
Ahmed Amer et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2408- 2413

2408

ABSTRACT

Malware attack is a never-ending cyber security issue. Since
traditional approaches are less efficient in detecting newly
appeared malware, researchers are applying machine
learning methods. In this research we started by an overview
of the domain and went over available malware datasets.
Then we discussed disadvantages of traditional Anti-Malware
methods and reviewed possible Machine Learning techniques
used in this domain. A study on EMBER dataset has been
made with an objective of improving the baseline Gradient
Boosted Decision Tree model by optimizing its
hyper-parameter and eliminating noisy features from the
dataset. EMBER dataset consists of 1.1M observations of
static features extracted from executable files. Our optimized
model has achieved 99.38% accuracy with 0.004 false
positive rate in 7 minutes running time. We conclude that
Machine Learning techniques are practical to be applied as
anti-malware solutions including for Zero-day attacks.

Key words: Artificial Intelligence, Machine Learning, Cyber
Security, Malware Analysis, Smart Anti-Malware, GBDT
Algorithm, Anti-virus.

1. INTRODUCTION

Malware writers continuously create new malware and
spread them to attack their targets. Although traditional
anti-malware techniques helped a lot in protecting users, they
still not effective in detecting zero-day malware. Therefore,
some companies depend on White-listing techniques "default
deny" which is helpful in securing devices, but it has many
limitations in accessibility what makes it suitable for
organizations more than end-users. One of the popular
solutions today is using machine learning techniques to train
a model on large amount of malware considering specific
features which enables prediction on whether the specific
software is malware or benign using machine learning
algorithm. There are many attempts to apply machine
learning in malware detection domain starting in 2001 [1]
whereby the researchers introduced the problem by saying,
“Eight to ten malicious programs are created every day, and
most cannot be accurately detected until signatures have been

generated for them”. This statistic figure is alarming as it
shows that an average of 700,000 malware samples created on
a daily basis [2]. This huge number of malwares demands the
necessity of automating the process of detection to minimize
the risk. Fortunately, many researchers work to find solutions
on this matter using Machine learning. Some companies have
launched AI-based solutions in their Anti-malware products.
Example of product solutions including {Endgame
(MalwareScore), Cylance, ESET (NOD32), Windows
Defender Anti-malware, and others} are using variety of
machine learning techniques in their malware detection
strategy which is a clear evidence of feasibility.

2. UNDERSTANDING MALWARE

The first step in any machine learning experiment is to get
some domain knowledge which help understanding the data
and accomplish the experiment. In this section we will briefly
highlight common types of malware, malware analysis
techniques, and available malware datasets. Which will
demonstrate the flow of ideas and show the importance of the
experiment.

2.1 Types of Malware

Malware is [3] any software that do something harmful or
unwanted to the user. The harm varies in its negative
implication - from annoying user such as “adware”, stealing
confidential information “spyware” or “Keylogger” which
store the wanted keyboard input typically passwords and send
to attacker, and up to encrypting all user’s data and asking for
money to give the key “ransomware”. Moreover, malware
authors may aim to gain full access on victim machine by
installing “backdoor” by which he can command directly on
victim local system or even use it in his zombie army of
machines “botnet” which gives attacker ability to implement
“DDOS” and shutdown any service or server he don’t like.
These are just some examples of different potential harm and
different families of malware. To further understand how
critical to prevent malware, imagine what a “backdoor” can
do in a hospital systems and patients management. Malware
can also be a fatal weapon in the cyberwar world; “Stuxnet”
malware which attacked Iran's nuclear power plant in 2010
and “DDOS” 2007 cyberattacks on Estonia is a clear example.
Malware can also be categorized based on the way of infecting
victim’s machine whether it’s hidden within legitimate

Malware Detection through Machine Learning Techniques

Ahmed Amer1, Normaziah A. Aziz2
1 International Islamic University Malaysia, Malaysia, ahmed3amerai@gmail.com

