
Fanila Ali Agha et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1020 – 1025

1020

ABSTRACT

Sorting is the basic activity in the field of computer science
and it is commonly used in searching for information and
data. The main goal of sorting is to make reports or records
easier to edit, delete and search, etc. It organizes the given
data in any sequence. There are many sorting algorithms like
insertion sort, bubble sort, radix sort, heap sort, and so forth.
Bubble sort and insertion sort are clearly described with
algorithms and examples. In this paper, the bubble sort and
insertion sort performance analysis is carried out by
calculating the time complexity. These algorithm time
complexities have been calculated by implementing in the rust
and python languages and observed the best case, average
case, and worst case. The flowchart shows the complete
workflow of this study. The results have been shown
graphically and time complexity has been shown in a tabular
form. We have compared the efficiency of bubble sort and
insertion sort algorithms in the rust and python platforms. The
rust language is more efficient than python for both bubble
and insertion sort algorithms. However, it is observed
insertion sort is more efficient than the bubble sort algorithm.

Key words: Sorting, Algorithm, Insertion Sort, Bubble Sort,
Analysis, Best Case, Worst Case, Average Case, Time
Complexity.

1. INTRODUCTION

Sorting algorithms are used to rearrange any data in some
order [1][2][3]. There are many algorithms but none of them
is considered the best solution for all the problems. When the
series of activities are performed in a sequence that takes
some input and after completing a number of the steps it
returns some output that is known as an algorithm. A good
algorithm is the one that outgrows appropriate output for a set
of given inputs, it is also the one that gives us the desired
output in the fewest number of steps, and a good algorithm
should be written in a way that every person could understand

it easily. Sorting is an elementary problem of computer
science [4][5], and it remains a burning issue in the field of
research for many years because of its time complexity.
Sorting is a very basic element and it is most crucial for
solving many problems like finding any component, database
algorithm, image rendering, and a lot more [6]. Many
algorithms are known for solving ordered lists like: bubble
sort, merge sort, quick sort, and insertion sort [7].

1.1 Bubble Sort
Bubble sort is the ancient method of sorting, it is the simplest
sorting method. Bubble sort compares one element of the
array with the next element, if it needs a swap then it would
swap both the elements with each other. The algorithm repeats
the same process until the whole list of elements is in the
proper order [8][9], bubble sort is also known as an adjacent
comparison [10], bubble sort makes the list in a way that the
smallest elements sink and the larger element of array bubbles
at the end of the list. This process is also noted as the
exchange method [1], When the bubble sort is applied on a
sorted array or list its complexity is represented in O(n). When
the bubble sort is applied on an array or list of the average case
its complexity can be represented by O(n2). When the bubble
sort is applied on the worst-case its complexity is represented
by O(n2) [11].

Comparison of Bubble and Insertion Sort in Rust and
Python Language

Fanila Ali Agha1, Haque Nawaz2
1BSCS Student, Sindh Madressatul Islam University, Karachi, Sindh, Pakistan, fanilaali99@gmail.com

2Sindh Madressatul Islam University, Karachi, Sindh, Pakistan, hnlashari@smiu.edu.pk

ISSN 2278-3091
Volume 10, No.2, March - April 2021

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse761022021.pdf

https://doi.org/10.30534/ijatcse/2021/761022021

Fanila Ali Agha et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1020 – 1025

1021

1.2 Insertion Sort
Insertion sort is a simple sorting technique that makes an
algorithm in any language and then sorts the array. It is most
efficient on a small number of elements [12][13]. Insertion
sort is also known as the example of the incremental algorithm
[14].

Insertion sort could also be compared with the person
playing UNO cards, people usually place cards in order
the same work is done by the insertion sort it is also the
real-life exam of insertion sort. Insertion works with some
rules its first rule, key is always the second digit of the list
in comparison to any two numbers. Its second rule is to
mark the unsorted list, let’s assume that the unsorted list
starts from the second element of the list till the last
element of the list then compare it with the sorted part of
the list, let’s assume that the sorted part of the list is its first
element, If the swap is required then swap else increase
the sorted list’s part by moving assumed sorted lists to the
right. Repeat the same process until the whole array is
sorted.

