

Sagar B et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 164-168

164

A TWO-STAGE KEYWORD BASED CRAWLER FOR GATHERING DEEP-WEB

SITES

Sagar B1, Shruthi P2, Sunitha M3, Shushma M4, Sushmita T5
1Associate Professor, India, sagar11105@gmail.com

2Student, India, shruthipalmari96@gmail.com 3 Student, India, sunimeco311@gmail.com
4 Student, India, shushmagowda22@gmail.com

5 Student, India, sushmitatadkal@gmail.com
ABSTRACT
Deep web is termed as sites present on web but not
accessible by any search engine. Due to the large volume of
web resources and the dynamic nature of deep web,
achieving wide coverage and high efficiency is a challenging
issue. Keyword based crawler for hidden web interfaces
consist of mainly two stages, first is site locating another is
in-site exploring. Site locating starts from seed sites and
obtains relevant websites through reverse searching and
obtains relevant sites through feature space of URL, anchor
and text around URL. Second stage receives input from site
locating and starts to find relevant link from those sites. The
adaptive link learner is used to find out relevant links with
help of link priority and link rank. To eliminate inclination
on visiting some more closely related links in inaccessible
web directories, we design a data structure called link tree to
achieve broader coverage for a website.

Key words: Adaptive learning, deep web, feature selection,
ranking, two-stage crawler.

1. INTRODUCTION

Internet is collection of huge number of web pages present in
the form of HTML. To retrieve the necessary information
present on web is important issue as the size of collection is
very large. The search engine plays important part in our life.
Search engine help user to retrieve information. Web search
engine a software system that design to search information
on
www. The results called search results are termed as search
engine result pages which consists of mixture of web pages,
images and other types of files. A crawler in web is a
structure that moves all over internet for storing and
gathering data into database for further set-up and study of
data.

The Hidden Web refers to data hidden behind HTML forms.
Keeping in mind the end goal to get to such content, a client
needs to perform a structure accommodation with legitimate
information values. The Deep Web has been identified as a
indicative gap in the scope of web indexes in light of the fact
that web crawlers utilize internet searchers and depend on
hyperlinks to find new web pages and normally do not have
the ability to perform form submissions. Various records
have shown that the Deep Web has more information than
the presently searchable Internet. Moreover, the Deep Web
has been a long-standing test for the database group on the

grounds that it represents a huge portion of the structured
information on the Web.
More recent studies stated that 1.9 zettabytes data were
found and 0.3 zettabytes were devoured worldwide. A
noteworthy portion of this huge amount of information is
evaluated to be put away as organized or social information
in web databases
— deep web makes up around 96% of all the content on the
Internet, which is 500-550 times bigger than the surface web.
These resources contain a large quantity of important data
and entities, for example, Info mine, Clusty, BooksInPrint
may be keen on building an index of the deep web sources in
a given area (for example, book). Since these entities can't
get to the exclusive web records of web indexes (e.g.,
Google and Baidu), there is a requirement for a proficient
crawler that has the capacity precisely and rapidly
investigate the deep web database.
In this paper, we propose an effective deep web harvesting
framework, namely Keyword based crawler, for achieving
both wide coverage and high efficiency for a focused
crawler.

2. RELATED WORK

In the works of Olston and Najork, they methodically
provide three steps for crawling deep web: finding location
of deep web content sources, choosing relevant sources and
obtaining underlying content.
Following their statement, we discuss the two steps closely
related to our work as below:
Locating deep web content sources. A latest study depicted
that the harvest rate of deep web is low — only 647,000
unique web forms were detected by considering 25 sample
million pages from the Google index (about2.5%). Generic
crawlers are usually developed for characterizing deep web
and directory building of deep web resources that do not
limit search on a specific topic but tries to extract all
searchable forms. The Database Crawler used in the
MetaQuerier is devised for automatically exploring query
interfaces. Database Crawler first finds root pages by an IP-
based sampling, and then performs shallow crawling to crawl
pages within a web server starting from a given root page.
The IP based sampling ignores the fact that one IP address
may have several virtual hosts, thus missing many websites.
To overcome the drawback of IP based sampling in the
Database Crawler, Denis et al. proposed a random sampling
of hosts to characterize deep web, using the Host