2 Department of Computer Science, International Islamic University Malaysia, Malaysia, naa@iium.edu.my

 ISSN 2278-3091
Volume 8, No.5, September - October 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse82852019.pdf

https://doi.org/10.30534/ijatcse/2019/82852019

Ahmed Amer et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2408- 2413

2409

program as a Trojan Horse or it spreads and replicates itself
via internet Worm or it’s just a virus using the traditional way
such as email attachment or USB. The attacker’s objective
affects the nature of malware whether it takes a shotgun
approach and designed to affect as many machines as possible
or it’s a targeted malware which targets a specific
organization or victim and usually it’s more sophisticated and
harder to catch since in most cases it’s a Zero-day malware.
Zero-day means the malware has never been seen before and
no malware analyst had deal with it or developed a signature
to capture it. A recent study [4] found that 46% of all malware
in 2017 are zero-day malware. Which indicate that it’s a
serious threat.

2.2 Malware analysis techniques

Malware analysis is one of the most important field in cyber
security. Malware analyst job is to determine the features and
function of a suspected malware, measure its impact or
damage caused, and develop a signature which can be used to
detect later appearance of this malware. The two main
approaches to treat a malware is static analysis, and dynamic
analysis which has been explained in “Practical malware
analysis” book [3] as following:

Static Malware analysis is the process of analyzing the code

or structure of a program to determine its function without
running the code. It includes reverse-engineering the
malware internal by loading the executable code into a
disassembler and looking at the program instruction in order
to discover what the program does. This process requires
specialized knowledge of assembly language and windows
operating system concepts.

Dynamic Malware analysis involves monitoring malware

as it runs or examining the system after the malware has
executed. In its advance version it uses debugger to examine
the internal state of a running malicious software. Debugger
is a piece of software or hardware used to examine the
execution of another program.

2.3 Malware Datasets

Data is very valuable and important. Machine learning
model cannot be built without suitable datasets. In the context
of malware, the data is important and dangerous too.

Collecting Binary malware is doable however, since those

malwares are executable then they may be harmful. Dealing
with executable file needs analyst to set virtual machine and
examine or extract features from malware cautiously. A quick
visit to VirusShare.com show that they have 30,386,102
malware samples but of course “Access to the site is granted
by invitation only”.

In 2015 Microsoft published a big dataset for public access
during “Microsoft Malware Classification Challenge” on
Kaggle [5]. The dataset consists of 20K malicious samples
from nine families available in binary format and in assembly
(.asm) form which has been disassembled using IDA Pro
disassembler. Many scientific papers have been done
depending on this dataset however its size (400GB) has put a
constraint to use it in our experiment and the dataset contains
no benign files. The dataset has been cited by more than 50
research papers and thesis which tabulated in this paper [6].

There are some malware datasets of static and dynamic

extracted features, but most of public are relatively small. A
good choice to start our experiment with was ClaMP
(Classification of Malware with PE headers) [7] which
contains 5210 samples; 2722 are malware and rest are benign.
ClaMP has been published in 2016 and consist of 69 extracted
features including md5, size, entropy, fileInfo, VirusTotal
report, file type, etc.

This choice has been changed after publishing EMBER

(Endgame Malware BEnchmark for Research) on in 16 April
2018. EMBER is an open source malware dataset consist of
1.1M observations of static features extracted from PE files.
The dataset has 400K malicious, 400K benign, 300K
unlabeled [8] to be used in further studies to build
semi-supervised model or other research purpose. More
details of features and algorithm will be in the experiment
section.”

3. ANTI-MALWARE TECHNIQUES

Due to serious risk and negative impact of malware,
different approaches are worked out to minimize and prevent
spreading of malicious software. Each method has its pros
and cons. The best way is to hybrid by leveraging advantages
of each method. However, it’s not always practical. In this
section we will explain briefly some available Anti-malware
techniques which will clarify why we choose machine
learning for our solution.

3.1 Traditional Anti-malware Techniques

Signature Based used to be the first and most common
method of detecting malware. It uses a database contains huge
amount of signature of known malware. Whenever malware
analyst analyses a malware and develop a signature, he will
feed it into this database. There are many limitations in this
approach including that recent malware can alter itself hence
change its signature in what’s known as polymorphism. The
main limitation is the time factor which is very critical in
malware analysis domain since each hour after spreading a
malware may mean hundreds of infected systems. In general
signature based mostly detect attacks carried out by user not
author.

