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ABSTRACT 
 
Malware attack is a never-ending cyber security issue. Since 
traditional approaches are less efficient in detecting newly 
appeared malware, researchers are applying machine 
learning methods. In this research we started by an overview 
of the domain and went over available malware datasets. 
Then we discussed disadvantages of traditional Anti-Malware 
methods and reviewed possible Machine Learning techniques 
used in this domain. A study on EMBER dataset has been 
made with an objective of improving the baseline Gradient 
Boosted Decision Tree model by optimizing its 
hyper-parameter and eliminating noisy features from the 
dataset. EMBER dataset consists of 1.1M observations of 
static features extracted from executable files. Our optimized 
model has achieved 99.38% accuracy with 0.004 false 
positive rate in 7 minutes running time. We conclude that 
Machine Learning techniques are practical to be applied as 
anti-malware solutions including for Zero-day attacks.   
 
Key words: Artificial Intelligence, Machine Learning, Cyber 
Security, Malware Analysis, Smart Anti-Malware, GBDT 
Algorithm, Anti-virus.  
 
1. INTRODUCTION 
 

Malware writers continuously create new malware and 
spread them to attack their targets. Although traditional 
anti-malware techniques helped a lot in protecting users, they 
still not effective in detecting zero-day malware. Therefore, 
some companies depend on White-listing techniques "default 
deny" which is helpful in securing devices, but it has many 
limitations in accessibility what makes it suitable for 
organizations more than end-users. One of the popular 
solutions today is using machine learning techniques to train 
a model on large amount of malware considering specific 
features which enables prediction on whether the specific 
software is malware or benign using machine learning 
algorithm. There are many attempts to apply machine 
learning in malware detection domain starting in 2001 [1]  
whereby the researchers introduced the problem by saying, 
“Eight to ten malicious programs are created every day, and 
most cannot be accurately detected until signatures have been 

 
 

generated for them”. This statistic figure is alarming as it 
shows that an average of 700,000 malware samples created on 
a daily basis [2]. This huge number of malwares demands the 
necessity of automating the process of detection to minimize 
the risk. Fortunately, many researchers work to find solutions 
on this matter using Machine learning. Some companies have 
launched AI-based solutions in their Anti-malware products. 
Example of product solutions including {Endgame 
(MalwareScore), Cylance, ESET (NOD32), Windows 
Defender Anti-malware, and others} are using variety of 
machine learning techniques in their malware detection 
strategy which is a clear evidence of feasibility. 
 
2.  UNDERSTANDING MALWARE 
 

The first step in any machine learning experiment is to get 
some domain knowledge which help understanding the data 
and accomplish the experiment. In this section we will briefly 
highlight common types of malware, malware analysis 
techniques, and available malware datasets. Which will 
demonstrate the flow of ideas and show the importance of the 
experiment.  
 
2.1 Types of Malware 
 

Malware is [3] any software that do something harmful or 
unwanted to the user. The harm varies in its negative 
implication - from annoying user such as “adware”, stealing 
confidential information “spyware” or “Keylogger” which 
store the wanted keyboard input typically passwords and send 
to attacker, and up to encrypting all user’s data and asking for 
money to give the key “ransomware”. Moreover, malware 
authors may aim to gain full access on victim machine by 
installing “backdoor” by which he can command directly on 
victim local system or even use it in his zombie army of 
machines “botnet” which gives attacker ability to implement 
“DDOS” and shutdown any service or server he don’t like. 
These are just some examples of different potential harm and 
different families of malware. To further understand how 
critical to prevent malware, imagine what a “backdoor” can 
do in a hospital systems and patients management. Malware 
can also be a fatal weapon in the cyberwar world; “Stuxnet” 
malware which attacked Iran's nuclear power plant in 2010 
and “DDOS” 2007 cyberattacks on Estonia is a clear example. 
Malware can also be categorized based on the way of infecting 
victim’s machine whether it’s hidden within legitimate 

 
Malware Detection through Machine Learning Techniques 

Ahmed Amer1, Normaziah A. Aziz2 
1 International Islamic University Malaysia, Malaysia, ahmed3amerai@gmail.com 

2 Department of Computer Science, International Islamic University Malaysia, Malaysia, naa@iium.edu.my 

    ISSN 2278-3091              
Volume 8, No.5, September - October 2019 

International Journal of Advanced Trends in Computer Science and Engineering 
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse82852019.pdf 

https://doi.org/10.30534/ijatcse/2019/82852019 
 

 