 ISSN 2319-2720
Volume 7, No.2, April – June 2018

International Journal of Computing, Communications and Networking
Available Online at http://www.warse.org/ijccn/static/pdf/file/ijccn29722018.pdf

https://doi.org/10.30534/ijccn/2018/29722018

Sagar B et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 164-168

165

engine Yandex. I-Crawler combines pre-query and post-
query approaches for classification of searchable forms.
Selecting relevant sources. Current hidden web directories
normally have low coverage for applicable online databases
which hinders their ability in fulfilling data access needs.
Focused crawler is developed to visit links to pages of
interest and avoid links to off-topic regions. The classifier
learns to classify pages as topic-relevant or not and gives
priority to links in topic relevant pages. However, a focused
best-first crawler harvests only 94 movie search forms after
crawling 100,000 movie related pages. Advancement to the
best-first crawler is proposed, where instead of tracking all
links in applicatory pages, the crawler used an extra
classifier, the apprentice, to choose the most assuring links in
a relevant page. The baseline classifier gives its choice as
feedback so that the apprentice can learn the features of good
links and prioritize links in the frontier. The FFC and ACHE
are focused crawlers used for searching interested deep web
interfaces. The FFC contains three classifiers: a page
classifier that scores the relevance of retrieved pages with a
specific topic, a link classifier that prioritizes the links that
may lead to pages with searchable forms, and a form
classifier that filters out non-searchable forms.

3. EXISTING SYSTEM

It is challenging to detect the deep web databases, because
they are not enrolled with any search engines and are
normally readily distributed and keep constantly changing.
To address this problem, previous work has proposed two
types of crawlers, generic crawlers and focused crawlers.
Generic crawlers extract all searchable forms but do not
focus on a specific topic. Focused crawlers such as Form-
Focused Crawler (FFC) and Adaptive Crawler for Hidden-
web Entries (ACHE) can automatically search online
databases on a specific topic. FFC is constructed with link,
page, and form classifiers for focused crawling of web forms,
and is extended by ACHE with additional components for
form filtering and adaptive link learner.

The link classifiers in the above crawlers play a vital role in
providing higher crawling efficiency than the best-first
crawler. However, these link classifiers are used to predict
the distance to the page containing searchable forms, which
is difficult to estimate, especially for the delayed benefit
links (links eventually lead to pages with forms). As a result,
the crawler can be unproductively led to pages without
targeted forms.

Disadvantages:

1. Consuming large amount of data.
2. Time wasting while crawling in the web.
3. The crawler led to pages without targeted forms.
4. Set of retrieved results are very heterogeneous.

4. PROPOSED SYSTEM

We propose a two-stage structure, namely Keyword based
crawler, for efficient harvesting deep web interfaces.
Keyword based crawler is organized with a two-stage
building, site page finding and in-site exploring, the essential
site page discovering stage finds the most relevant site page
for a given subject, and consequently the second in-site
researching stage uncovers searchable structures from the
site page.
The figure below shows the architecture of proposed system:

Stage 1: Site locating –
In Site locating stage the Keyword based crawler performs
the operation to find out the relevant sites related to the fired
query. It has number of steps involved to give the final result
of this stage.
1) Seed Sites: It is initial stage of the architecture. Here, seed
sites are the candidate sites which are given to start crawling.
It begins with following URL of the query and explores
other pages and other domains.

2) Reverse searching: Pages with high rank and links to
many other pages is called as centre page of site. Some
threshold is defined for seed sites, if number of visited sited
is less than the threshold then Reverse Searching is
performed to know the centre pages of the known deep web
sites. Feed these pages back to the site database. The
randomly picked site uses general search engine facility to
find centre pages and other relevant sites. Keyword based
crawler first extract links on the page then download these
pages and analyze these pages to decide whether the links
are relevant or not. Following algorithm is used for reverse
searching:

Algorithm
Input: seed sites and harvested deep websites.
Output: relevant sites.
1 while # of candidate sites less than a threshold do
2 //pick a deep website
3 site = getDeepWebSite(siteDatabase,seedSites)
4 resultP age = reverseSearch(site)
5 links = extractLinks(resultP age)
6 foreach link in links do

Sagar B et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 164-168

166

7 page = downloadPage(link)
8 relevant = classify(page)
9 if relevant then
10 relevantSites = extractUnvisitedSite(page)
11 Output relevantSites
12 end
13 end
14 end.

