A HTML5 web
application is developed based on the enhanced File System,
the basic Webstorage, the Application Cache and WebSocket
APIs. At this level, the abstract of the file system is build
following the HHT structure. This application allows the
user to manage his Digital Safe, store the operations when he
is offline and to ensure the synchronization of his Digital
Safe content following the SyncDS protocol.

- Synchronization in the WebSocket Server: To introduce the
WebSocket server, we use the web server Apache with its
extension mod pywebsocket. We add in the server side the
detection of changes by comparing two abstracts (the one
sent by the Client Digital Safe and the other extracted from
the Cloud Digital Safe). The comparison of both abstracts is
implemented using the Java language and more specifically
using the TreeModel interface.

Fig 9.1:Implementation of the synchronization

architecture and Protocol

propose an architecture and a protocol that ensure file
synchronization a probative value Cloud. Two keynote
novelties of the SyncDS protocol are highlighted: first, the
integration of the Hierarchical Hash Tree into the metadata
abstract and second, the non-proprietary characteristics with
the adoption of HTML5 APIs. Our experimental results
show that using the
new proposed framework, reduces the time of change
detection and therefore, reduces the time of file
synchronization across devices .
The conflict resolution is raised in our architecture in case of
multiple connections at the same time. As future work, we
will deal with the interference of the conflict resolution
strategies with the execution of our protocol.

REFERENCES

[1] M. Msahli and A. Serhrouchni, “Sbaas: Safe box as a
service,” in 9

th
 IEEE International Conference on

Collaborative Computing: Networking, Applications and
Worksharing, Nov 2013.

[2] “Afnor groups.” [Online]. Available:
http://www.afnor.org/en

[3] M. D. N. Jain and R. Tewari., “Taper: Tiered approach for
eliminating redundancy in replica synchronization,” in . In
Proc. of the USENIX Conference on File And Storage Systems,
2005.

[4] S. Agarwal, D. Starobinski, and A. Trachtenberg, “On the
scalability of data synchronization protocols for pdas and
mobile devices,” IEEE Network, Jul 2002.

[5] B. Xianqiang, X. Nong, S. Weisong, L. Fang, M.
Huajian, and Z. Hang, “Syncviews: Toward consistent user
views in cloud-based file synchronization services,” in Sixth
AnnualChinagrid Conference (ChinaGrid),, Aug 2011.

[6] H. Yan, U. Irmak, and T. Suel, “Algorithms for low-
latency remote file synchronization,” in The 27th
Conference on Computer Communications. IEEE
INFOCOM 2008, April 2008.

[7] C. Liang, L. Hu, Z. Lei, and J. Wang, “Synccs: A cloud
storage based file synchronization approach,” Jul 2014.

[8] Benjamin, C.Pierce, and J. Vouillon, “What’s in unison?
a formal specification and reference implementation of a file
synchronizer,” in Tech. rep. MS-CIS-03-36, Department of
Computer and Information Science, University of
Pennsylvania, 2004.

10. CONCLUSION
In front of the various owned devices and the need of
synchronizing the data between them, ensuring an efficient
file synchronization protocol is crucial. In this paper, we

[9] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R.
Sadre, and A. Pras, “Inside dropbox: Understanding personal
cloud storage services,” in Proceedings of the 2012 ACM

 Jagadeesh B N et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 211-215

215

Conference on Internet Measurement Conference, ser. IMC
’12, 2012.

[10] A. Tridgell and P. Mackerras, “The rsync algorithm.
technical report trcs-96-05, department of computer
science,” in The Australian National University, Canberra,
Australia, 1996.

[11] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J.
Widom, “Change detection in hierarchically structured
information,” in Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data,
ser. SIGMOD ’96, 1996.

[12] S. S. Chawathe and H. Garcia-Molina, “Meaningful
change detection in structured data,” in Proceedings of the
1997 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’97, 1997.

[13] R. Al-Ekram, A. Adma, and O. Baysal, “diffx: An
algorithm to detect changes in multi-version xml
documents,” in Proceedings of the 2005 Conference of the
Centre for Advanced Studies on Collaborative Research,
ser. CASCON ’05, 2005.

[14] N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered
approach for eliminating redundancy in replica
synchronization,” in In Proc. of the USENIX Conference on
File And Storage Systems, 2005.

[15] J. C. Anderson, J. Lehnardt, and N. Slater, “Couchdb the
definitive guide.” [Online]. Available:
http://guide.couchdb.org/

[16] M. jemel and A. serhrouchni, “Security assurance of
local data storedby html5 web application,” in The 10th
International conference on Information Assurance and
Security, Okinawa, Japan, Nov 2014.

[17] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set
reconciliation with nearly optimal communication
complexity,” Information Theory, IEEE Transactions on,
Sept 2003.

