
Babak Bashari Rad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 571 – 577

571

ABSTRACT

Computer malware, which were widely known as computer
viruses, as they were the most prominent form of malware,
have come a long way. With the continuous growth in the
number of computer users, the threat landscape has evolved
into much more than just viruses. Malware are constantly
changing their functionality, with many new types being seen
(such as worms, generic Trojans, backdoors, and lately
Ransomware), infection vectors (such as malicious e-mail
attachments), and variety, using polymorphic and
metamorphic engines to propagate new variants, with an
objective to broaden their target base and remain competitive.
This unprecedented surge of malware has forced researchers
to investigate machine learning techniques to classify and
detect them. However, feature selection, one of the most
im-portant steps in machine learning, as there are countless
number of approaches that have been taken in the past. The
goal of this paper is to review the various feature selection
approaches that have been taken in the past for malware
detection and classification, and discuss on their advantages
and drawbacks. We have discussed on both static and
dynamic analysis techniques, each of which have their own
set of proper-ties and techniques that can be meaningful for
feature selection.

Key words : Malware Classification, Malware Classification,
Feature, Static Analysis, Dynamic Analysis.

1. INTRODUCTION

Malware are generally conceived as harmful programs, and
rightfully so. However, they root to an academic history
dating back to 1949 with the first theoretical work on
self-reproducing automatons by John von Neumann being
done, which became the backbone of computer viruses. The
first variations of malware were computer viruses. Computer
viruses were initially purposed to expose the vulnerabilities
within an operating system without causing any deliberate
harm to the user through self-replication [1]. One of the first
known computer viruses was the ELK Cloner that attached
itself to the Apple II operating system. This was prior to
self-replicating programs being termed “computer viruses” in

a work by Cohen [2]. However, over the past decades, it has
gathered considerable attention to be used for malicious
purposes, and it evolved into an imminent threat landscape.
Malicious software, or malware as it was coined the term in
1990, is any software that causes harm to a computer,
network, or user [3].

It is important to overview the process behind analyzing
malware, as it is an essential step required to determine the
most appropriate and informative features that differentiate
different malware and benign files and techniques needed to
extract them for performing malware classification [4].
Sikorski and Honig [3] state that malware analysis is the art of
dissecting a malware to figure out its functionality, how to
detect it, and defeat or eliminate it. It is generally broken
down into static and dynamic analysis [5]. Static analysis
refers to the process of examining the code and structure of a
program without running it, while dynamic analysis is done
by executing the program and examining its behavior [3].

In this paper, we analyze the various techniques that have
been used for feature selection as part of malware detection
over the past years with their associated benefits and
drawbacks. The structure of the paper is as follows. In the
following section, we discuss feature selection techniques that
are obtained statically, with each subsection reviewing and
discussing the various techniques, and lastly the benefits and
drawbacks of static analysis techniques for feature selection.
In section 3, we discuss feature selection techniques that are
obtained dynamically and discuss the benefits and drawbacks
of dynamic analysis. Lastly, we conclude the paper based on
our review.

2. STATIC ANALYSIS

There are many features that are looked at using several static
techniques that can be practiced for detecting malware, such
as hard-coded printable strings, byte sequences, imported
DLLs, library calls, and op-code n-grams, which allow all the
possible execution paths to be followed [6]. Several of these
features can be extracted from analyzing the PE metadata,
such as imported DLLs, PE header information, entropy, file
size, hard-coded strings, while others are done by examining
the byte code or the decompiled/disassembled instructions, as
majority of malware can be perceived as binary files.
Compiled windows executables that are packed or encrypted
can be initially unpacked using disassemblers, such as IDA

Feature Selection for Malware Classification and Detection:
A Literature Review

Babak Bashari Rad1*, Mohammad Kazem Hassan Nejad2

1,2 School of Computing, Asia Pacific University of Technology and Innovation, Kuala Lumpur, Malaysia
*E-mail: babak.basharirad@apu.edu.my

 ISSN 2278-3091
Volume 9, No.1.1, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse9291.12020.pdf

https://doi.org/10.30534/ijatcse/2020/9291.12020

Babak Bashari Rad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 571 – 577

572

Pro, revealing the unfiltered static information about a binary
file [7, 8].
An important concept often used in many studies are n-grams.
N-grams are the consequent characters that can form a
substring from a larger string with the length n [4]. For
instance, “analysis” can be broken down into several 4-grams,
such as “alys” “naly” “ysis” lysi” and so on. Most experiment
studies use an n value between 1 and 8 with varying
effectiveness [4].