3) Incremental site Prioritizing: Incremental site prioritizing is
used to achieve broad coverage on websites. It records the
learned pattern of deep sites and form the path for crawling.
Basic knowledge is used to initialize both rankers such as site
ranker and link ranker. Unvisited sites given to site frontier later
prioritize by site ranker and added to the list fetched site. Two
queues are used to classify out of site links such high priority
queue and low priority queue respectively. High priority queue
consists of out of site links which are classified as relevant and
judge by form classifier and low priority queue consist of links
that are only judged as relevant. Algorithm for Incremental site
Prioritizing is given below:

Algorithm:
Input: Site Frontier.
Output: searchable forms and out-of-site links.
1 HQueue=SiteFrontier.CreateQueue(HighPriority)
2 LQueue=SiteFrontier.CreateQueue(LowPriority)
3 while siteFrontier is not empty do
4 if HQueue is empty then
5 HQueue.addAll(LQueue)
6 LQueue.clear()
7 end
8 site = HQueue.poll()
9 relevant = classifySite(site)
10 if relevant then
11 performInSiteExploring(site)
12 Output forms and OutOfSiteLinks
13 siteRanker.rank(OutOfSiteLinks)
14 if forms is not empty then
15 HQueue.add (OutOfSiteLinks)
16 end
17 else
18 LQueue.add(OutOfSiteLinks)
19 end
20 end
21 end

4) Site Frontier: Site Frontier retrieves the homepage URLs
from the site database, which is further ranked by Site
Ranker to prioritize the highly relevant sites. Finding out-of-
site links from visited web pages may not be enough for the
Site Frontier.

5) Adaptive link learner: Site ranker and link ranker are
controlled by Adaptive link learner. The feature space is
decided for deep web sites and links known as FSS and FSL
respectively. The Site Ranker is improved during crawling
by an Adaptive Site Learner, which adaptively learns from

features of deep-web sites (web sites containing one or more
searchable forms) found. The Link Ranker is adaptively
advanced by an Adaptive Link Learner, which grasps from
the URL path leading to applicable forms.

6) Site Ranker: Site ranker is used to rank unvisited site from
deep website. There are two parameters that are used for
ranking mechanism are Site Similarity and Site Frequency.
Site Similarity depends on the topic similarity between
known deep site and new site. Site Frequency is occurrence
of site in another web site.

7) Site Classifier: Out-of-site links that are classified as
relevant by Site Classifier is present in high priority queue
and are judged by Form Classifier to hold searchable forms.
If site is judged as topic relevant then site crawling process is
started otherwise new site is picked from site frontier.

Stage 2: In-Site Exploring –

After finding most relevant sites in stage 1 the stage 2
perform the in-site exploration to find searchable forms.
1) Link Frontier: Link frontier takes sites as input which are
classified by site classifier. Link frontier mainly works for
finding links with in centre pages. Criteria for stop early are
given as-
Crawling Strategies: Mainly two crawling strategies are
present Stop early and Balance link prioritizing.

Stop Early:
SC1: when reached maximum depth.
SC2: maximum crawling pages in each depth are reached.
SC3:Predefined number of forms are found in each depth.
SC4: No searchable forms till threshold value.

Balance link prioritizing:
Here, link tree is constructed. Root node is the selected site
and internal leaf node is each directory present in the
website. The simple breadth-first visit of links is not
efficient, whose results are in omission of highly relevant
links and incomplete directories visit. We solve this problem
by prioritizing highly relevant links with link ranking and to
build a link tree for a balanced link prioritizing. For example,
consider internal nodes which represent the directory.
Servlet: Dynamic request
Books: Catalogs of books
Docs directory: Help information.

Sagar B et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 164-168

167

Fig. 2: Part of the link tree extracted from the homepage of
http://www.abebooks.com, where ellipses represent leaf nodes and
the number in a rectangle denotes the number of leaf nodes in its
decedents.

