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 
ABSTRACT 
 
Semantic web technologies are increasingly used in different 
domains. The core technology of the Semantic Web is the 
RDF standard. Today with the growth of RDF data it requires 
systems capable of handling these large volumes of data and 
responding to very complex queries at the join level. With the 
increase in RDF data volumes available, many research 
efforts have been made to allow for distributed and efficient 
evaluation of SPARQL queries. In this paper, we propose a 
new solution based on Apache Spark for massive querying 
and RDF data. This new system allows the processing of 
complex SPARQL queries on large volumes of RDF data 
stored in the Hadoop file system or a NoSQL database 
management system. Our approach translates the SPARQL 
query of the user to a Spark script in order to take advantage of 
the speed of processing and the performance of Spark 
compared to other existing systems, thanks to an experiment 
carried out on RDF datasets.  
 
Key words : SPARQL, Apache Spark, RDF, MapReduce, 
Big Data.  
 
1. INTRODUCTION 

Hadoop is a framework that will allow the processing of 
massive data on a cluster ranging from one to several hundred 
machines. Hadoop[9] is written in Java and was created by 
Doug Cutting and Michael Cafarella in 2005 (after creating 
the Lucene search engine, Doug was working for Yahoo on 
his Nutch web crawling project). Hadoop will manage the 
data distribution at the heart of the cluster machines, their 
possible failures but also the aggregation of the final 
processing. The architecture is of the "Share nothing" type: 
no data is processed by two different nodes even if the data are 
distributed over several nodes (principle of a primary node 
and secondary nodes). 

Hadoop is composed of four elements: 
• Hadoop Common: set of utilities used by other elements, 
• Hadoop Distributed File System (HDFS): a distributed 

file system for persistent data storage. 
• Hadoop YARN: a framework for resource management 

and processing planning, 
• Hadoop MapReduce: a distributed processing 

framework based on YARN. 

 
 

HDFS is a Java file system used to store structured and 
unstructured data on a set of servers. It is a distributed, 
expandable and portable system developed by the creator of 
Hadoop inspired by the system developed by Google 
(GoogleFS). Written in Java, it has been designed to store 
very large volumes of data on a large number of machines 
equipped with local hard drives. HDFS relies on the native OS 
file system to present a unified storage system based on a set of 
heterogeneous disk and file systems. 

MapReduce[1] is a parallel processing framework, created 
by Google for its web search engine. It is a framework that 
allows the de-composition of an important query into a set of 
smaller queries that will each produce a subset of the final 
result: this is the Map function. All the results are processed 
(aggregation, filter): this is the Reduce function. MapReduce 
is ideal for batch processing, but it is not iterative by default. 
A batch type architecture makes it possible to process a set of 
input data until the source is exhausted. As long as data are 
available, the processing will continue and we will have a 
coherent and accessible result only at the end of the 
processing. 

In order to avoid this tunnel effect it is possible to split the 
input data and this is where the incremental notion is 
important. It will allow the new data to be taken into account 
without the need to reprocess all the data already processed. A 
perfect example of Batch Big Data is Map Reduce in its 
Hadoop version. The data is first selected by a main and often 
unique processing. The data is distributed between different 
nodes in order to be processed. 

Once the data processed by the set of nodes a process 
performs the global operations: 

 Sorting, 
 Aggregation, 

This type of processing has advantages such as simplicity 
of implementation, but it has drawbacks like: 

 Processing time, 
 Data arriving during processing are not taken into 

account. 
The outline of the paper is as follows: Section 2 exposes some 
existing related works in this topic. Section 3 describes Spark. 
Section 4 presents our main contribution. Section 5 evaluates 
and analyzes our approach (RDFSpark) with Lehigh 
University Benchmark. Finally. We conclude in Section 6. 
The authors of the accepted manuscripts will be given a 
copyright form and the form should accompany your final 
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2. RELATED WORK 
 