2.1. Opcode Analysis

A popular approach utilized by many researches include the
analysis of operational code (opcode) of a file. An opcode is a
building block of machine language. It is the instruction that
specifies an operation to be performed, such as data
manipulation, arithmetic, logical, and program control
operations [9]. Opcodes can be extracted from the assembly
files once the binary executable is disassembled using a tool
such as IDA Pro, as used by Liu et al. [5], or NewBasic
Assembler, as used by Santos et al. [10]. Bilar [11] conducted
a study which concluded that opcode frequency distributions
provide a significant statistical difference between malicious
and non-malicious executables, with rare opcodes improving
the predictor.

Additionally, Shabtai et al. [9] state that opcode sequences
provide a better representation of an executable file as
opposed to byte sequences, due to the fact that they provide
information about program structure, flow, and functions.
Moskovitch et al. [12] present a full methodology based on a
text categorization concept utilizing n-gram opcode
sequences with their results indicating that accuracy rates of
over 99% can be achieved with a training set consisting of less
than 15% malicious samples.

Shabtai et al. [9] have proposed an approach using n-gram
opcode patterns on over 30,000 samples. They have evaluated
various n-gram sizes and concluded that 2-gram opcode
patterns provided the highest accuracy rate of 96% which
concurred with the findings of Moskovitch et al. [12].

Santos et al. [10] propose a method of labelling malware
samples to their respective malware families based on the
frequency of opcode sequences. Although, this did not
provide a classification for new malware, their work was
extended to classify unknown samples as malicious or benign
using the same technique achieving an accuracy rate of 96%
[10].
Runwal et al. [13] considered a method of classifying
malware based on opcode-graph similarities as opposed to
n-grams achieving an accuracy rate of 96.41%.

Hu [14] has proposed and implemented a novel framework to
classify unknown malware by exploiting the instruction
format of x86 architecture to represent a binary file as n-grams
of opcode and using a generic unpacking algorithm with
dimensionality reduction algorithm to pre-process a binary
file. It is remarkably scalable as it can process over 100,000

samples within 2 hours with a varying accuracy rate of
75-80%.

Recently, Kapoor and Dhavale [15] have proposed the usage
of opcode features with control flow graphs (CFG) to detect
malware utilizing bi-normal separation as a feature scoring
metric, concluding that using bi-normal separation
outperforms the traditional document frequency methods,
achieving a 99.5% accuracy rate.

Liu et al. [5] have also taken the idea of using of opcode
features with control flow graphs for classifying malware.
However, they have also included imported function calls as a
set of features for their classification, achieving a 98.9%
accuracy rate.

Sharma and Sahay [16] have proposed an interesting novel
approach by detecting advanced malware based on the opcode
occurrences. They applied this concept to a dataset consisting
of 11,088 malware samples, and 4,006 benign samples,
utilizing five classification algorithms and achieved the
maximum accuracy of 97.95% by using Random Forest.

2.2. String Extraction

String extraction is another popular static analysis technique
used to identify malware [17]. When a program is compiled,
there are certain non-encoded strings that are embedded
within the binary that can be extracted and analysed [18].

For instance, Tian, et al. [19] extracted printable strings from
the library code of 1367 samples achieving a 97%
classification accuracy. Islam, et al. [20] extended the work by
combining the printable strings extracted from a malware
sample with the function lengths to perform classification
achieving a 98% classification accuracy.

Recently, Shijo and Salim [18] proposed the use of Printable
String Information (PSI), extracting only the useful string
information that are not created by code obfuscation, coupled
with behavioral information to classify malware, achieving an
accuracy rate of 98.7%.

Schultz, et al. [21] proposed the first usage of static features
for malware classification using three different static features,
including string feature, which resulted in a classifier with
double the detection rate when compared to the traditional
signature-based detection methods at the time.

2.3. Byte Sequence

Another popular approach utilized by many researchers to
statically analyze a file is by examining the byte content of a
file. Byte n-grams are often helpful as they include
information from all the PE sections as opposed to opcode
n-grams [4].

Schultz et al. [21] initially utilized byte sequences as the third
feature in their approach. By utilizing hexdump, the authors
extracted the byte sequence n-grams and utilized a

Babak Bashari Rad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 571 – 577

573

Multi-Naïve Bayes algorithm to achieve a high classification
rate of 96.88%. Although the n value has not been explicitly
specified, based on an example provided in their paper, it can
be deduced to be 2.

