
P. Karunamurthy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February
2020, 698 – 703

698

Integration of Gem5 And Dramsim2 For DDR4 Simulation

P. Karunamurthy1, S.S.N Alhady2*, A.A.A Wahab3, W.A.F.W Othman4
1School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Malaysia,

prithadevi.karunamurthy@intel.com
2* School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Malaysia, sahal@usm.my

3 School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Malaysia, aeizaal@usm.my
4 School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Malaysia, wafw_othman@usm.my

ABSTRACT

Simulators have drawbacks due to the total time taken for the
simulation. Therefore, two simulators should be integrated to
produce a robust simulator to overcome this hurdle. The main
aim of this research which is to integrate two open-source
simulators to study the simulation of DDR4 is achieved. GEM5
and DRAMSim2 are integrated for DDR4 simulation using ISA
x86. DRAM Controller codes and codes to access the bank or
bank groups in DDR4 are modified for DDR4. The parameters
of DDR4 – 24000 passed into the simulation. Based on the
simulation results, GEM5 DRAMSim2 has verified its
correctness and legal to be used for DDR4 simulations. The
modified DRAM Controller codes for DDR4 from DDR3 is
proven working when 100% pass. GEM5 DRAMSim2 is
99.2% faster than previous work done with GEM5 – NVMain.
Moreover, GEM5 DRAMSim2 used only 23% power from the
overall power to perform ACT/PRE activities during the
execution of 20 000 instructions. Furthermore, simulation of
DDR4 using GEM5 DRAMSim2 used 40% less background
power compared to previous GEM5 – NVMain work. The
performance of DDR4 using GEM5 DRAMSim2 is fast
because the correlation between the average bandwidth and
average latency is 0.9975. This research proved that the
integrated GEM5 DRAMSim2 is an effective and efficient
simulator for DRAM simulations.

Key words: computer system simulator, DRAMSim2, DDR4,
Gem5, memory system simulator

1.INTRODUCTION

The need for larger data storage is growing rapidly. Therefore,
advancing in-memory performance is very crucial in these
days. To serve this purpose DDR is being improved in terms of
performance and execution time from one generation to another
[1]. However, DDR research in real life would cost a large
amount of money and would be tedious, hence open-source
simulator would be a better alternative.

Nevertheless, memory system simulators are encountering
some drawbacks due to the expanded memory trend. For
instance, exploring memory system performance by

simulations consumes ample time compared to the execution in
a real system due to the complexity of memory architecture.

 This is a great disadvantage for memory technology to be
advanced in the fast-moving world. To overcome this hurdle,
two simulators must be combined to achieve better efficiency
thus reducing the time taken for memory simulation.

Therefore, in this research, two open-source simulators have
been integrated to explore DDR behavior and performance.
Hence, the ultimate goal of this research is to integrate GEM5
and DRAMSim2 for DDR4 simulation. GEM5 is a simulator
used for evaluating performance and analysis for computer
architecture [2] whereas DRAMSim2 is a simulator dedicated
to memory system simulator. Up-to-date, there is no integration
of the GEM5 DRAMSim2 simulation for DDR4. Since DDR4
is the latest and widely used high-speed memory in many
applications [3], it would be reasonable to explore its
architecture for betterment in this research.

2. METHODOLOGY

In this research, the methodology is divided into four
main phases. Figure 1 summarizes the research flow
implemented in a flowchart form for better understanding. The
first phase focuses on building GEM5 and running the source
code for computer system architecture. In parallel, building and
running DRAMSim2 for the memory system model is also
done. The second phase is the integration of GEM5 and
DRAMSim2 to be one powerful simulator. The third phase is
divided into two parts. The first part focuses on modifying
DRAM Controller codes. It is done by modifying the existing
codes of the DDR3 controller in DRAMSim2 such that it is
valid for the DDR4 controller. Then DDR4 parameters are
taken from the vendor’s datasheet to create a new device.ini
file. The second part of the third phase is DDR4 simulation. In
the final phase, the evaluation of the simulator performance and
DDR4 performance is done. The evaluation is compared with
other simulators from previous work to benchmark this
research.

 ISSN 2278-3091
Volume 9, No.1, January – February 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse99912020.pdf

https://doi.org/10.30534/ijatcse/2020/99912020

P. Karunamurthy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 698 – 703

699

Figure 1: Summary of research flow.