Many research efforts have been devoted to developing a large 
RDF data management system such as Jena-HBase [2], it is an 
evolutionary RDF based triplestore based on HBase[8] 
database storage which a basic management system 
column-oriented NoSQL data, Jena-HBase uses Jena for 
querying RDF data, another system also based on HBase is 
H2RDF [3] which is a fully distributed RDF data store, 
H2RDF combines the MapReduce Framework with a store 
distributed data NoSQL, so for storage this system uses HBase 
and for the processing of these data it uses MapReduce. we 
also mention that the H2RDF system has two features that 
allow efficient processing of simple SPARQL queries and also 
multiple joins on an unlimited number of triple RDF's 
through joining algorithms that perform joins based on the 
selectivity of the query for reduce the processing. Other 
researchers use for example the NoSQL database 
Cassandra[10] as: Ladwig and al. Providing with 
CumulusRDF [4] the nested key-values RDF data store and 
distributed as the underlying storage component for a linked 
data server, CumulusRDF provides functionality to process 
linked data through HTTP lookups. Or the authors of 
CumulusRDF have developed two index schemes for RDF to 
support both linked data retrieval and basic triple searching 
based on the model. The work [14] presents an overview of 
the RDF data management systems based on the NoSQL 
databases according to the different models: column-oriented, 
document-oriented, key-value oriented and graph-oriented. 
Cudre-Mauroux and al present [5] a comparison of NoSQL 
stores for RDF data processing. This work describes only four 
NoSQL stores that are: 4store, Jena-HBase, Hive-HBase, and 
CumulusRDF, this work also compares their key features 
through running standard RDF benchmark tests on a cloud 
infrastructure using two deployment modes. : On a single 
machine and distributed mode. A recent comparison [11] of 
RDF stores based on NoSQL, and recently in [12] the authors 
propose RDF data storage technique, for efficient processing 
of SPARQL queries using two distributed computing engines 
Spark and Drill [13]. Semantic Web applications generate 
huge amounts of data every day. RDF databases or triplestores 
are not scalable, on the other hand the big data systems 
guarantee us these scalability options, high data availability, 
and the high performance of the system, from where helped to 
integrate the Semantic Web technologies in a Big Data 
environment[20], the first work was a preliminary study [14] 
of the use of NoSQL database management systems as a new 
RDF database, then we proposed a survey [11] approaches 
that propose the use of Big Data technologies such as NoSQL 
or even Hadoop Distributed File System (HDFS) for 
managing large volumes of triple RDFs. After having carried 
out these state-of-the-art works, our work is oriented towards 
the proposition of our system which has an added value 
compared to the existing solutions, based on our two studies 
presented above, we proposed SPARQL2Hive [11] a new 
solution for processing complex SPARQL queries on Apache 
Hive based on Model-Driven Engineering, this system 
manages RDF data stored either in HDFS or a NoSQL 

database, the user writes its queries in SPARQL which is 
going to be in accordance with our SPARQL metamodel, then 
SPARQL2Hive transforms this request into a Hive program, 
thanks to the transformation and mapping between the two 
metamodels SPARQL and Hive. In recent years, MongoDB, 
the NoSQL database management system is the number 1 
system and the most used in the world, and it is not suitable to 
manage semantic web data, based on this result we started a 
new proposal RDFMongo [19] which a complete solution for 
the storage and processing of semantic data based on 
MongoDB, the RDF triples are transformed into JSON 
document is stored in MongoDB, and for the querying of 
these data we have implemented a mapping algorithm that 
transforms SPARQL queries into MongoDB Query Language 
queries. 
  
3.  SPARK 
 

Apache Spark[6] is an open source framework for Big Data 
processing built on the basis of Hadoop MapReduce to 
perform sophisticated analysis and designed for speed and 
ease of use. It was originally developed by UC Berkeley 
University in 2009 and passed Open Source as an Apache 
project in 2010. 

 
Spark ecosystem 
Next to Spark's main APIs, the ecosystem contains 

additional libraries that allow you to work in the field of Big 
Data analysis and machine learning. Among these libraries 
are Streaming, SQL, MLlib and GraphX. 

 
3.1 Spark Streaming 
It can be used for real-time flow processing. It relies on a 

micro-batch processing mode and uses an abstraction to 
effectively reuse data in a large family of applications called 
RDD for Resilient Distributed Dataset. RDDs are fault 
tolerant and offer parallel data structures that allow users to: 

1. Persistently store intermediate data in memory. 
2. Control their partitioning to optimize the location of the 

data. 
3. Manipulate the data, using a large set of operators. 
 
3.2 Spark SQL 
It exposes Spark datasets, via a JDBC type API, and 

executes SQL type queries, using traditional BI and 
visualization tools. Spark SQL can extract, transform and 
load data in different formats and expose them for ad hoc 
queries. 