Ahmed Amer et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2408- 2413

2410

Behavior based is the dynamic way of detecting malware. It
uses programmed rules to detect abnormal behavior. Some
defined sequential of activity indicate the file is malicious
such as attempt to discover sandbox or virtual machine or
disabling security controls. Some disadvantage of this method
is that it takes more time and resources to analyze the file than
signature based which may affect the performance of the end
user machine. Besides, this approach is helpful in detecting
some enhanced versions of known malware which use similar
steps or belong to the same family, but it cannot detect real
zero-day malware which use creative ways or mix different
attributes from different malware families.

Whitelisting is to prevent all software except those which
explicitly allowed by system administrator in what known as
“default-deny”. However, that looks safe from confidentiality
perspective it still has many availability limitations. This
approach can be used in companies which limit staff access to
some predefined software but not for end user who usually use
software which is benign but not “trustworthy” enough.
Besides if trusted program got some vulnerability it may be
used to spread malware.

3.2 Machine Learning Techniques

Machine learning is the science of using algorithm to
analyze data, learn patterns from it, and then use these
patterns to predict or make a decision regarding extra samples
of this data. Since behavior-based solutions follow rules and
take explicit guidance from expert it may not be helpful in our
case if the malware uses a new approach or belong to totally
new family. Using machine learning has the advantage of
detecting zero-day malware by analyzing huge amount of
malware and benign file and let the algorithm learn the
pattern which differentiate between them. Experts here only
involve in choosing the most significant features and the
machine will mimic their work. Considering PE files, we may
categorize ML techniques into three main categories:

Static extracted features model in which features can be
obtained without running the executable file. Some argue that
static features are not that effective but for us we propose that
it’s the most suitable methodology for this domain because we
mainly aim to detect maliciousness and according to [3]
“Basic static analysis can confirm whether a file is
malicious.” so why we go to complexity while light simple
solution exist. Many useful features can be extracted
statically, and they are easier and cheaper to extract. The first
feature is PE header which has been explained in detail in this
paper [8]. It contains many useful information including type
of machine, number of sections, number of symbols, size of
the code, size of initialized and uninitialized data, address of
the entry point, and data directories which provide pointers to
the sections which include tables for exports, imports,
resources, exceptions, debug information, certificate
information, and relocation tables. Some research paper used
entropy to measure percentage of randomness in the code

which indicate obfuscation. As defined in [9] “Obfuscation
techniques are used by developers to either protect legitimate
intellectual property such as software or to make malware
more difficult to understand”.
In [10] they used suggestive strings such as URLs, IP
addresses, names of special file system or Windows registry
locations. This variety of available features give wide
opportunity to researcher to use different machine learning
algorithm. [11] has used eight different machine learning
algorithm using API windows calls and among those
algorithms SVM (normalized poly kernel) has performed the
best with 0.932 ROC Area.

Dynamic extracted features model is similar to

behavior-based approach since It needs virtual environment
to run the executable file safely and it requires more time and
resources than static models. According to [12] many
dynamic features has been used in different research
including dynamic analysis API calls, system calls,
instruction traces, registry changes, writes memory, and
others. This research [12] targeted to do a comparison
between static feature, dynamic features, and hybrid models.
Hidden Markov Models has been trained using two
significant features: opcode sequences, and API windows call.
Both features can be extracted statically by considering the
overall program structure or dynamically by collecting the
actual execution path taken when the program is traced. They
used IDA Pro as disassembler and debugger to generate
assembly file from which opcode sequences and API calls can
be extracted. In case of opcode sequences, they have discarded
all operands, labels, directives, etc., and only retain the
mnemonic opcode {call, push, call, add, etc.}. For API calls
they have collected API call names and discarded the
arguments. Many API calls has been mentioned including
{CreateFile, OpenProcessToken, AdjustTokenPrivileges,
SetNamedSecurityInfo, GetComputerName,
QueryProcessInformation, DeleteFile}. The results of this
experiment indicate that for API calls and opcode sequences,
a fully dynamic strategy is generally the most effective
approach.