2. LITERATURE REVIEW

Sorting is a basic problem used in computer science [15]. In a
research paper comparison of two sorting techniques is shown
that is bubble sort and Insertion sort on two different
programming languages, is java and C programming language
[16]. Time required by insertion sort is O(n2) while the time
required by one iteration of insertion sort is O(n) [17][18]
Time complexity of bubble sort is O(n2) [18].

In a research paper, it is clearly stated that the complexity
resources are time and space with these two things the
complexity of sorting algorithms was measured by the
researcher [19]. The authors discussed on the topic of the
sorting algorithm. The researcher had highlighted that sorting
is an important technique for data structure, it is used in many
real-life functions. There are many sorting algorithms. In this

paper, the researcher has tested all the sorting techniques. The
researcher found some interesting results on the existing
techniques of sorting on all the different cases. The researcher
has attained results through the experimental data. The
researcher had told us about all the sorting techniques, they
had shown the algorithm of all the sorting techniques after that
he had shown the number of passes of all the sorting
techniques. The researcher had also shown the algorithm of all
the different sorting techniques. Author had done all this work
of sorting in the C++ programming language. Author had
shown the time complexity of all the sorting techniques in
different tables, after that, the researcher had made the graph
of all the sorting techniques in which the comparison of all the
techniques is shown, the graph clearly shows which sorting
technique is very used fully in C++ programming language.
One table shows the complex formulas of worst and best cases
of all the sorting techniques. The researcher has taken data
randomly, somewhere it is Best case, where the data gave is
already sorted while somewhere it is the worst case where the
whole data is in reverse order while somewhere he had taken
average case data where the data is completely not in the
correct order or maybe the data need only one swap to convert
its array in sorted order. The researchers had taken data of the
length of 10,000, 20,000, and 30,000 for all the sorting
techniques [20].

In another research, a paper researcher has shown the time
complexity of improved algorithm Bubble sort in C
programming language for that researcher has used data
length of 1,000 to 10,000 and the software used by the
researcher for running C language was turbo C++. The
researcher has shown a graph in which he has compared the
result for the bubble sort algorithm and its improved version
in which algorithm works more efficiently than the traditional
algorithm of Bubble sort [2].

3. METHODOLOGY

The performance of sorting techniques, that is insertion sort
and bubble sort is shown in the paper. For checking the
performance of insertion sort and bubble sort the factor of
time complexity is used. In this paper, performance is checked
by the time required by the data length of 5, 10, and 15 inputs
to sort the unsorted array. Performance analysis is done on
three different cases, the best case: where the data gave is
already sorted, the average case: where the data is not
completely sorted nor the data is completely in reverse order
and the worst case: where the data is completely in reverse
order. All the cases are applied on 5, 10, and 15number of
inputs, for the analysis rust programming language and
Python language are used to check insertion sort and bubble
sort technique. For compiling rust language, microsoft visual
studio code was used. For compiling python code, anaconda
software was used.

The given below flow chart, in which the flow of data is
shown for insertion sort and bubble sort. The algorithm helps
non-programmers to understand the sorting behavior of
bubble sort and insertion sort. The time required by bubble

Fanila Ali Agha et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1020 – 1025

1022

sort and insertion sort are shown in tables, one table shows the
time required by rust programming language and the other
table shows the time required by python language. After that,
the comparison of bubble sort and insertion sort are shown in
the table where one section represents the time required by
bubble sort and the other section of the table represents the
time required by insertion sort, this comparison is done on
python programming language and rust programming
language. Comparison is represented in a graphical format.
The result is shown which tells that which technique works
best for bubble sort and which technique is best for insertion
sort.