Kolter and Maloof [22] improved the results by solely
utilizing n-grams of byte codes as their features, however their
proposed approach was merely a pilot study to determine the
size of n-grams that needed to be used, and Kolter and Maloof
[22] revisited the approach proving its real-world practicality,
improving the results by achieving an accuracy rate of 98%.
Tabish et al. [23] proposed a novel approach which did not
memorize the specific byte sequences or strings within a
binary file, claiming this will allow the non-signature-based
technique to detect previously unknown and zero-day
malware. By leveraging standard machine learning algorithms
to classify the binary files, they achieved a maximum
accuracy rate of 96.2%.

Jain and Meena [24] proposed a malware detection method
based on extraction of n-grams of raw byte patterns. Their
method utilized Random Forest classifier, which they
experimented it with 1,018 malware samples and 1,120
benign samples, achieving an accuracy of approximately 99%,
claiming that 3-gram performed better than other n-variants as
the size of n-gram is inversely proportional to the frequency of
the relevant n-gram.

Qi et al. [7] have taken a different approach to classify
malware variants by creating a byte randomness profile based
on the frequency of the varying unsigned bytes within binary
files, claiming that although malware variants, which are
created through self-mutation, might change the signature, the
byte distribution remains the same. The approach utilizes the
Cosine Similarity (COS) and Sum of Squares Distance (SSD)
to measure the distinctiveness between malware samples,
however with little detail on the accuracy of their model.

Recently, Singh and Khurmi [25] also proposed and
implemented a method for malware clustering based on the
byte frequency, as represented as time series using symbolic
aggregation approximation algorithm to convert it into a
symbolic representation and evaluating their model on 5,000
collected malware samples, achieving a precision rate of 92%
and recall rate of 96%.

Nissim et al. [26] have introduced a novel approach utilizing
active learning by combining three different machine learning
algorithms over a 10-day test period using byte sequence
n-grams as their features. Their experiments are promising as
the accuracy rate increases from 90.05% on day one to 97.83%
on the last day, however they are still less accurate than some
works that have been mentioned. Furthermore, they are
vulnerable to byte substitution, injection, and re-ordering.

Dinh et al. [27] have proposed an interesting approach for
identifying malware from known samples. Their approach is
based on sequence alignment, which is often used to identify
different spices matching DNA segments, and it is
implemented by using distance matrix alignment to find the

longest common sequence of bytes within a malware.
However, it is a time-consuming process, such as recorded by
their evaluation of 51 minutes of runtime on the Apache Spark
framework [27].

2.4. Other approaches

Other static analysis techniques have also been utilized by
researchers over the years achieving mixed results. For
instance, Gonzalez and Vazquez [28] proposed an approach
utilizing the number of Application Programming Interface
(API) calls that are made from the Dynamic Link Libraries
(DLLs) imported by an application, since user-level programs
require APIs to communicate with the operating system and
utilize hardware resources. To do so, they disassembled the
binary samples obtained using IDA disassembler, and used
various learning algorithms to train their neural network
model, achieving the maximum accuracy rate of 97.95%
when utilizing Leven-Marquardt algorithm with one hidden
layer for their neural network. Several researchers have also
proposed techniques for malware detection revolving around
statically analyzing the API calls of a sample.

For instance, Wang et al. [29] proposed an approach based on
the API sequences of a malware following the de-compilation
analysis using Naïve Bayes algorithm, achieving an accuracy
rate of 93.71%.

Iwamoto and Wasaki [30] have also proposed a method of
malware classification based on the API function calls.
However, their proposed method is set to classify malware
based on the presence and absence of consecutive pairs of API
calls which are compared to samples from the same malware
family using Dice’s coefficient to determine the degree of
similarity. Their work included 4,684 malware samples, from
which 1,821 samples were used for the feature extraction to
apply for their classification method, which was an issue
within their work as they were unable to unpack certain
samples and hence, the imported address tables (IATs) were
corrupted.

In order to identify packed or obfuscated malware, several
methods have been proposed by researchers Ugarte-Pedrero et
al. [31] and Lyda and Hamrock [32] utilizing entropy analysis,
which provides a measurement for the amount of uncertainty
within a series of bytes that is common within compressed or
ciphered data.