Neural Network is well referred ML Algorithm that is
applied in many domains varying from Arabic Handwriting
Recognition [15] to Wireless Ad-Hoc Networks prevention
[16]. Featureless model using end-to-end deep learning
neural network is one of the most recent research published
on 25 Oct 2017 [13]. It doesn’t depend on neither static nor
dynamic features instead it uses raw byte sequences what
explain the title of the research paper “Malware Detection by
Eating a Whole EXE”. They used a very huge amount of data
started with around 0.5M and then increased to 2,011,786
binaries samples which nearly half of them are malware. The
model treats each byte as a unit in a sequence which leads to
produce the first network architecture with the ability to
process raw byte sequence of over two million steps. The main
target of this research is to minimize the use of domain
knowledge and explore how effectively the problem can be

Ahmed Amer et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2408- 2413

2411

solved without specifying any such information. The
experiment successfully got 94% accuracy with 98.1% AUC.
The main limitation of this approach is the computational
constraint due to the extreme memory use of their
architecture. It takes two months to train the model on those 2
million observations using data parallelism across 8 GPUs.

4. EXPERIMENT CONDUCTED

After understanding the theoretical techniques, it is time to
demonstrate with a practical experiment. It is always
advisable to continue from where others stop rather than
starting from scratch. Therefore, we will study and improve
the model published with EMBER Dataset.

The experiment has been conducted using Dell G3 15 core

i7 eighth generation laptop. We started by training the
baseline model on the 600K labelled data. According to [8] it
took 20 hours to vectorize the raw features into model features
and 3 hours to train the model using 2015 MacBook Pro i7
(fourth generation). Surprisingly, it took only 6 minutes to
vectorize and 5 minutes to run the model on our local
machine. We did some research to find out the reason behind
this huge gap considering that CPU processing power are
similar since both are core i7. We checked whether there is
any contribution of GPU in Dell machine while running the
code _since it has GTX 1050 Ti GPU which is more
powerful_ but there were no any GPU processes. The main
difference is that Mac machine is fourth generation which
may be up to 3.4 Ghz while Dell machine is eighth generation
which may be up to 4.1 Ghz and is consist of 6-cores. This
speed of running made the experiment much easier for us
since we don’t need to wait for a day with every parameter
change.

4.1 Data Description

EMBER dataset consists of eight groups of raw features
that include parsed features, histograms, and counts of strings
[8]. String information are simple statistics about printable
strings and special string such as those which start with {C:\,
http://, HKEY_, MZ, etc.} since each one of those string may
indicate maliciousness for example a file used too many
registry key {HKEY_} may be suspicious. They provide
statistical summary instead of raw strings to mitigate privacy
concerns that may exist for some benign files. Histograms
involve Byte histogram which is the count of each byte value
within the file, and Byte-entropy histogram which is the joint
distribution of entropy and byte values. Eventually, parsed
features are five groups: general file information, header
information, imported functions, exported functions, and
section information. Each parsed group consist of useful
features for instance size, resources, and whether the file has a

debug section belong to general file information group while
timestamp, and target machine is header information.
Complete details of each feature exist in [8].

After extracting raw features, they transform them to

model (vectorized) features. Model features represent a
feature matrix of fixed size used for training a model,
representing a numerical summary of the raw features,
wherein strings, imported names, exported names, etc., are
captured using the feature hashing trick [17].

4.2 GBDT Baseline Model

GBDT is a lightweight model therefore it’s suitable for end
user machine. Besides, it requires less processing power when
comparing with the other machine learning algorithm.
Considering that classifying new sample after building the
decision tree is fast and easy. EMBER dataset has been tested
by training a baseline gradient-boosted decision tree (GBDT)
model using LightGBM with default parameters (100 trees,
31 leaves per tree) [8]. The baseline model achieves 98.2%
detection rate with approximately 1% false positive rate.