Flowchart

4. IMPLEMENTATION

Bubble sort and insertion sort are implemented in best case:
where the only comparison is needed but it does not require
sorting because the data is already sorted, average case: where
comparison and swap both are needed to sort the unsorted data

and worst case: where comparison and swap both are needed
because the data list is completely in reverse order. The array
is checked that either the given array needs swap or not, if the
swap is required, numbers would be swap else the index
would be increased and this process should be done
repeatedly until the whole list is sorted.

4.1 Algorithm of Bubble Sort

The algorithm of bubble sort is shown below
 Given a list of n elements with values or records A0,

A1… An-1, bubble sort is applied to sort an unsorted list
of arrays.

 Compare the first two elements of array A0, A1 in the list.
 If A1 < A0, swap those elements and continue with the

next 2 elements of the list.
 Repeat the same process until whole the list of the array is

sorted.
 Return the final sorted list of arrays.

4.2 Algorithm of Insertion Sort

The algorithm of insertion sort is as followed
 To arrange perfectly any bunch of numbers whose

contents are of any size in a climb up the order.
 Repeat from array to array[n] on the given array.
 Analyze the ongoing array ingredient with its previous

ingredient.
 If the previous ingredient is lower then, move the greater

elements one position up.
 Repeat the same process until the whole list is sorted.

4.3 Results Analysis

The python language code of bubble sort is compiled to
analyze three different inputs; the data length used was5, 10,
and 15 numbers of inputs. The 5 number of inputs were used
for analyzing the best case, 10 numbers of data lengths were
used for analyzing the average case, and 15 number of input
was used for analyzing worst-case. The time required to
complete the run of bubble sort got different readings these
readings are demonstrated below in the table 1.

Table 1: Bubble sort in Python

The code of insertion sort is compiled to analyze 5, 10, and 15
inputs for the best case, the average case, and the worst case.
The time complexity is noted, the process was done in python
language. The readings obtained are presented in the below
given table 2.

Bubble sort Time required No. of inputs

Best cases 1.44 seconds 5

Average case 1.56 seconds 10

Worst case 1.56 seconds 15

Fanila Ali Agha et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1020 – 1025

1023

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

5
10

15

Ti
m

e
R

eq
ui

re
d

Number of Inputs

Comparision of Bubble sort in Rust & Python

Time Required by Rust Time Reuqired by Python

Table 2: Insertion sort in Python

The time required by bubble sort to complete its sorting in rust
language is noted for best case, the average case, and the
worst case. The below table 3, shows clearly the time
complexity.

Table 3: Bubble sort in Rust

The time required by insertion sort to complete sorting was
noted where the number of inputs was 5, 10, and 15 for best
case, the average case, and the worst case. The time required
by rust is clearly reflected in the table 4.

Table 4: Insertion sort in Rust

Comparison:

The comparison of bubble sort was done by the time required
by rust language and python language. The below table 5,
show the time required by rust for bubble sort and the time
required by python for bubble sort both are given below. The
table below shows which language works better for bubble
sort.

Table 5: Comparison of Bubble sort

The table 6, demonstrates the time required by rust language
and python language to complete sorting in insertion sort, for
5, 10, and 15 numbers of inputs over best, average and worst
case.

Table 6: Comparison of Insertion sort

5. RESULTS DISCUSSION AND COMPARISON

By the experiment over bubble sort and insertion sort on
different data lengths in rust language and python language. It
is noticed that insertion sort works better in rust language for
the data length of 5, 10, and 15 numbers. Insertion sort works
efficiently in rust language as it requires the least amount of
time to complete sorting. The time required by bubble sort in
rust and python language is represented graphically; the graph
clearly shows that rust language requires less amount of time
to complete sorting. Insertion sort works better for data length
of 5, 10, and 15 numbers. The graph of insertion sort is also
shown below, which shows the time required by rust and
python language. By the analysis, it is found that Rust
language is efficient for insertion sort as it requires the least
amount of time to complete sorting. While comparing Rust
and python language, it is analyzed that rust language requires
the least amount of time. Comparing bubble and insertion sort
it is found that bubble sort required the least amount of time to
complete sorting for the given data length. Rust is a good
language for both bubble and insertion sort techniques.