Saini et al. [33] have taken a different approach to propose a
scalable method for malware classification using function call
frequency and suspicious section count as their features. By
using a dataset consisting of 2,460 malware and 627 benign
samples, they have achieved maximum accuracy rate of 98.35%
using J48 classifier.

Narouei et al. [34] proposed a technique to statically extract
the DLL dependency tree of a portable executable. The DLL
dependency tree is constructed as the portable executable is
dependent on certain DLLs which have dependency on other
DLLs for completion of their tasks. They implemented and

Babak Bashari Rad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 571 – 577

574

evaluated this approach with a dataset consisting of 11,000
malware samples and 4,700 benign files, achieving a
maximum accuracy rate of 98.5%. However, the pitfall with
their approach is that it is dependent on the Import Address
Table (IAT) of the binary file, which can be removed by
certain packers and requires other third-party software to be
reconstructed.

Belaoued and Mazouzi [35] have proposed a novel approach
to classify malware based on the static analysis of the PE
Optional Header information. They experimented using a
dataset consisting of 338 malware files and 214 benign files,
using the chi-square method (KHI²) for efficient feature
selection and Rotation Forest classifier, achieving an accuracy
rate of 97.25%. However, they do not experiment with
combining different set of features which could potentially
increase their accuracy rate, given that certain information
from the PE optional header can be tampered.

2.5. Benefits and Drawbacks

One of the major advantages posed by static analysis is the
low resource intensiveness and better performance, especially
when coupled with machine learning, where training the
model itself can be very resource intensive, performance
demanding, and time consuming (high time complexity).
Therefore, it is far more efficient than dynamic analysis [5].
Secondly, it is a safe approach, compared to dynamic analysis,
as there are no chances of infecting the machine due to the fact
that the malicious software is not executed and hence the
binary file cannot detect the analysis process, even if it is
within a virtual environment, as there have been cases of
vulnerability flaws for virtual environments that certain
malware have exploited in the past (Wueest), and malware
authors will always be on the hunt for finding such
vulnerabilities, which can be detrimental especially to a
non-isolated machine. However, there is a drawback to using
static features for malware classification, as the approach can
be deteriorated by a malware using obfuscation or packing
techniques which hide the functionality and purpose of a
binary file and make it more challenging to reverse [36].
Packing refers to the act of compressing a program which can
impede the analysis of the file by making the reverse
engineering process more cumbersome [3]. Another way
malware authors attempt to obfuscate a malware is through
noise insertion. Noise insertion is the process of adding
unnecessary sequences of instructions which do not change
the behavior of the malware, but introduce noise, such as
inserting no-operation (NOP) instructions [3].

However, as previously mentioned, there have been studies
done to help identify packers and obfuscated files, and
furthermore, the binary files can be disassembled and
unpacked before statically analyzing them [31, 32].

3. DYNAMIC ANALYSIS

On the other hand, dynamic analysis is usually done through
the execution of a malware within a controlled environment,
such as a sandbox, virtual machine, or utilizing debuggers

such as OllyDBG [37]. By executing a program within an
emulated environment, the analyst can control different
aspects of the program execution. It is usually done by
emulating components such as memory and CPU, however it
can be evaded by malware that can detect the imperfections of
CPU emulation and not exhibit their actual characteristics
poisoning the analysis [38].

Furthermore, dynamic analysis can be done within a virtual
machine, which provides a strong isolation due to the physical
machine not being directly accessible through the virtual
machine environment. Virtual machines can also provide the
ability to reset the analysis environment through the usage of
snapshots which restore the virtual machine to a previously
saved state in a short period of time [3].

3.1. Function Hooking and API Calls

Functions within an executable are often implemented to
perform a specific task, such as deleting a file or renaming a
file. These are often used to promote better maintainability
and re-usability, however from an analysis perspective, the
interesting characteristic of functions are the abstraction of
implementation detail to a more semantically rich
representation. For instance, there are numerous search
algorithms that can be implemented that can provide the same
output, however the underlying implementation can define the
behavior of the program. In order to observe the functions that
are called during runtime, the program functions can be
intercepted by hooking. Hooking allows the functions to be
monitored whenever a function is invoked by logging its
invocation [1].