4.3 Optimize Hyper-Parameters

We wrote down a script to test the accuracy of the
lightGBM GBDT model with default parameters using 200K
observations and it was 98.6% with 0.01 False rate using 0.5
as a threshold. This percentage may consider more than
enough in many domains but in Anti-malware field it’s a real
risk. For example, out of this small dataset this percentage
means 1667 malware has successfully reach the target and of
course numbers of samples are much higher. After studying
deeply LightGBM documentation we decided which
parameters may be optimized to improve the results. The first
parameter we choose is min_data_in_leaf which prune the
tree by specifying minimum number of records can be in one
leaf which helps to reduce overfitting. By increasing this
parameter from 20 to 50 we managed to slightly increase
accuracy and significantly speed up the the model. Then we
increased num_leaves in each tree from 31 to 100 which
means increasing complexity of the model. Increasing
complexity has increased accuracy as expected. Finally, we
attempted to choose the best number of boosted trees. We
separated random 600 samples from the training set to use it
as a validation set, then we assign 500 to num_boost_round
parameter and put early_stopping_rounds = 10. That will
force model to stop if 10 rounds passed without improving
classifying those 600 valid samples. We found that optimal
number of boosting rounds are 192.

4.4 Eliminate Noisy Features

After vectorizing the dataset, it consists of 2291 feature
which is a big number and may affect the performance or the
computation power required. We started by checking the

Ahmed Amer et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2408- 2413

2412

importance of each feature using LightGBM function and the
result was better than what we expected. We found that 761 of
vectorized feature has zero impact on the model. The impact
of the features is shown in Figure 1.

Figure 1: Plotting importance of features of lightGBM model

We eliminated those features and retrained the model that

gives us almost same accuracy but by less time for training
since number of features now is 1530. The disadvantage of
checking importance of vectorized features after training is
that it is not interpretable since we don’t know which raw
feature produce those irrelevant vectorized features. We made
an educated guessing depending on what has been suggested
in [16] that entropy has low impact on detecting malware
since programmers use obfuscation to protect their legitimate
programs not only malware author. We tried to test this
assumption by eliminating ByteEntropy() from raw features
and it looks valid since the retrained model gave almost same
accuracy with only 2035 features. Finally, we merged both
techniques by rechecking feature importance after
eliminating ByteEntropy() and avoid any further feature with
zero impact on the model. We end with only 1338 vectorized
feature.
5. RESULTS

Our optimized model has achieved 99.38% accuracy with
0.004 false positive rate and the same threshold of 0.5. The
most significant advantage in this model is that it takes
around 7 minutes for training 600K observation with 2291
features and takes less than a second for testing 200K samples
which is leads to very quick detection of malware. Moreover,
by eliminating noisy features we managed to reduce training
time to 4.5 minutes with 1338 feature without significantly
affecting performance which becomes 99.31%. The final
model has been tested using dozens of executable files and it
works correctly. It classifies legitimate programs such as
Code Blocks, Burp Suite, and others as benign. It detects tens
of random samples from various malware types such as spam,
CoinMiner, Downloader, Ransomware etc. It easily captured
the most common malware “wannacry”. Finally, as an
evidence that this model can detect new malware, we tested it
using “grandcrab” which is one of the most common
ransomwares of this year (2018). The model successfully
detects a sample of “grandcrab” which uploaded only 15 days
ago on GitHub.

Table 1: Summary of results with 0.5 threshold on local machine
(Dell G3)

 Featureless
model

(DLNN)

EMBER
Model

(Published
Paper)

EMBER
Model
(Local

Machine)

Optimize
Hyper-Parameters

Eliminate
Noisy

Features

Accuracy 94% 98.2% 98.6% 99.38% 99.31%

FP rate - 0.01 0.0112 0.0042 0.0045

Time 2 (months) 23 (hour) 11
(minute)

7
(minute)

4.5
(minute)

6. CONCLUSION
Our next stage is to further improve the model by using

other 300K unlabeled samples in building a semi-supervised
model and compare it with the current GBDT model. Then to
put theory in action we will work on developing more precise
and efficient anti-malware. The basic architecture of the
product is to mix whitelisting approach with machine
learning in order to reduce the amount of analyzed suspicious
files hence improve the performance. The model will only
examine suspicious samples which are not in neither trusted
whitelist nor blocked blacklist. If the model detects a file as
malware it will pass it to other multi-classification malware
model which predict its family and display it to the user who
take the final decision whether to delete, ignore, or trust this
file. In conclusion, machine learning techniques are practical
to be applied in anti-malware industry and protect users to
some extent. Therefore, mitigation can be made against
malware attack before users become the victim.