Ahmed Amer et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2408- 2413 

2409 
 

 

program as a Trojan Horse or it spreads and replicates itself 
via internet Worm or it’s just a virus using the traditional way 
such as email attachment or USB. The attacker’s objective 
affects the nature of malware whether it takes a shotgun 
approach and designed to affect as many machines as possible 
or it’s a targeted malware which targets a specific 
organization or victim and usually it’s more sophisticated and 
harder to catch since in most cases it’s a Zero-day malware. 
Zero-day means the malware has never been seen before and 
no malware analyst had deal with it or developed a signature 
to capture it. A recent study [4] found that 46% of all malware 
in 2017 are zero-day malware. Which indicate that it’s a 
serious threat. 
 

2.2 Malware analysis techniques 
 

Malware analysis is one of the most important field in cyber 
security. Malware analyst job is to determine the features and 
function of a suspected malware, measure its impact or 
damage caused, and develop a signature which can be used to 
detect later appearance of this malware. The two main 
approaches to treat a malware is static analysis, and dynamic 
analysis which has been explained in “Practical malware 
analysis” book [3] as following:  

 
Static Malware analysis is the process of analyzing the code 

or structure of a program to determine its function without 
running the code. It includes reverse-engineering the 
malware internal by loading the executable code into a 
disassembler and looking at the program instruction in order 
to discover what the program does. This process requires 
specialized knowledge of assembly language and windows 
operating system concepts. 

 
Dynamic Malware analysis involves monitoring malware 

as it runs or examining the system after the malware has 
executed. In its advance version it uses debugger to examine 
the internal state of a running malicious software. Debugger 
is a piece of software or hardware used to examine the 
execution of another program. 
 
2.3 Malware Datasets 
 

Data is very valuable and important. Machine learning 
model cannot be built without suitable datasets. In the context 
of malware, the data is important and dangerous too. 

 
Collecting Binary malware is doable however, since those 

malwares are executable then they may be harmful. Dealing 
with executable file needs analyst to set virtual machine and 
examine or extract features from malware cautiously. A quick 
visit to VirusShare.com show that they have 30,386,102 
malware samples but of course “Access to the site is granted 
by invitation only”.  

 

In 2015 Microsoft published a big dataset for public access 
during “Microsoft Malware Classification Challenge” on 
Kaggle [5]. The dataset consists of 20K malicious samples 
from nine families available in binary format and in assembly 
(.asm) form which has been disassembled using IDA Pro 
disassembler. Many scientific papers have been done 
depending on this dataset however its size (400GB) has put a 
constraint to use it in our experiment and the dataset contains 
no benign files. The dataset has been cited by more than 50 
research papers and thesis which tabulated in this paper [6].  

 
There are some malware datasets of static and dynamic 

extracted features, but most of public are relatively small. A 
good choice to start our experiment with was ClaMP 
(Classification of Malware with PE headers) [7] which 
contains 5210 samples; 2722 are malware and rest are benign. 
ClaMP has been published in 2016 and consist of 69 extracted 
features including md5, size, entropy, fileInfo, VirusTotal 
report, file type, etc.  

 
This choice has been changed after publishing EMBER 

(Endgame Malware BEnchmark for Research) on in 16 April 
2018. EMBER is an open source malware dataset consist of 
1.1M observations of static features extracted from PE files. 
The dataset has 400K malicious, 400K benign, 300K 
unlabeled [8] to be used in further studies to build 
semi-supervised model or other research purpose. More 
details of features and algorithm will be in the experiment 
section.” 
 
3. ANTI-MALWARE TECHNIQUES 
 

Due to serious risk and negative impact of malware, 
different approaches are worked out to minimize and prevent 
spreading of malicious software. Each method has its pros 
and cons. The best way is to hybrid by leveraging advantages 
of each method. However, it’s not always practical. In this 
section we will explain briefly some available Anti-malware 
techniques which will clarify why we choose machine 
learning for our solution.  
 