Typically, a function consists of code that performs a specific
task, such as, calculating the factorial value of a number or
creating a file. While the use of functions can result in easy
code re-usability, and easier maintenance, the property that
makes functions interesting for program analysis is that they
are commonly used to abstract from implementation details to
a semantically richer representation. For example, the
particular algorithm which a sort function implements, might
not be important as long as the result corresponds to the sorted
input. When it comes to analyzing code, such abstractions
help gaining an overview of the behavior of the program. One
possibility to monitor what functions are called by a program
is to intercept these calls. The process of intercepting function
calls is called hooking. The analyzed program is manipulated
in a way that in addition to the intended function, a so-called
hook function is invoked. This hook function is responsible
for implementing the required analysis functionality, such as
recording its invocation to a log file, or analyze input
parameters [1].

For Windows operating system, the set of functionalities that
are provided by the operating system that are through API
calls are packaged into Dynamic Link Libraries (DLLs).
These provide different level of abstract functionalities such
as network, security, file manipulation, and system services
[1]. There are different system privilege levels that provide
layers of security encapsulating certain functionalities. For

Babak Bashari Rad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 571 – 577

575

instance, a program running in user-mode cannot directly
write or delete a file. To do so, the program needs to access the
kernel mode through system call interface. For instance, if a
program requires the creation of a file, it will pass the required
parameters (such as name, file path, read/write attributes) by
invoking the CreateFile function which then will be handled
by the operating system within kernel mode and will return a
file handle. Malware, just like any other programs, need to
make use of these functions that can be monitored when
running in user-mode. Therefore, a popular approach used
when analyzing a malware dynamically is through the API
calls due to the reasoning that it provides a solid behavioral
information since the precise actions that are performed by an
executable on a computer are shown, for example,
creation/deletion/modification of files or registry keys,
creation of mutexes, and network activities [39].

However, these can also be evaded by malware running
directly in kernel mode [1]. A function call trace can be
constructed based on the function calls with the parameters
passed that have been monitored, which can provide
semantically rich analysis of a binary file. This allows an
analyst to compute similarities between call traces to identify
malware [1].

3.2 Function Parameter Analysis

Another important feature that are analyzed through dynamic
execution are the function parameters. Opposed to static
analysis, dynamic function parameter analysis allows the
analyst to view the actual arguments that are passed when a
function is invoked. This can provide insightful information
about the executable’s behavior, for instance, if the file
handler is returned from a CreateFile function and passed as a
parameter into WriteFile function, this can provide a direct
correlation between the two functions, or if an IP address is
passed as a parameter into InternetConnect function to
establish an ftp session with a malicious site to download the
payload [1].

3.3 Related Works

By utilizing function calls and function parameter, an analyst
can monitor the registry key changes, file system changes,
such as creation or deletion of a file, network activity, such as
establishing TCP connection with C&C server, creating
mutexes, and payload injection and dumping [40].

Mohamad Fadli and Jantan [41] have proposed an approach
framework for malware classification based on profile
creation using malware behavior analysis, such as run-time
analysis and resource monitoring. The behaviors of the
samples are extracted through execution on two automated
dynamic analysis frameworks, CWSandbox and Anubis,
which then need to be manually customized by the authors.
The malware are then classified into their respective malware
families. However, this raises the issue of scalability, as the
samples need to be manually customized, which is not
feasible for the large number of samples that are seen every
day.

Anderson et al. [42] have also proposed an approach for
malware detection based on the analysis of graphs. These
graphs are generated through the instruction traces after the
sample is executed within a sandbox. A modified version of
Ether malware analysis service to capture the instruction
traces. The approach utilizes 2-grams to transition the Markov
chain probabilities, which are treated as a graph. Kernel
matrix is then used to construct similarity between the training
instances. In order to measure the similarity, a Gaussian
kernel, and a spectral kernel are used. The Gaussian. Kernel
measures the local similarity between the graph edges, while
the spectral kernel measures the global similarity between
graphs. The kernel matrix is then used to train a support vector
machine to classify the instances. This approach has a very
high space and time complexity, as not only is dynamic
analysis resource intensive, but the method of application is
too, therefore raising issues of scalability and usage in
real-world settings.

Firdausi et al. [43] have presented a proof of concept for
malware detection. They have gathered 220 malicious PE
samples and 250 benign PE samples. After which, the training
dataset is passed into Anubis, an online dynamic analysis tool,
which generates an XML report for the execution, including
information such as registry modifications, file system
changes, and TCP connections. The reports are then
preprocessed into sparse vector models. They demonstrated
the proof of concept by utilizing 5 machine learning
algorithms, Naïve Bayes, J48, SVM, MLP, and kNN,
achieving a maximum accuracy of 96.8%. However, the issue
with their proof of concept is that the dataset was very small
which raises issues of scalability for their concept.