1) Form Database: Form database contains collection of
sites; it collects all data which got input from Form
Classifier. Finally, the result obtained is the most relevant
forms are obtained in deep web interfaces which are the
desired result of the proposed system.

2) Link Ranker: Link Ranker prioritizes links so that Keyword
based crawler can discover searchable forms in less time. A high
relevance score is awarded to a link that is most similar to links
that directly point to pages with searchable forms.

3) Page Fetcher: Page Fetcher directly retrieves centre page
of the web site.

4) Candidate Frontier: The links in web pages are
downloaded into Candidate Frontier. The working of
candidate frontier is similar as site frontier.

5) Form Classifier: Form classifier filters out non-searchable
and irrelevant forms. The HIFI strategy is used to filter
forms. HIFI consists of two classifier, Searchable form
classifier (SFC) and domain specific form classifier (DSFC).
SFC is domain independent and it filters out the non-
searchable forms.

5. MODULES

After accurate analysis the system has been classified
into the following modules:

a. Two-stage crawler.
b. Site Ranker
c. Adaptive learning

a. Two-stage crawler:
It is challenging to establish the deep web databases, because
they are not enrolled with any search engines, are usually
sparsely allotted, and remains constantly changing. To solve
this problem, previous work has classified two types of
crawlers, generic crawlers and focused crawlers. Generic
crawlers fetch all searchable forms and cannot concentrate on
a particular topic. Focused crawlers such as Form-Focused

Crawler (FFC) can accordingly search onstream on a
particular topic. FFC is formed with link, page, and form
classifiers for focused crawling of web forms, and is
continued by with further components for form refining and
adaptive link learner. The link classifiers in these crawlers
play a major role in achieving greater crawling effectiveness
compared to the best-first crawler.

Although, these link classifiers are used to estimate the distance
to the page which consists of searchable forms, and is tough to
estimate, primarily for the delayed benefit links (links finally
lead to pages with forms). As a result, the crawler can be
inefficiently led to pages without targeted forms.

b. Site Ranker:
When merged with above stop-early policy. We address this
problem by prioritizing highly relevant links with link
ranking. Although, link ranking may bias for highly relevant
links in certain directories. Our solution is to construct a link
tree for a balanced link prioritizing. In general, each
directory usually represents one type of files on web servers
and it is beneficial to visit links in different directories. For
links that only change in the query string part, are reviewed
as the same URL because links are often spread unevenly in
server directories, prioritizing links by the relevance can
potentially bias toward some directories. Initially, the links
under books might be allocated a high priority, because
“book” is a main feature word in the URL. Simultaneously
with the fact that most links come into existence in the books
directory, it is feasible that links in other directories will not
be chosen due to low relevance score. Therefore, the crawler
may miss searchable forms in those directories.

c. Adaptive learning:
Adaptive learning algorithm that execute on stream feature
selection and uses these properties to naturally build link
rankers. In the site locating stage, high relevant sites are
prioritized and the crawling is focused on a subject using the
contents of the root page of sites, attaining more exact
results. Throughout the InSite exploring stage, relevant links
are prioritized for fast in-site searching. An extensive
performance is done on an evaluation of Keyword based
crawler over real web data in 1 representative domains. This
evaluation results in crawling framework, is very effective,
attaining considerably higher harvest rates than the.
Figure 3 shows the adaptive learning method that is invoked
periodically. For example, the crawler has visited a pre-
defined amount of deep web sites or drawn a pre-defined
number of forms. When a site crawling is accomplished,
feature of the site is designated for updating FSS if the site
contains relevant forms. During in-site exploring, features of
links comprising new forms are removed for updating FSL.

Sagar B et al., International Journal of Computing, Communications and Networking, 7(2) April - June 2018, 164-168

168

Fig-3: Adaptive LearningProcess

6. CONCLUSION
This paper indicates that our approach achieves each wide
scope for deep net interfaces and preserves extremely
efficient crawling. In this paper, we introduce an effective
harvesting framework for deep-web interfaces, namely
Keyword based crawler. Our preliminary results on a
representative set of domains show the performance of the
projected two-stage crawler that accomplish greater harvest
rates than different crawlers. Keyword based crawler is two
stage crawler containing site locating by reverse searching
with center most pages and in site exploring consists adaptive
link ranking and link tree for wider scope.