3.1 Traditional Anti-malware Techniques 
 

Signature Based used to be the first and most common 
method of detecting malware. It uses a database contains huge 
amount of signature of known malware. Whenever malware 
analyst analyses a malware and develop a signature, he will 
feed it into this database. There are many limitations in this 
approach including that recent malware can alter itself hence 
change its signature in what’s known as polymorphism. The 
main limitation is the time factor which is very critical in 
malware analysis domain since each hour after spreading a 
malware may mean hundreds of infected systems. In general 
signature based mostly detect attacks carried out by user not 
author. 
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Behavior based is the dynamic way of detecting malware. It 
uses programmed rules to detect abnormal behavior. Some 
defined sequential of activity indicate the file is malicious 
such as attempt to discover sandbox or virtual machine or 
disabling security controls. Some disadvantage of this method 
is that it takes more time and resources to analyze the file than 
signature based which may affect the performance of the end 
user machine. Besides, this approach is helpful in detecting 
some enhanced versions of known malware which use similar 
steps or belong to the same family, but it cannot detect real 
zero-day malware which use creative ways or mix different 
attributes from different malware families. 
 

Whitelisting is to prevent all software except those which 
explicitly allowed by system administrator in what known as 
“default-deny”. However, that looks safe from confidentiality 
perspective it still has many availability limitations. This 
approach can be used in companies which limit staff access to 
some predefined software but not for end user who usually use 
software which is benign but not “trustworthy” enough. 
Besides if trusted program got some vulnerability it may be 
used to spread malware. 
 
3.2 Machine Learning Techniques 
 

Machine learning is the science of using algorithm to 
analyze data, learn patterns from it, and then use these 
patterns to predict or make a decision regarding extra samples 
of this data. Since behavior-based solutions follow rules and 
take explicit guidance from expert it may not be helpful in our 
case if the malware uses a new approach or belong to totally 
new family. Using machine learning has the advantage of 
detecting zero-day malware by analyzing huge amount of 
malware and benign file and let the algorithm learn the 
pattern which differentiate between them. Experts here only 
involve in choosing the most significant features and the 
machine will mimic their work. Considering PE files, we may 
categorize ML techniques into three main categories:  
 

Static extracted features model in which features can be 
obtained without running the executable file. Some argue that 
static features are not that effective but for us we propose that 
it’s the most suitable methodology for this domain because we 
mainly aim to detect maliciousness and according to [3] 
“Basic static analysis can confirm whether a file is 
malicious.” so why we go to complexity while light simple 
solution exist. Many useful features can be extracted 
statically, and they are easier and cheaper to extract. The first 
feature is PE header which has been explained in detail in this 
paper [8]. It contains many useful information including type 
of machine, number of sections, number of symbols, size of 
the code, size of initialized and uninitialized data, address of 
the entry point, and data directories which provide pointers to 
the sections which include tables for exports, imports, 
resources, exceptions, debug information, certificate 
information, and relocation tables. Some research paper used 
entropy to measure percentage of randomness in the code 

which indicate obfuscation. As defined in [9] “Obfuscation 
techniques are used by developers to either protect legitimate 
intellectual property such as software or to make malware 
more difficult to understand”.  
In [10] they used suggestive strings such as URLs, IP 
addresses, names of special file system or Windows registry 
locations. This variety of available features give wide 
opportunity to researcher to use different machine learning 
algorithm. [11] has used eight different machine learning 
algorithm using API windows calls and among those 
algorithms SVM (normalized poly kernel) has performed the 
best with 0.932 ROC Area. 

 
Dynamic extracted features model is similar to 

behavior-based approach since It needs virtual environment 
to run the executable file safely and it requires more time and 
resources than static models. According to [12] many 
dynamic features has been used in different research 
including dynamic analysis API calls, system calls, 
instruction traces, registry changes, writes memory, and 
others. This research [12] targeted to do a comparison 
between static feature, dynamic features, and hybrid models. 
Hidden Markov Models has been trained using two 
significant features: opcode sequences, and API windows call. 
Both features can be extracted statically by considering the 
overall program structure or dynamically by collecting the 
actual execution path taken when the program is traced. They 
used IDA Pro as disassembler and debugger to generate 
assembly file from which opcode sequences and API calls can 
be extracted. In case of opcode sequences, they have discarded 
all operands, labels, directives, etc., and only retain the 
mnemonic opcode {call, push, call, add, etc.}. For API calls 
they have collected API call names and discarded the 
arguments. Many API calls has been mentioned including 
{CreateFile, OpenProcessToken, AdjustTokenPrivileges, 
SetNamedSecurityInfo, GetComputerName, 
QueryProcessInformation, DeleteFile}. The results of this 
experiment indicate that for API calls and opcode sequences, 
a fully dynamic strategy is generally the most effective 
approach. 
 