3.4 Benefits and Drawbacks

There is a notable advantage by using dynamic analysis such
as those mentioned in the notable works above, and that is that
as packed malware will unpack the payload during execution,
and as opposed to static analysis, there is no need for
disassembling the file and manually unpacking. However,
there are several major drawbacks to utilizing behavioral
features for malware detection through dynamic analysis that
are the pitfall of all the notable works above. Firstly, it is
generally a time and resource intensive approach with huge
preprocessing overhead raising issues of scalability such that
the computational demands are hard to meet for a real-world
scenario, especially when being used for malware
classification using machine learning algorithms, which on
their own are highly resource intensive with high time
complexity [34]. Secondly, certain malware’ are dependent
upon a specific condition to be met before executing the
malicious payload, such as time-delays or time/date
conditions (e.g. logic bombs) or the malware is aware of its
environment, given that it is being executed within a virtual
machine or it is being executed for analysis purposes and will
promptly change its behavior [44]. Thirdly, certain files
cannot be executed, such as Dynamic Link Libraries (DLLs)
even though they follow the portable executable structure and
can be statically analyzed as one, and this is crucial as a large
majority of sample files are often DLLs [34] or certain files

Babak Bashari Rad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 571 – 577

576

that are product of drive-by downloads are often executed
with a specific parameter, and will not behave maliciously
without being executed with the specific parameter [45].
Additionally, it can also be time-consuming and critical to
set-up an isolated environment to execute the malware, as
malware authors are often on the lookout for vulnerabilities
within known frameworks that isolate the analysis machine
[44]. Lastly, through dynamic analysis only a single path of
execution is examined, which might not provide the most
complete information about a sample [40].

4. CONCLUSION

In this paper, we critically reviewed two major approaches for
feature selection for malware classification and detection,
namely static and dynamic analysis, and delve deeper into
each to review the various techniques and approaches that
have been done in the past with their benefits and drawbacks.
Feature selection based on the malware analysis can be
viewed as comparing apples to oranges within the context of
malware classification using any machine learning approach.
Neither analysis technique is greatly superior over the other,
as there are benefits and drawbacks to either method of
analysis. Static analysis could address the issues of scalability
and reduce performance overhead as the files do not need to
be executed, while dynamic analysis could potentially
improve the accuracy of the features as each file can be
executed and packed files will no longer be an issue.
Therefore, it is subjective to the intended aim of the malware
detection that can guide the approach to be taken for feature
selection. However, with the drawbacks of each technique, the
two methods could perhaps be combined to provide more
meaningful and accurate features, and investigation of hybrid
analysis for feature selection could be taken into consideration
in the future.

REFERENCES

[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, "A survey
on automated dynamic malware-analysis techniques and
tools", ACM Computing Surveys (CSUR), vol. 44, no. 2,
p. 6, 2012.
https://doi.org/10.1145/2089125.2089126

[2] F. Cohen, "Computer viruses: theory and experiments",
Computers & security, vol. 6, no. 1, pp. 22-35, 1984.

[3] M. Sikorski and A. Honig, Practical Malware Analysis.
San Francisco, UNITED STATES: No Starch Press,
2012.

[4] E. Raff et al., "An investigation of byte n-gram features
for malware classification", Journal of Computer
Virology and Hacking Techniques, journal article pp.
1-20, 2016.

[5] L. Liu, B.-s. WANG, Y. Bo, and Q.-x. ZHONG,
"Automatic malware classification and new malware
detection using machine learning", Frontiers, vol. 1,
2016.

[6] C. Cepeda, D. L. C. Tien, and P. Ordóñez, "Feature
Selection and Improving Classification Performance for
Malware Detection", 2016 IEEE International
Conferences on Big Data and Cloud Computing

(BDCloud), Social Computing and Networking
(SocialCom), Sustainable Computing and
Communications (SustainCom)
(BDCloud-SocialCom-SustainCom), 2016, pp. 560-566.

[7] S. Qi, M. Xu, and N. Zheng, "A malware variant
detection method based on byte randomness test", (in
English), Journal of Computers, Report, vol. 8, 2013
2013.
https://doi.org/10.4304/jcp.8.10.2469-2477

[8] B. B. Rad, M. Masrom, S. Ibrahim, S. Ibrahim, "Morphed
virus family classification based on opcodes statistical
feature using decision tree", International Conference on
Informatics Engineering and Information Science,
ICIEIS 2011: Informatics Engineering and Information
Science, pp. 123-131.