Figure 1: Comparison of Bubble sort

The above figure 1: shows the efficiency of bubble sort in
both languages. The grey bar shows the time required by

Insertion sort Time required No. of inputs

Best cases 0.99 seconds 5

Average case 1 second 10

Worst case 1.01 seconds 15

Bubble sort Time required No. of inputs

Best cases 1.39 seconds 5

Average case 0.79 seconds 10

Worst case 0.78 seconds 15

Insertion sort Time required No. of inputs
Best cases 0.82 seconds 5

Average case 0.89 seconds 10
Worst case 0.90 seconds 15

No. of
inputs

Time required by
Python

Time required by
Rust

5 1.44 sec 1.39 sec
10 1.56 sec 0.79 sec
15 1.57 sec 0.78 sec

No. of inputs Time required by
Python

Time required
by Rust

5 0.99sec 0.82 sec
10 1 sec 0.89 sec
15 1.01 sec 0.90 sec

Fanila Ali Agha et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1020 – 1025

1024

0

0.2

0.4

0.6

0.8

1

1.2

5
10

15

Ti
m

e
R

eq
ui

re
d

Number of Inputs

Comparison of Insertion sort in Rust & Python

Time Required by Rust Time Reuqired by Python

python language and the blue bar shows the time required by
rust language. By whole data, it is analyzed that rust language
is more efficient for Bubble sort and works efficiently.

Figure 2: Comparison of Insertion sort

The above figure 2: show the efficiency of insertion sort in
rust and python language. The grey bar shows the time
required by python language and the blue bar shows the time
required by rust language. By whole data, it is analyzed that
rust language is more efficient for insertion sort as it requires
less amount of time to complete sorting.

6. CONCLUSION

In this study, the authors have attempted to analyze the
performance of bubble sort and insertion sort algorithms
concerning time complexity. Firstly, the bubble sort and
insertion sort algorithm was implemented in python language
and observed the time complexity. Secondly, the bubble sort
and insertion sort algorithm implemented in rust language and
time complexity observed. The processing time of algorithms
is observed in platforms, python, and rust. However, the
results show that the rust language is more efficient in
performance than python concerning time complexity for
bubble sort and insertion sort algorithms. Besides this, it is
observed that insertion sort is more efficient than bubble sort.

REFERENCES

[1] M. Shahzad, M. Shakeel, A. U. Rehman, and M. U.

Shoukat. Review on Sorting Algorithms - A
Comparative Study, International Journal of
Innovative Science and Modern Engineering, vol. 5, no.
1, p. 4, 2017.

[2] Ali, I., H, Nawaz, I.K., Ameen, M., Chhajro, M. and
Maitlo, A. Performance Comparison between Merge

and Quick Sort Algorithms in Data Structure,
in International Journal Of Advanced Computer
Science And Applications, 9(11), pp.192-195, 2018.

[3] P. Kumar, A. Gangal, S. Kumari, and S. Tiwari.
Recombinant Sort: N-Dimensional Cartesian Spaced
Algorithm Designed from Synergetic Combination of
Hashing, Bucket, Counting and Radix Sort, in
Ingénierie Systèmes Inf., vol. 25, Dec. 2020.
 doi: 10.18280/isi.250513.

[4] J. P. Ocampo. An empirical comparison of the
runtime of five sorting algorithms, p. 26.

[5] A. Alotaibi, A. Almutairi, and H. Kurdi. OneByOne
(OBO): A Fast Sorting Algorithm, in Procedia
Comput. Sci., vol. 175, pp. 270–277, 2020.

 doi: 10.1016/j.procs.2020.07.040.
[6] B. Bramas. Fast Sorting Algorithms using AVX-512

on Intel Knights Landing, arXiv preprint
arXiv:1704.08579, pp. 1-17, 2017.