Neural Network is well referred ML Algorithm that is 
applied in many domains varying from Arabic Handwriting 
Recognition [15] to Wireless Ad-Hoc Networks prevention 
[16]. Featureless model using end-to-end deep learning 
neural network is one of the most recent research published 
on 25 Oct 2017 [13]. It doesn’t depend on neither static nor 
dynamic features instead it uses raw byte sequences what 
explain the title of the research paper “Malware Detection by 
Eating a Whole EXE”. They used a very huge amount of data 
started with around 0.5M and then increased to 2,011,786 
binaries samples which nearly half of them are malware. The 
model treats each byte as a unit in a sequence which leads to 
produce the first network architecture with the ability to 
process raw byte sequence of over two million steps. The main 
target of this research is to minimize the use of domain 
knowledge and explore how effectively the problem can be 
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solved without specifying any such information. The 
experiment successfully got 94% accuracy with 98.1% AUC. 
The main limitation of this approach is the computational 
constraint due to the extreme memory use of their 
architecture. It takes two months to train the model on those 2 
million observations using data parallelism across 8 GPUs. 
 

4. EXPERIMENT CONDUCTED 
 

After understanding the theoretical techniques, it is time to 
demonstrate with a practical experiment. It is always 
advisable to continue from where others stop rather than 
starting from scratch. Therefore, we will study and improve 
the model published with EMBER Dataset. 

 
The experiment has been conducted using Dell G3 15 core 

i7 eighth generation laptop. We started by training the 
baseline model on the 600K labelled data. According to [8] it 
took 20 hours to vectorize the raw features into model features 
and 3 hours to train the model using 2015 MacBook Pro i7 
(fourth generation). Surprisingly, it took only 6 minutes to 
vectorize and 5 minutes to run the model on our local 
machine. We did some research to find out the reason behind 
this huge gap considering that CPU processing power are 
similar since both are core i7. We checked whether there is 
any contribution of GPU in Dell machine while running the 
code _since it has GTX 1050 Ti GPU which is more 
powerful_ but there were no any GPU processes. The main 
difference is that Mac machine is fourth generation which 
may be up to 3.4 Ghz while Dell machine is eighth generation 
which may be up to 4.1 Ghz and is consist of 6-cores. This 
speed of running made the experiment much easier for us 
since we don’t need to wait for a day with every parameter 
change. 

 
4.1 Data Description 
 

EMBER dataset consists of eight groups of raw features 
that include parsed features, histograms, and counts of strings 
[8]. String information are simple statistics about printable 
strings and special string such as those which start with {C:\, 
http://, HKEY_, MZ, etc.} since each one of those string may 
indicate maliciousness for example a file used too many 
registry key {HKEY_} may be suspicious. They provide 
statistical summary instead of raw strings to mitigate privacy 
concerns that may exist for some benign files. Histograms 
involve Byte histogram which is the count of each byte value 
within the file, and Byte-entropy histogram which is the joint 
distribution of entropy and byte values. Eventually, parsed 
features are five groups: general file information, header 
information, imported functions, exported functions, and 
section information. Each parsed group consist of useful 
features for instance size, resources, and whether the file has a 

debug section belong to general file information group while 
timestamp, and target machine is header information. 
Complete details of each feature exist in [8]. 

 
After extracting raw features, they transform them to 

model (vectorized) features. Model features represent a 
feature matrix of fixed size used for training a model, 
representing a numerical summary of the raw features, 
wherein strings, imported names, exported names, etc., are 
captured using the feature hashing trick [17]. 

 
4.2 GBDT Baseline Model 
 

GBDT is a lightweight model therefore it’s suitable for end 
user machine. Besides, it requires less processing power when 
comparing with the other machine learning algorithm. 
Considering that classifying new sample after building the 
decision tree is fast and easy. EMBER dataset has been tested 
by training a baseline gradient-boosted decision tree (GBDT) 
model using LightGBM with default parameters (100 trees, 
31 leaves per tree) [8]. The baseline model achieves 98.2% 
detection rate with approximately 1% false positive rate. 
 