[9] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y.
Elovici, "Detecting unknown malicious code by applying
classification techniques on OpCode patterns", Security
Informatics, vol. 1, no. 1, p. 1, 2012.

[10] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas,
"Opcode sequences as representation of executables for
data-mining-based unknown malware detection",
Information Sciences, vol. 231, pp. 64-82, 2013.

[11] D. Bilar, "Opcodes as predictor for malware",
International Journal of Electronic Security and Digital
Forensics, vol. 1, no. 2, pp. 156-168, 2007.

[12] R. Moskovitcz, C. Feher, N. Tzachar, E. Berger, M.
Gitelman, S. Dolev, Y. Elovici, "Unknown Malcode
Detection Using OPCODE Representation", Intelligence
and Security Informatics: First European Conference,
EuroISI 2008, Esbjerg, Denmark, December 3-5, 2008.
Proceedings, D. Ortiz-Arroyo, H. L. Larsen, D. D. Zeng,
D. Hicks, and G. Wagner, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 204-215.

[13] N. Runwal, R. M. Low, and M. Stamp, "Opcode graph
similarity and metamorphic detection", Journal in
Computer Virology, vol. 8, no. 1, pp. 37-52, 2012.
https://doi.org/10.1007/s11416-012-0160-5

[14] X. Hu, "MutantX-S: Scalable Malware Clustering Based
on Static Features", 2013.

[15] A. Kapoor and S. Dhavale, "Control Flow Graph Based
Multiclass Malware Detection Using Bi-normal
Separation", Defence Science Journal, vol. 66, no. 2, pp.
138-145, 2016.

[16] A. Sharma and S. K. Sahay, "An effective approach for
classification of advanced malware with high accuracy",
arXiv preprint arXiv:1606.06897, 2016.

[17] S. Gadhiya and K. Bhavsar, "Techniques for malware
analysis", 2013.

[18] P. V. Shijo and A. Salim, "Integrated Static and Dynamic
Analysis for Malware Detection", Procedia Computer
Science, vol. 46, pp. 804-811, 2015/01/01 2015.

[19] R. Tian, L. Batten, R. Islam, and S. Versteeg, "An
automated classification system based on the strings of
trojan and virus families", 4th International Conference
on Malicious and Unwanted Software (MALWARE),
2009, pp. 23-30.

[20] R. Islam, R. Tian, L. Batten, and S. Versteeg,
"Classification of Malware Based on String and Function

Babak Bashari Rad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.1), 2020, 571 – 577

577

Feature Selection", Second Cybercrime and Trustworthy
Computing Workshop, 2010, pp. 9-17.

[21] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, "Data
mining methods for detection of new malicious
executables", Proceedings 2001 IEEE Symposium on
Security and Privacy (S&P 2001), 2001, pp. 38-49.

[22] J. Z. Kolter and M. A. Maloof, "Learning to detect and
classify malicious executables in the wild", Journal of
Machine Learning Research, vol. 7, no. Dec, pp.
2721-2744, 2006.

[23] S. M. Tabish, M. Z. Shafiq, and M. Farooq, "Malware
detection using statistical analysis of byte-level file
content", Proceedings of the ACM SIGKDD Workshop on
CyberSecurity and Intelligence Informatics, 2009, pp.
23-31: ACM.
https://doi.org/10.1145/1599272.1599278

[24] S. Jain and Y. K. Meena, "Byte Level n–Gram Analysis
for Malware Detection", Computer Networks and
Intelligent Computing: 5th International Conference on
Information Processing, ICIP 2011, Bangalore, India,
August 5-7, 2011. Proceedings, K. R. Venugopal and L.
M. Patnaik, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 51-59.

[25] N. Singh and S. S. Khurmi, "ByteFreq: Malware
clustering using byte frequency", 5th International
Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions) (ICRITO),
2016, pp. 333-337.

[26] N. Nissim, R. Moskovitch, L. Rokach, and Y. Elovici,
"Novel active learning methods for enhanced PC
malware detection in windows OS", Expert Systems with
Applications, vol. 41, no. 13, pp. 5843-5857, 10/1/ 2014.

[27] A. Dinh, D. Brill, Y. Li, and W. He, "Malware Sequence
Alignment", IEEE International Conferences on Big
Data and Cloud Computing (BDCloud), Social
Computing and Networking (SocialCom), Sustainable
Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom), 2016, pp. 613-617.