 
3.3 Spark MLib 
MLlib is a machine learning library, which contains all the 

classic learning algorithms and algorithms, such as 
classification, regression, clustering, collaborative filtering, 
dimension reduction, in addition to the underlying 
optimization primitives. 
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3.4 Spark GraphX 
GraphX is the new API, still in alpha version, for graph 

processing and graph parallelization. GraphX extends 
Spark's RDDs by introducing the Resilient Distributed 
Dataset Graph, an oriented multi-graph with properties 
attached to nodes and arcs. To support these processes, 
GraphX exposes a set of basic operators, such as Sub-graph, 
JoinVertices, and AggregateMessages. In addition, GraphX 
includes an ever-growing collection of algorithms to simplify 
graph analysis tasks. 

 
The benefit of Spark 
 
Spark has several advantages over other technologies like 

Hadoop and Storm. First, Spark offers a comprehensive and 
unified Framework to address Big Data processing needs for 
various data-sets, different in nature (text, graph) as well as 
source type (in Batch or real-time mode). Then, Spark allows 
applications on Hadoop [16,18] Clusters to be executed up to 
100 times faster in memory, 10 times faster on the disk. It 
allows you to quickly write applications in Java, Scala or 
Python and includes a game of over 80 high-level operators. 
In addition, it can be used interactively to query data from a 
Shell command window. Finally, in addition to the "map" and 
"reduce" functions, Spark supports SQL queries and data flow 
and offers machine learning and graph-oriented processing 
functions. Developers can use these capabilities separately or 
by combining them into a complex processing chain. 

 
Micro-batch processing  

With the arrival of Spark for Streaming, the concept of 
micro-Batchs has attracted the attention of developers. This 
consists of splitting into smaller processes, real-time streams 
to be processed, at intervals between 500 ms and 5000 ms. 
Spark implements the concept of micro-Batchs in its 
operation. On the other hand, Spark should not be considered 
as a real-time stream processing engine. This is indeed the 
biggest difference between Spark and Storm. Storm, thanks to 
its Trident API, is able to support Batch Standards and 
micro-Batch processing. 

4. SYSTEM ARCHITECTURE  
To handle the growing size of RDF datasets that arrives up to 
billions of triple RDFs, we find the MapReduce Framework 
that Google developed for the parallel processing of very large 
datasets. Indeed writing programs with MapReduce is 
technically difficult and takes a lot of time. We use Spark 
because Spark allows applications on Hadoop Clusters to be 
executed up to 100 times faster in memory, 10 times faster on 
the disk, in addition to the "map" and "reduce" functions, 
Spark supports SQL queries and data flow and offers machine 
learning and graph-oriented processing functions. On the 
other hand, Apache Spark is an open source Big Data 
processing framework built to perform sophisticated and very 
fast analysis as MapReduce. We now present our approach 

which is a framework for translating SPARQL queries into 
Spark Jobs as an intermediate layer between SPARQL and 
Hadoop MapReduce. This abstraction layer ensures 
interoperability and compatibility to future Hadoop changes 
since it leaves our approach independent of the Hadoop 
version, see Figure 1. 
 

 
Figure 1: Modular Translation Process 

5. EXPERIMENTS 
In this section, we show that our system allows the evaluation 
of SPARQL queries on several billion triple RDF distributed 
over several nodes. We also compare our solution to other 
state-of-the-art solutions. We thus demonstrate the 
performances obtained by allowing the participants to 
reproduce the results themselves through different scenarios 
directly competing with several state-of-the-art solutions. 
In order to demonstrate how our system can be a scalable RDF 
system, we describe an experiment. We discuss selected 
systems; in addition, we describe the experiment conditions, 
present the results, and discuss them. In this experiment, we 
wanted to evaluate the scalability of our solution for this 
reason, we used the Lehigh University Benchmark (LUBM) 
[7], and we used four instances of this Benchmark LUBM1, 
LUBM2, LUBM3, LUBM4. (Table 1).  
 

Table 1: A Datasets summary 

 
We compare the performance of our system:”RDFSpark” 
with three other systems: Jena-HBase [2], a horizontally 
expandable triple RDF store that uses HBase for storage, 
CumulusRDF, the Cassandra-based RDF triplestore proposed 
by Ladwig et al [4], which uses an indexing scheme based on 
the NoSQL model, and H2RDF [3] which is also based on 
HBase. The code Jena-HBase and H2RDF are open-source 
and we used the default configurations for the code. 
 