The dependencies of GEM5 are downloaded and installed in
Ubuntu using the Sudo command, sudo apt install build-
essential git m4 scons zlib1g zlib1g-dev libprotobuf-dev
protobuf-compiler libprotoc-dev libgoogle-perftools-dev
python-dev python

The main source code of GEM5 is downloaded from the active
support group, https://gem5.googlesource.com/public/gem5
using git command. Next, the GEM5 source code is
downloaded and installed. Finally, the GEM5 is compiled using
x86 ISA. The command line to build GEM5 using SCons is
scons build/X86/gem5.opt -j3. GEM5 build is a success when a
directory called build is automatically created after the Scons
command.

Once the GEM5 is built, a configuration file is created to run
the GEM5. The configuration file is a python script in which a
system to simulate is created along with the system’s
components and all the parameters are specified. The script is
user-defined and almost all options on the command lines are
allowed to be defined by the user. The script is used to execute
the simulation by the following command build/X86/gem5.opt
configs/example/se.py.

The DRAMSim2 source is downloaded from
https://github.com/umd-memsys/DRAMSim2 using git clone.
DRAMSim2 is built by using the command make. Then, on the
gzipped traces, the preprocessor is executed, ./traceParse.py
k6_aoe_02_short.trc.gz. This is ensured that the DRAMSim2
can be simulated successfully as a standalone simulator.

Next, the trace-based simulator is executed in the main
DRAMSim2 directory using ./DRAMSim -t
traces/k6_aoe_02_short.trc -s system.ini -d

ini/DDR3_micron_64M_8B_x4_sg15.ini -c 1000. This
command will run 1 000 simulations of the existing
k6_aoe_02_short trace using the DDR3 part. Since
DRAMSim2 supports up to DDR3 up-to-date, any DDR3.ini
file in the /ini folder can be used to ensure the DRAMSim2
built successfully.

The second phase of methodology in this dissertation is to
integrate DRAMSim2 into GEM5 and to ensure the integration
is a success. The entire DRAMSim2 is copied in
/gem5/ext/dramsim folder. Command-line build/X86/gem5.opt
configs/example/se.py --mem-type=DRAMSim2 is used to
integrate both the simulators. By executing this command, the
DRAMSim2 memory controller model replaces the redundant
functions in GEM5 memory controller files. Thus, leaving a
lightweight yet sophisticated and powerful memory controller
interface. Hence, requests from and to the GEM5 directory
memory controller forwarded to DRAMSim2. This creates an
organized simulation environment.

The first part of the third phase in this methodology is to
develop controller codes. In GEM5 DRAMSim2, the existing
DRAM controller supports up to DDR3 controller only. Any
newer controller, such as DDR4 is not openly available. The
main difference in DDR3 and DDR4 is that DDR3 has no bank
groups, only banks whereas DDR4 has bank groups that consist
of banks. Hence, the flow to access banks in DDR3 and DDR4
is different.

Figure 2 is a flowchart that simplifies the controller code to
differentiate DDR3 and DDR4. To differentiate DDR3 and
DDR4 the bank selection is done. The codes in DRAM
Controller to identify the bank is edited for this. Since DDR3
has only banks, the banks’ addresses (BA) are three bits, BA0,
BA1, and BA2. For instance, BA2BA1BA0: 101 chooses bank
6. Whereas in DDR4, the banks’ addresses are four bits BG0,
BG1, BA0, and BA1. BG0BG1 denotes the bank group (BG)
and, BA0and BA1 denote the bank address (BA). For instance,
BG1BG0BA1BA0 0110 chooses bank 7 from bank group 1.

Figure 2: DRAM Controller code flowchart to identify

bank.

P. Karunamurthy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 698 – 703

700

In DDR3, banks will be accessed individually whilst in DDR4,
the bank groups will be accessed first before accessing the
banks. Therefore, DRAM Controller codes in GEM5 is edited
such that the read/write or any other commands queue up and
executed accordingly either in the same bank group or in other
bank groups in DDR4. The DRAM Controller codes in GEM5
can be found in /gem5/src/mem/dram_ctrl.cc. Figure 3
simplifies the DRAM controller codes flow for DDR4 bank
access timings.

Figure 3: DRAM controller codes flow for DDR4 bank access

timings.

The first part of the third phase is to give the DDR4 parameters
into DRAMSim2. The parameters of DDR4 can be found in
any DRAM vendors specification data. The DRAM used in this
dissertation is Micron MT40A2G4, a single DDR4 – 2400 (16
x 4 configuration). The existing device.ini of DDR3 is edited
with the DDR4 parameter. Then the device.ini is declared
in /gem5/src/mem/Dramsim2.py.