[28] L. E. Gonzalez and R. A. Vazquez, "Malware
classification using Euclidean distance and artificial
neural networks", 12th Mexican International
Conference on Artificial Intelligence (MICAI), 2013, pp.
103-108: IEEE.

[29] C. Wang, J. Pang, R. Zhao, and X. Liu, "Using API
Sequence and Bayes Algorithm to Detect Suspicious
Behavior", International Conference on Communication
Software and Networks, 2009, pp. 544-548.

[30] K. Iwamoto and K. Wasaki, "Malware classification
based on extracted API sequences using static analysis",
Proceedings of the Asian Internet Engineeering
Conference, Bangkok, Thailand, 2012.

[31] X. Ugarte-Pedrero, I. Santos, B. Sanz, C. Laorden, and P.
G. Bringas, "Countering entropy measure attacks on
packed software detection", IEEE Consumer
Communications and Networking Conference (CCNC),
2012, pp. 164-168.

[32] R. Lyda and J. Hamrock, "Using Entropy Analysis to
Find Encrypted and Packed Malware", IEEE Security &
Privacy, vol. 5, no. 2, pp. 40-45, 2007.
https://doi.org/10.1109/MSP.2007.48

[33] A. Saini, E. Gandotra, D. Bansal, and S. Sofat,
"Classification of PE Files using Static Analysis",
Proceedings of the 7th International Conference on
Security of Information and Networks, Glasgow,
Scotland, UK, 2014.

[34] M. Narouei, M. Ahmadi, G. Giacinto, H. Takabi, and A.
Sami, "DLLMiner: structural mining for malware
detection", Sec. and Commun. Netw., vol. 8, no. 18, pp.
3311-3322, 2015.

[35] M. Belaoued and S. Mazouzi, "A Real-Time PE-Malware
Detection System Based on CHI-Square Test and PE-File
Features", Computer Science and Its Applications: 5th
IFIP TC 5 International Conference, CIIA 2015, Saida,
Algeria, May 20-21, 2015, Proceedings, A. Amine, L.
Bellatreche, Z. Elberrichi, E. J. Neuhold, and R.
Wrembel, Eds. Cham: Springer International Publishing,
2015, pp. 416-425.

[36] A. Moser, C. Kruegel, and E. Kirda, "Limits of static
analysis for malware detection", Computer security
applications conference, 2007. ACSAC 2007.
Twenty-third annual, 2007, pp. 421-430: IEEE.

[37] E. Gandotra, D. Bansal, and S. Sofat, "Malware analysis
and classification: A survey", Journal of Information
Security, vol. 2014, 2014.

[38] H. Yin and D. Song, Automatic Malware Analysis: An
Emulator Based Approach, 1 ed. Springer Science &
Business Media, 2013.

[39] P. O’kane, S. Sezer, and K. McLaughlin, "Detecting
obfuscated malware using reduced opcode set and
optimised runtime trace", Security Informatics, vol. 5, no.
1, p. 2, 2016.

[40] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov,
"Learning and Classification of Malware Behavior",
Detection of Intrusions and Malware, and Vulnerability
Assessment: 5th International Conference, DIMVA 2008,
Paris, France, July 10-11, 2008. Proceedings, D.
Zamboni, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 108-125.

[41] Z. Mohamad Fadli and A. Jantan, "An approach for
malware behavior identification and classification", 3rd
International Conference on Computer Research and
Development, 2011, vol. 1, pp. 191-194.

[42] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane,
"Graph-based malware detection using dynamic
analysis", Journal in Computer Virology, vol. 7, no. 4,
pp. 247-258, 2011.

[43] I. Firdausi, C. lim, A. Erwin, and A. S. Nugroho,
"Analysis of Machine learning Techniques Used in
Behavior-Based Malware Detection", Second
International Conference on Advances in Computing,
Control, and Telecommunication Technologies, 2010, pp.
201-203.

[44] R. Islam, R. Tian, L. M. Batten, and S. Versteeg,
"Classification of malware based on integrated static and
dynamic features", Journal of Network and Computer
Applications, vol. 36, no. 2, pp. 646-656, 2013.

[45] D. G. Llauradó, Convolutional neural networks for
malware classification, Master's, Department of
Computer Science, Universitat Politècnica de Catalunya,
2016.