 
 
 
 

 

Dataset Number of 
Triples 

Size 

LUBM1 1,316,993 0.11GB 
LUBM2 6,890,933 0.583GB 
LUBM3 133.000.000 22 GB 
LUBM4 1,334,000,000 213 GB 
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Table 2: Query execution time on LUBM1 

 
 

Table 3: Query execution time on LUBM2 

 
 

Table 4: Query execution time on LUBM3 
 

 
 

Table 5: Query execution time on LUBM4 
 

 
Table 6: Loading time LUBM queries 

 
For the Load Time: the evaluation shows that the load time 
in-creases linearly with the size of the data, as expected. The 
RDFSpark loading process uses Spark Streaming provided by 
Apache Spark to speed up the acquisition. The acquisition 
process is parallelized between the servers, using as much as 
possible all the servers. Figures 2, 3, 4, and 5 illustrate the 
results of the execution of the nine LUBM Benchmark 
queries, according to the four datasets used LUBM1, LUBM2, 
LUBM3, and LUBM4. 
 
 

 

 
 
 

 
 
 
 

 
 
 

 
Our distributed RDF storage solution using Apache Spark to 
evaluate SPARQL queries and store data through Hadoop File 
System (HDFS) infrastructures. This system relies on a 
SPARQL query translator to a sequence of instructions 
executable by Spark by adopting evaluation strategies. The 
results of this adopted strategy are presented in the following 
figures 2, 3, 4 and 5. 

 
 

Figure 2: LUBM1 queries execution time 
 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
Jena-HBase 324 6549 325 480 339 576 236 754 9766 

H2RDF 430 7857 560 543 587 550 321 506 11276 
CumulusRDF 308 5801 311 452 305 496 376 467 8744 

RDFSpark 165 2765 176 265 187 298 188 345 3870 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
Jena-HBase 205 2495 175 207 180 298 185 322 3874 

H2RDF 831 7857 481 543 507 563 377 509 7800 
CumulusRDF 308 5801 311 851 305 492 341 752 8732 

RDFSpark 414 3458 219 407 289 479 250 447 7332 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
Jena-HBase 461 4860 358 451 239 378 406 521 5008 

H2RDF 478 6750 568 594 587 554 377 508 6907 
CumulusRDF 342 7801 311 454 305 496 376 467 8744 

RDFSpark 365 2764 176 238 187 298 188 302 3821 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
Jena-HBase 584 7857 566 613 675 1830 304 585 8902 

H2RDF 409 6004 890 543 587 1512 379 506 8254 
CumulusRDF 324 6549 325 480 339 776 236 754 9766 

RDFSpark 433 7857 566 543 583 523 359 568 5670 

 LUBM1 LUBM2 LUBM3 LUBM4 
Q1 251 6536 325 480 
Q2 430 7857 566 543 
Q3 308 5801 382 627 
Q4 267 2765 478 699 
Q5 252 6601 461 489 
Q6 423 7859 504 543 
Q7 307 5801 311 651 
Q8 165 2771 476 735 
Q9 263 6632 329 1280 
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Figure 3: LUBM2 queries execution time 
 
 

 
 

Figure 4: LUBM3 queries execution time 
 
 

 
 

Figure 5: LUBM4 queries execution time 
 
 
From these results, our experiments firstly confirm the 
efficiency of RDFSpark, and for the processing time of a 
SPARQL query T with respect to the size of the data S, we 
notice that there is an almost linear scalability  of this factor T 
/ S. Thanks to the advantages of Spark, these evaluations 
show that RDFSpark is an efficient system for handling 
complex SPARQL queries against the processing of these 
queries by using MapReduce or a query language of NoSQL 
databases. Another interesting point is the step of optimizing 
RDFSpark, the series of optimization techniques reduces both 
the amount of data to be processed and the processing time of 
the corresponding SPARQL request. 
 

6.CONCLUSION 
 
In this paper, we have seen the features of Apache Spark in 
data processing and analysis. Spark positions itself against 
traditional MapReduce implementations like Apache Hadoop 
or we have proposed RDFSpark, a new approach for scalable 
execution of Apache Spark-based SPARQL queries to 
applications based on extracting information from very large 
RDF data volumes. To do this, we designed and implemented 
a translation of SPARQL queries to Spark program. The 
resulting Spark program is translated into a MapReduce job 
sequence and run in parallel on a Hadoop cluster. It is also 
possible to combine the Spark processing types with Spark 
SQL, Spark Machine Learning and Spark Streaming, thanks 
to different Spark integration modes and adapters. 
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