Before the DDR4 simulation is done, the command scons
build/X86/gem5.opt -j3 is executed again to build GEM5 again.
This is to ensure there is no coding error in GEM5 DRAMSim2
after developing the DRAM Controller codes for DDR4. If the
GEM5 build is not successful, the modified codes must be
corrected referring to the output error.

Next, the simulation is done by using
command, build/X86/gem5.opt configs/example/se.py --mem-
type=DRAMSim2 --cmd=/home/pk/gem5/tests/test-
progs/hello/bin/x86/linux/hello -I 1000000 -n 2. In general,
this command is using memory simulator DRAMSim2 into
ISA x86 to execute the test file for 1 000 000 instructions.
Figure 3.7 illustrates the codes for DDR4 simulation flowchart
in GEM5 DRAMSim2.

The method to evaluate the performance of GEM5
DRAMSim2 is divided into four parts. The first part is to
validate the correctness of GEM5 DRAMSim2 for the DDR4
simulation. For this purpose, the simulator is stress-tested with
10M random requests in the ratio of 4:4:2,
read:write:ACT/Prefetch/Refreshes. The timestamped log is
collected for every half an hour to check on any warning or
error during the execution of 10M requests.

The next part is to evaluate the performance of GEM5
DRAMSim2 for DDR4 simulation. To calculate the
performance of the GEM5 DRAMSim2 in this part, the total
number of instructions simulated (ints) in a random simulation
is divided by the total time taken (s). The performance of
GEM5 DRAMSim2 will be in terms of inst/s.

To make a benchmark for this research, this research is
compared to previous research of DDR4 using GEM5 –
NVMain (Farrell, Tsulaia, Dotti, Calafiura and Leggett, 2017).
For apple-to-apple comparison with previous work, the same
amount and type of instructions, which is random 20 000
instructions in the ratio of 4:4:2
(read:write:ACT/Prefetch/Refreshes) is used. The computer
specifications and platform are the same in this research and
previous research. This information can be found in Chapter
1.4: Research Scope of this dissertation. The performance of
GEM5 DRAMSim2 for 20 000 is calculated and compared to
previous work, GEM5 – NVMain.

The third part is to compare the power consumed during the
execution of 20 000 instructions in DDR4 using GEM5
DRAMSim2 with GEM5 – NVMain. The simulator power
consumption information in this research can be found in the
simulation results log. Mainly, three power is given focus, they
are background power, burst power, and ACT/PRE power.

Background power indicates the power consumed by the
simulator to do overall simulation. Burst power specifies the
power used to send the address to the memory and ACT/PRE
power is a power used to initiate and perform read and write
accesses. Only background power is compared with the
previous research. This is because background power consumes
the majority power during the simulation.

The fourth and final part is to evaluate DDR4 timing in GEM5
DRAMSim2. This is done by running simulation three times to
calculate the average latencies and bandwidth. The latency and
bandwidth information can be obtained from the simulation
results log. Simple linear regression and correlation are done to
study the trend of average latency and average bandwidth of
DDR4. Pearson tool is used for this purpose.

The average latency is an independent variable while the
average bandwidth depends on the average latency. Average
latency influences the trend of bandwidth. The numerical
measure of the degree of connection between the two
parameters is associated with the correlation coefficient (r).
Therefore, the Pearson correlation is used to evaluate the linear
relationships between these two parameters. The formula to
obtain the coefficient correlation, r [4];

 (1)

From equation (1), x being the latency while y being the
bandwidth. Theoretically, the average bandwidth must be
directly proportional to the average latency for better
efficiency. A scatter graph is plotted with a best fit line to

P. Karunamurthy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 698 – 703

701

observe the overall direction of the average bandwidth. The
more linear the plot is, the faster the timing parameter of DDR4
in simulator. Additionally, the coefficient of determination or
R-squared, R2 value will be discussed.

3.RESULTS AND DISCUSSIONS

To validate the correctness of GEM5 DRAMSim2 as one
simulator, the simulator must simulate a stream of memory
requests using a valid sequence of DRAM commands. It has to
be with respect to the status transitions and the timing
parameters of a standard, DDR4 in this dissertation. To fulfill
that, the GEM5 DRAMSim2 simulator is stress-tested with a
trace that contains 10M of memory requests. Those requests are
mainly made of reads and writes and a combination of
sequential and random addresses and the minority of the
request consists of refreshes, power-downs, and self-refreshes.

Without overflowing the controller’s request buffer, this 10M
of memory requests are fed into GEM5 DRAMSim2 as quickly
as possible. This simulation took about seven hours and no
violations were reported in the collected timestamped log of
every command issued by GEM5 DRAMSim2. This is an
indication that the simulation of DDR4 using GEM5
DRAMSim2 is legal. In spite of this, the simulator gained
confidence in its correctness.