REFERENCES

[1] Balakrishnan Raju, Kambhampati Subbarao, and Jha
Manish Kumar. Assessing relevance and trust of the deep
web sources and results based on inter-source agreement.
ACM Transactions on the Web, 7(2): Article 11, 1–32, 2013.
[2] Mustafa Emmre Dincturk, Guy vincent Jourdan, Gregor
V. Bochmann, and Iosif Viorel Onut. A model-based
approach for crawling rich internet applications. ACM

Transactions on the Web, 8(3):Article 19, 1–39, 2014.
[3] Denis Shestakov and Tapio Salakoski. On estimating
the scale of national deep web. In Database and Expert
Systems Applications, pages 780–789. Springer, 2007.
https://doi.org/10.1007/978-3-540-74469-6_76
[4] Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh
Patel, and Zhen Zhang. Structured databases on the web:
Observations and implications. ACM SIGMOD Record,
33(3):61–70,2004.
https://doi.org/10.1145/1031570.1031584
[5] Wensheng Wu, Clement Yu, AnHai Doan, and Weiyi
Meng. An interactive clustering-based approach to
integrating source query interfaces on the deep web. In
Proceedings of the 2004 ACM SIGMOD international

conference on Management of data, pages 95–106. ACM,
2004.
https://doi.org/10.1145/1007568.1007582
[6] Eduard C. Dragut, Thomas Kabisch, Clement Yu, and
Ulf Leser. A hierarchical approach to model web query
interfaces for web source integration. Proc. VLDB
Endow., 2(1):325–336, August 2009.
https://doi.org/10.14778/1687627.1687665
[7] Soumen Chakrabarti, Martin Van den Berg, and Byron
Dom. Focused crawling: a new approach to topic-specific
web resource discovery. Computer Networks,
31(11):1623– 1640, 1999.
https://doi.org/10.1016/S1389-1286(99)00052-3
[8] Jayant Madhavan, David Ko, Łucja Kot, Vignesh
Ganapathy, Alex Rasmussen, and Alon Halevy. Google’s
deep web crawl. Proceedings of the VLDB Endowment,
1(2):1241–1252, 2008.
https://doi.org/10.14778/1454159.1454163
[9] Olston Christopher and Najork Marc. Web crawling.
Foundations and Trends in Information Retrieval,
4(3):175–246, 2010
https://doi.org/10.1561/1500000017
[10] Cheng Sheng, Nan Zhang, Yufei Tao, and Xin Jin.
Optimal algorithms for crawling a hidden database in
the web.Proceedings of the VLDB Endowment, 5(11):1112–
1123, 2012.
https://doi.org/10.14778/2350229.2350232
[11] Panagiotis G Ipeirotis and Luis Gravano. Distributed
search over the hidden web: Hierarchical database
sampling and selection. In Proceedings of the 28th
international conference on Very Large Data Bases, pages
394–405. VLDB Endowment, 2002.

[12] Nilesh Dalvi, Ravi Kumar, Ashwin Machanavajjhala, and
Vibhor Rastogi. Sampling hidden objects using nearest-
neighbor oracles. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 1325–1333. ACM, 2011.
https://doi.org/10.1145/2020408.2020606
[13] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen,
Xin Dong, David Ko, Cong Yu, and Alon Halevy. Web-
scale data integration:You can only afford to pay as you go.
In Proceedings of CIDR, pages 342–350, 2007.
[14] Mohamamdreza Khelghati, Djoerd Hiemstra, and
Maurice Van Keulen. Deep web entity monitoring. In
Proceedings of the 22nd international conference on World
Wide Web companion, pages 377–382. International World
Wide Web Conferences Steering Committee, 2013.
https://doi.org/10.1145/2487788.2487946
[15] Soumen Chakrabarti, Kunal Punera, and Mallela
Subramanyam. Accelerated focused crawling through
online relevance feedback. In Proceedings of the 11th
international conference on World Wide Web, pages 148–
159,2002.
https://doi.org/10.1145/511446.511466