REFERENCES

[1] M.G. Schultz, E. Eskin, F. Zadok and S.J. Stolfo.
Data Mining Methods for Detection of New
Malicious Executables, in Proc. 2001 IEEE
Symposium on Security and Privacy, pp. 38-49,
2001.

[2] Chad Skipper, Carl Gottlieb, and Lawrence C.
Miller. Treating Malware as a Data Problem. In
the book “Next-Generation Anti-Malware Testing
For Dummies”, Published by John Wiley & Sons,
Inc., Hoboken, New Jersey, Chapter I, pp. 1 - 22,
2018.

[3] Michael Sikorski and Andrew Honig. Practical
Malware Analysis. Published by No Starch Press,
Inc.38 Ringold Street, San Francisco, CA 9410,
2012.

[4] Internet Security Report, 2017. WatchGuard’s
Threat Lab, available at
https://www.watchguard.com/wgrd-resource-center
security-report.

[5] Microsoft Malware Classification Challenge,
Kaggle, 2015. [Online], available at
https://www.kaggle.com/c/malware-classification.

Ahmed Amer et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(5),September - October 2019, 2408- 2413

2413

[6] Royi Ronen, Marian Radu, Corina Feuerstein, Elad
Yom-Tov and Mansour Ahmadi. Microsoft
Malware Classification Challenge, arXiv,
1802.10135, 2018.

[7] ClaMP (Classification of Malware with PE
headers)" 2016. Github, available at
https://github.com/urwithajit9/ClaMP.

[8] Hyrum S. Anderson and Phil Roth. EMBER: An
Open Dataset for Training Static PE Malware,
arXiv, 1804.04637,2018.

[9] T. Morgenstern. Malware Terms for Non-Techies
Code Entropy, 2016. [Online], available at
https://www.cyberbit.com/blog/endpoint-security/
malware-terms-code-entropy/.

[10] Hunting for Malware with Machine Learning.
EndGame, 2016.

[11] Mamoun Alazab, Sitalakshmi Venkatraman, Paul
Watters, and Moutaz Alazab. Zero-day Malware
Detection based on Supervised Learning
Algorithms of API call Signatures, in Proc. of 9-th
Australasian Data Mining Conf. (AusDM'11), vol.
121, pp. 171-182, 2011.

[12] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H.
Austin, and M. Stamp. A comparison of static,
dynamic, and hybrid analysis for malware
detection, Journal of Computer Virology and
Hacking Techniques, vol. 13, no. 1, pp. 1–12, Dec.
2015.

 https://doi.org/10.1007/s11416-015-0261-z
[13] Raff, Edward, Jon Barker, Jared Sylvester, Robert

Brandon, Bryan Catanzaro and Charles K. Nicholas.
Malware Detection by Eating a Whole EXE,
arXiv, abs/1710.09435, 2017

[14] Jonathan Woodbridge. The Making of
MalwareScore, 2017. [Online], available at
https://www.youtube.com/watch?v=KZBohtfwhIY.

[15] Ravi Tomar and Yogesh Awasthi. Prevention
Techniques Employed In Wireless Ad-Hoc
Networks. International Journal of Advanced
Trends in Computer Science and Engineering, Vol.
8, No.1.2, 2019.

 https://doi.org/10.1109/ICOASE.2019.8723725
[16] Manal Abdullah, Afnan Agal, Mariam Alharthi and

Mariam Alrashidi. Arabic Handwriting
Recognition Model based on, International Journal
of Advanced Trends in Computer Science and
Engineering, Vol. 8, No.1.1 2019.

[17] Kilian Weinberger, Anirban Dasgupta, Josh
Attenberg, John Langford and Alex Smola. Feature
Hashing for Large Scale Multitask Learning,
Proc. of the 26th Annual International Conf. on
Machine Learning (ICML '09), pp.1113-1120, 2009
https://doi.org/10.1145/1553374.1553516.