[7] J. Alnihoud and R. Mansi. An Enhancement of Major
Sorting Algorithms, Int. Arab J. Inf. Technol. vol. 7,
no. 1, pp 55-62, 2010.

[8] E. Insanudin. Implementation of python source code
comparison results with Java using bubble sort
method, in J. Phys. Conf. Ser., vol. 1280, p. 032027,
Nov. 2019, doi: 10.1088/1742-6596/1280/3/032027.

[9] J. Tait, T. Ripke, L. Roger, and T. Matsuo. Comparing
Python and C++ Efficiency Through Sorting, in
International Conference on Computational Science and
Computational Intelligence (CSCI), Las Vegas, NV,
USA, Dec. 2018, pp. 864–871.
doi: 10.1109/CSCI46756.2018.00172.

[10] W. Min. Analysis on Bubble Sort Algorithm
Optimization, in 2010 International Forum on
Information Technology and Applications, Kunming,
China, Jul. 2010, pp. 208–211.

 doi: 10.1109/IFITA.2010.9.
[11] S. Zafar, Hina, and A. Wahab, A new friends sort

algorithm, in 2nd IEEE International Conference on
Computer Science and Information Technology, Aug.
2009, pp. 326–329.

 doi: 10.1109/ICCSIT.2009.5234550.
.[12] F. G. Furat. A Comparative Study of Selection Sort

and Insertion Sort Algorithms, in International
Research Journal of Engineering and Technology
(IRJET), vol. 03, no. 12, pp. 336–330, Dec. 2016.

[13] D. Rajagopal and K. Thilakavalli. Different Sorting
Algorithm’s Comparison based Upon the Time
Complexity, in Int. J. U- E- Serv. Sci. Technol., vol. 9,
no. 8, pp. 287–296, Aug. 2016,

 doi: 10.14257/ijunesst.2016.9.8.24.
[14] N. Yadav and S. Kumari. Sorting Algorithms, in

International Research Journal of Engineering and
Technology, vol. 3, no. 2, pp. 528-531, 2016.

[15] You Yang, Ping Yu, and Yan Gan. Experimental study
on the five sort algorithms, in Second International
Conference on Mechanic Automation and Control
Engineering, Inner Mongolia, China, Jul. 2011, pp.
1314–1317.

 doi: 10.1109/MACE.2011.5987184.

Fanila Ali Agha et al., International Journal of Advanced Trends in Computer Science and Engineering, 10(2), March - April 2021, 1020 – 1025

1025

[16] R. dwivedi Dr. Dinesh C. Jain. A Comparative Study
on Different Types of Sorting Algorithms (On the
Basis of C and Java), Eng. Technol., vol. 5, no. 08, pp.
805–808, 2014.

[17] M. A. Bender, M. Farach-Colton, and M. Mosteiro.
Insertion Sort is O(n log n), arXiv:cs/0407003, Jul.
2004, Accessed: Mar. 13, 2021. [Online]. Available:
http://arxiv.org/abs/cs/0407003.

[18] N. Akhter and M. Idrees. Sorting Algorithms – A
Comparative Study, vol. 14, no. 12, p. 8, 2016.

[19] M. Agenis-Nevers, N. D. Bokde, Z. M. Yaseen, and M.
Shende. An empirical estimation for time and
memory algorithm complexities: newly developed R
package, Multimed. Tools Appl., vol. 80, no. 2, pp.
2997–3015, Jan. 2021.

 doi: 10.1007/s11042-020-09471-8.
[20] K. S. Al-Kharabsheh, I. M. AlTurani, A. M. I. AlTurani,

and N. I. Zanoon. Review on Sorting Algorithms A
Comparative Study, International Journal of Computer
Science and Security (IJCSS), 7(3), pp.120-126, 2013.