The performance of GEM5 DRAMSim2 as a simulator for
DDR4 is crucial to be noted in order to find out the efficiency
of the simulator. The total time taken for a complete simulation
is 6µs for 5 954 total number of instructions (read and write.
Hence, the performance of GEM5 DRAMSim2 for DDR4
simulation is 992 333 333.3 inst/s.

Comparing with the previous research for DDR4 simulation
using GEM5 – NVMain [5], DDR4 simulation takes about
0.006s for almost 20 000 instructions of read and write. On the
other hand, the simulated time in this dissertation is 6µs for 5
954 instructions of read and write. An unbiased comparison is
made by multiplying the simulated instructions by 3.36 times
so that 20 000 instructions are fed into GEM5 DRAMSim2 to
find out the total time taken for a complete simulation. The
GEM5 DRAMSim2 took about 0.00005s to execute 20 000
instructions.

All the comparison information of GEM5 DRAMSim2 versus
GEM5 – NVMain are tabulated in Table 1 for a clearer picture.
From Table 1, it is clearly seen that the performance of GEM5
DRAMSim2 is better than GEM5 – NVMain because GEM5
DRAMSim2 takes lesser time to execute 20 000 instructions.
Simply put, the performance of GEM5 DRAMSim2 is better
than GEM5 – NVMain.

Table 1: GEM DRAMSim2 versus GEM5 – NVMain for total

time taken for execution and performance of simulator.

 GEM5
DRAMSim2

GEM5 –
NVMain

Instructions fed
(read: write, 9:1) (inst) 20 000 20 000

Total time taken to 0.00005 0.006

execute (s)
Performance of

simulator (inst/s) (x 10 ^
6)

400 3

From the simulation results, the rate at which works are
performed by the GEM5 DRAMSim2 is tabulated in Table 2.
The background power consumed by GEM5 DRAMSim2 to
simulate DDR4 is 0.03W, the burst power is 0.004W and the
Active/Precharge (ACT/PRE) power is 0.01W. A pie – chart,
Figure 2, is plotted to have a clearer picture of the power
consumed by GEM5 DRAMSim2 for DDR4 simulation.

Table 2: Power consumption by GEM5 DRAMSim2 for DDR4

simulation.
Power W %

Background 0.03 68

Burst 0.004 9

ACT/PRE 0.01 23

Figure 4: A pie – chart to display the energies consumed by GEM5

DRAMSim2 for DDR4 simulation activity.

From Figure 4, it is seen that most of power consumption is
majorly used in the background whereas least power is used for
burst and ACT/PRE activities. This shows GEM5 DRAMSim2
does not require much power to perform ACT/PRE activities.
Hence, the read access and write access in GEM5 DRAMSim2
needs lesser power to be performed.

Due to majority power is consumed in background and
background power determines the performance of simulator,
only the background power consumption is compared with
previous research. By using GEM5 DRAMSim2 for DDR4
simulation, the total background power consumed is only
0.03W whereas GEM5 – NVMain used about 0.05W. Figure 5
depicts a power graph to differentiate the power consumption
by GEM5 DRAM and GEM5 – NVMain. Simply put,
simulation of DDR4 using GEM5 DRAMSim2 uses 40% less
background power compared to using GEM5 – NVMain. This

[PERCE
NTAGE

]

[PERCE
NTAGE

]

[PERCE
NTAGE

]

0%

Power Consumption of GEM5
DRAMSim2 for DDR4 Simulation

Background Burst ACT/PRE

P. Karunamurthy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 698 – 703

702

means DDR4 simulation using GEM5 DRAMSim2 is more
efficient than using GEM5 – NVMain.

Figure 5: Background power consumption by GEM5 DRAMSim2
versus GEM5 – NVMain.

Table 3 explains the correlation between the average latency
and average bandwidth of DDR4 simulated is a positive 0.9975
coefficient. As the average latency increases, the average
bandwidth increases proportionally. A scattered graph, Figure
6, of average bandwidth versus average latency is plotted with
best fit line to observe the trend of average bandwidth
depending on average latency.

The best fit line (orange-dashed line) is plotted using the least-
square method to find the best fit for a line though data points.
R2 value, 0.9951 closer to the value of 1, indicates that the best
fit is 99.51% and it is a good fit of the regression analysis
model. This conveys that appropriate time is used in GEM5
DRAMSim2 for DDR4 simulation to initiate a request for a
byte in memory until it retrieved by processor and the rate to
process it is very quick.

Table 3: Average latency and average bandwidth correlation table.