4.3 Optimize Hyper-Parameters 
 

We wrote down a script to test the accuracy of the 
lightGBM GBDT model with default parameters using 200K 
observations and it was 98.6% with 0.01 False rate using 0.5 
as a threshold. This percentage may consider more than 
enough in many domains but in Anti-malware field it’s a real 
risk. For example, out of this small dataset this percentage 
means 1667 malware has successfully reach the target and of 
course numbers of samples are much higher. After studying 
deeply LightGBM documentation we decided which 
parameters may be optimized to improve the results. The first 
parameter we choose is min_data_in_leaf which prune the 
tree by specifying minimum number of records can be in one 
leaf which helps to reduce overfitting. By increasing this 
parameter from 20 to 50 we managed to slightly increase 
accuracy and significantly speed up the the model. Then we 
increased num_leaves in each tree from 31 to 100 which 
means increasing complexity of the model. Increasing 
complexity has increased accuracy as expected. Finally, we 
attempted to choose the best number of boosted trees. We 
separated random 600 samples from the training set to use it 
as a validation set, then we assign 500 to num_boost_round 
parameter and put early_stopping_rounds = 10. That will 
force model to stop if 10 rounds passed without improving 
classifying those 600 valid samples. We found that optimal 
number of boosting rounds are 192. 
 
4.4 Eliminate Noisy Features 
 

After vectorizing the dataset, it consists of 2291 feature 
which is a big number and may affect the performance or the 
computation power required. We started by checking the 
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importance of each feature using LightGBM function and the 
result was better than what we expected. We found that 761 of 
vectorized feature has zero impact on the model. The impact 
of the features is shown in Figure 1. 

 

 
Figure 1: Plotting importance of features of lightGBM model 
 
We eliminated those features and retrained the model that 

gives us almost same accuracy but by less time for training 
since number of features now is 1530. The disadvantage of 
checking importance of vectorized features after training is 
that it is not interpretable since we don’t know which raw 
feature produce those irrelevant vectorized features. We made 
an educated guessing depending on what has been suggested 
in [16] that entropy has low impact on detecting malware 
since programmers use obfuscation to protect their legitimate 
programs not only malware author. We tried to test this 
assumption by eliminating ByteEntropy() from raw features 
and it looks valid since the retrained model gave almost same 
accuracy with only 2035 features. Finally, we merged both 
techniques by rechecking feature importance after 
eliminating ByteEntropy() and avoid any further feature with 
zero impact on the model. We end with only 1338 vectorized 
feature. 
5. RESULTS 
 

Our optimized model has achieved 99.38% accuracy with 
0.004 false positive rate and the same threshold of 0.5. The 
most significant advantage in this model is that it takes 
around 7 minutes for training 600K observation with 2291 
features and takes less than a second for testing 200K samples 
which is leads to very quick detection of malware. Moreover, 
by eliminating noisy features we managed to reduce training 
time to 4.5 minutes with 1338 feature without significantly 
affecting performance which becomes 99.31%. The final 
model has been tested using dozens of executable files and it 
works correctly. It classifies legitimate programs such as 
Code Blocks, Burp Suite, and others as benign. It detects tens 
of random samples from various malware types such as spam, 
CoinMiner, Downloader, Ransomware etc. It easily captured 
the most common malware “wannacry”. Finally, as an 
evidence that this model can detect new malware, we tested it 
using “grandcrab” which is one of the most common 
ransomwares of this year (2018). The model successfully 
detects a sample of “grandcrab” which uploaded only 15 days 
ago on GitHub. 
 

Table 1: Summary of results with 0.5 threshold on local machine 
(Dell G3) 

 Featureless 
model 

(DLNN) 

EMBER 
Model 

(Published 
Paper) 

EMBER 
Model 
(Local 

Machine) 

Optimize 
Hyper-Parameters 

Eliminate 
Noisy 

Features 

Accuracy 94% 98.2% 98.6% 99.38% 99.31% 

FP rate - 0.01 0.0112 0.0042 0.0045 

Time  2 (months) 23 (hour) 11 
(minute) 

7  
(minute) 

4.5 
(minute) 

6. CONCLUSION 
Our next stage is to further improve the model by using 

other 300K unlabeled samples in building a semi-supervised 
model and compare it with the current GBDT model. Then to 
put theory in action we will work on developing more precise 
and efficient anti-malware. The basic architecture of the 
product is to mix whitelisting approach with machine 
learning in order to reduce the amount of analyzed suspicious 
files hence improve the performance. The model will only 
examine suspicious samples which are not in neither trusted 
whitelist nor blocked blacklist. If the model detects a file as 
malware it will pass it to other multi-classification malware 
model which predict its family and display it to the user who 
take the final decision whether to delete, ignore, or trust this 
file. In conclusion, machine learning techniques are practical 
to be applied in anti-malware industry and protect users to 
some extent. Therefore, mitigation can be made against 
malware attack before users become the victim.  
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