 Average
Latency (ns)

Average
Bandwidth
(MB/s)

Average Latency
(ns) 1

Average Bandwidth
(MB/s) 0.9975 1

The summary of the regression output is tabulated in

Table 4. The standard error of 0.2364 (23.64%), shows the
precision of the regression analysis – the smaller the number,
the more certain is the regression equation. The larger value of
F statistics, 2 839, explains the significant relationship between
the average latency and average bandwidth. The Significance F

or p-value of 1.4356 x 10^-17 which is less than 0.05 (5%)
suggests that the results are very reliable.

Table 4: Regression summary output

Regression Statistics

Coefficient correlation, r 0.9975

Coefficient of determination, R2 0.9951

Standard Error 0.2364

F statistics 2839.7513

Significance F, p-value 1.4356 x 10^-17

Figure 6:: Graph of average latency versus average bandwidth.

4.CONCLUSIONS AND DISCUSSIONS

In conclusion, the main aim of this research which is to
integrate two open-source simulators to study the simulation of
DDR4 is achieved. The three objectives of this research are
also achieved. First and foremost, the integration of GEM5 and
DRAMSim2 as one simulator is accomplished without any
violations reported in the collected timestamped log after
sending 10M requests. This proves that there is 0% error in the
integration of these two simulators and simulation for DDR4 is
legal. Secondly, the existing DRAM Controller codes for
DDR3 in DRAMSim2 is modified for DDR4 is also
accomplished in this research. This is proven when 100% pass
was seen when DDR4 parameters are taken into the simulation.
Finally, the third objective which is to identify the performance
of the GEM5 DRAMSim2 simulator for DDR4 and
simultaneously to analyze DDR4 timing in GEM5 DRAMSim2
is also achieved. GEM5 DRAMSim2 executed 20 000
instructions in 0.00005s only, which translates to the
performance of GEM5 DRAMSim2 is 99.2% faster than
previous work done with GEM5 – NVMain. Moreover, GEM5
DRAMSim2 used only 23% power from the overall power to
perform ACT/PRE activities during the execution of 20 000
instructions. Furthermore, simulation of DDR4 using GEM5
DRAMSim2 used 40% less background power compared to

0

0.01

0.02

0.03

0.04

0.05

0.06

Po
w

er
 (W

)

Background Power Consumption by
GEM5 DRAMSim2 versus GEM5 -

NVMain

GEM5 DRAMSim2 GEM5-NVMain

R² = 0.9951

0

2

4

6

8

10

12

0 5 10 15 20

A
ve

ra
ge

 B
an

dw
id

th
 (M

B/
s)

Average Latency (ns)

Average Latency versus Average Bandwidth

Average Bandwidth (MB/s)

Linear (Average Bandwidth (MB/s))

P. Karunamurthy et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1), January – February 2020, 698 – 703

703

previous GEM5 – NVMain work. The performance of DDR4
using GEM5 DRAMSim2 is fast because the correlation
between the average bandwidth and average latency is 0.9975.
This research proved that the integrated GEM5 DRAMSim2 is
an effective and efficient simulator for DRAM simulations.

REFERENCES

[1] Huang, N. K., Hsieh, C. Y., Tseng, B. C., & Shih, L. Y.
(2018). Comprehensive signal and power co-investigation
on DDR4 simulation and measurement. In 2018 IEEE
International Symposium on Electromagnetic Compatibility
and 2018 IEEE Asia-Pacific Symposium on Electromagnetic
Compatibility (EMC/APEMC), p. 1041-1044.
https://doi.org/10.1109/ISEMC.2018.8393943
[2] Abudaqa, A. A., Al-Kharoubi, T. M., Mudawar, M. F., &
Kobilica, A. (2018) Simulation of ARM and x86
microprocessors using in-order and out-of-order CPU
models with Gem5 simulator, 5th International Conference
on Electrical and Electronic Engineering (ICEEE), p.317-332.
doi: 10.1109/ICEEE2.2018.8391354
[3] Schmitz, T. (2015). The rise of serial memory and the
future of DDR. WP456.
[4] Boughorbel, S., Jarray, F., & El-Anbari, M. (2017).
Optimal classifier for imbalanced data using Matthews
Correlation Coefficient metric. PloS one, 12(6), e0177678.
[5] Farrell, S., Tsulaia, V., Dotti, A., Calafiura, P., & Leggett,
C. (2017). Multi-threaded ATLAS simulation on Intel
Knights Landing processors. In J. Phys. Conf. Ser.
https://doi.org/10.1088/1742-6596/898/4/042012

